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SODA: A HIGH-PERFORMANCE
DSP ARCHITECTURE FOR

SOFTWARE-DEFINED RADIO
.....................................................................................................................................................................................................................................................

SOFTWARE-DEFINED RADIO (SDR) BELONGS TO AN EMERGING CLASS OF APPLICATIONS

WITH THE PROCESSING REQUIREMENTS OF A SUPERCOMPUTER BUT THE POWER

CONSTRAINTS OF A MOBILE TERMINAL. THE AUTHORS DEVELOPED THE SIGNAL-

PROCESSING ON-DEMAND ARCHITECTURE (SODA), A FULLY PROGRAMMABLE

ARCHITECTURE THAT SUPPORTS SDR, BY EXAMINING TWO WIDELY DIFFERING

PROTOCOLS, W-CDMA AND 802.11A. IT MEETS POWER-PERFORMANCE REQUIREMENTS

BY SEPARATING CONTROL AND DATA PROCESSING AND BY EMPLOYING ULTRAWIDE SIMD

EXECUTION.

......Communication has become one
of the central uses of computing technology,
and applications that facilitate interpersonal
communication, such as desktop publish-
ing, graphic design, e-mail, and Web
browsing, have been primary factors in
driving the evolution of microprocessors
and computer systems. Meeting applica-
tions’ processing requirements has histori-
cally dominated the concerns of processor
and system architects. With the prolifera-
tion of wireless mobile communications, the
emphasis has shifted to the networking
protocols and signal processing required to
sustain these applications’ necessary band-
width.

Recently, an increasing number of wire-
less protocols have emerged that make
interoperability more challenging and the
cost of supporting multiple protocols using

hardwired application-specific integrated
circuit (ASIC) solutions more expensive
and complex. In this article, we present
a design study for the Signal-Processing On-
Demand Architecture (SODA), a fully pro-
grammable architecture that supports soft-
ware-defined radio (SDR).

An important aspect of our work is to
identify wireless protocols’ power-perfor-
mance characteristics and propose a digital
signal processing (DSP) system based on
these characteristics, which can meet re-
quirements previously unmet by other DSP
solutions. Our analysis shows that embed-
ded DSP processors’ data concurrency
requires different solutions from those of
general-purpose processors. We’ve proposed
a DSP system consisting of one controller
and four ultrawide SIMD processing ele-
ments (PEs), with data communication
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done through explicit direct memory access
(DMA) instructions.1 This type of system,
with a control processor and multiple data
processors, has been explored previously for
high-end general purpose multimedia com-
putation, such as the IBM Cell processor.2

However, to our knowledge, this is the first
time researchers have proposed such a sys-
tem with energy characteristics suitable for
mobile computing.

SDR challenges and benefits
The operation throughput requirements

of current third-generation (3G) wireless
protocols are already an order of magnitude
higher than the capabilities of modern DSP
processors, a gap that’s likely to grow in the
future. Figure 1 shows the computation and
power demands of a typical 3G wireless
protocol. The figure also compares SODA’s
theoretical peak performance throughput
and power consumption with that of other
existing DSP, media, and general-purpose
processor systems. Although most DSP
processors operate at an efficiency of
approximately 10 million operations per
second (MOPS) per milliwatt (mW), the

typical wireless protocol requires 100
MOPS/mW. Hence, most wireless proto-
cols to date have been implemented with
custom hardware. Although custom hard-
ware can meet the operational requirements,
a programmable solution offers many
potential advantages:

N A programmable architecture would
allow multimode operation, running
different protocols depending on the
available wireless network—GSM in
Europe, CDMA in the USA and some
parts of Asia, and 802.11 in coffee
shops. This is possible with less
hardware than custom implementa-
tions require.

N A protocol implementation’s time to
market would be shorter because it
could reuse the hardware. The hard-
ware integration and software devel-
opment tasks could progress in paral-
lel.

N Prototyping and bug fixes would be
possible for next-generation protocols
on existing silicon through software
changes. The use of a programmable

Figure 1. Throughput and power requirements of typical 3G wireless protocols, and

theoretical peak computational efficiency of SODA, other DSPs, and general-purpose

processors. We calculated the results for 16-bit fixed-point operations.
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solution would support the specifica-
tion’s continuing evolution; after the
chipset’s manufacture, developers
could deploy algorithmic improve-
ments by changing the software with-
out redesign.

N Chip volumes would be higher be-
cause the same chip could support
multiple protocols without requiring
hardware changes.

Ultimately, we believe that the need to
support many increasingly complex wireless
protocols will make the use of programma-
ble systems for these protocols inevitable.

Analysis of wireless protocols
Wireless protocols are collections of

disparate DSP algorithm kernels that work
together as one system. There are four
major components: filtering, modulation,
channel estimation, and error correction.
Filtering algorithms suppress signals trans-
mitted outside the allowed frequency band
to minimize interference with other fre-
quency bands. Modulation algorithms map
source information onto the transmitter’s
signal waveforms, and receivers demodulate
the signal waveforms back into source
information. Channel estimation algo-
rithms calculate the channel conditions to
synchronize the two communicating term-
inals to ensure lock-step communication
between the sender and receiver. Error-
correction algorithms combat noisy channel
conditions. The sender encodes the original
data sequence with a coding scheme that
inserts systematic redundancies into the
output, which the receiver decodes to find
the most likely original data sequence.

We use two representative wireless pro-
tocols to understand the architectural re-
quirements of physical layer signal proces-
sing for SDR: Wideband code division
multiple access (W-CDMA)3 is one of the
most common 3G cellular protocols, and
802.11a4 is a standard wireless local area
network (WLAN) protocol. We chose these
two benchmarks because they are sufficient-
ly different from each other algorithmically
and are representative of the large spectrum
of algorithms that an SDR platform must
support. Both protocols have complex

interalgorithm and intra-algorithm interac-
tions and behaviors. Figure 2 shows overall
block diagrams for the operation of W-
CDMA and 802.11a, including each DSP
algorithm’s vector width and data precision.

Our key observations fall into two
categories: protocol system-level behavior
and DSP algorithm-level behavior.

System level
Wireless protocols generally consist of

multiple DSP algorithm kernels connected
together in feed-forward pipelines. Data
packets stream through these macro pipe-
lines sequentially, resulting in almost no
temporal locality. Thus, cache structures
provide little additional benefits, in terms of
power and performance, over software-
controlled scratch-pad memories.

For low-throughput interkernel commu-
nication traffic, the data throughput be-
tween DSP algorithm kernels isn’t high.
This implies that we can map interkernel
data traffic onto low-throughput, low-
power interconnects with minimal perfor-
mance degradation.

We can stream some interkernel com-
munications, where the receiving kernel
(such as a filter) can process input data
individually. Other interkernel communica-
tions must be buffered because the receiving
kernels (such as the interleaver and turbo
decoder) require blocks of data. Kernels
with the same throughput but different
communication patterns have dramatically
different hardware requirements. Streamed
kernels need only small first-in, first-out
(FIFO) queues, but the buffered kernels
require a large memory space.

All wireless protocols have real-time
deadlines. Meeting these deadlines, a chal-
lenge that has received scant attention in
previous DSP architectural studies, requires
concurrent execution management for mul-
tiple DSP algorithms.

Algorithm level
Most of the computationally intensive

DSP algorithms have abundant data-level
parallelism. As Figure 2 shows, the heaviest
workloads of the W-CDMA and 802.11a
protocols, including the searcher, low-pass
filter (LPF), fast Fourier transform (FFT),
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and Viterbi decoder, all operate on wide
vectors.

Most algorithms operate on variables
with small values. Our analysis of W-
CDMA and 802.11a suggests that the
architecture should provide support for 8-
and 16-bit fixed-point operations; 32-bit
fixed-point and floating-point support are
unnecessary. As Figure 2 shows, W-
CDMA’s algorithms operate mostly on 8-
bit data, whereas 802.11a’s algorithms
operate mostly on 16-bit data.

Design trade-offs for SDR
Now we’ll look at the architectural

implications of supporting wireless proto-
cols. Considerations include managing con-
current DSP algorithm execution, control-
ling interalgorithm communication, meet-
ing real-time deadlines, and supporting
high-throughput DSP algorithms.

Control plane versus data plane
Complete software implementations of

wireless protocols usually require two steps:
implementing the DSP algorithms and the
protocol system. The DSP algorithms are
computation-intensive kernels that have
relatively simple data-independent control
structures. The protocol system has a rela-
tively light computation load but compli-
cated data-dependent control behavior.
Therefore, our proposed SDR solution
includes a two-tiered architecture: a set of
data processors that handle heavy-duty data
processing and a control processor that
handles the system operations and manages

the data processors through remote pro-
cedure calls and DMA operations.

Static multicore scheduling versus multithreading
Traditional microarchitectural techniques

that researchers developed for server-class
multiprocessors, such as simultaneous mul-
tithreading and cache coherency, offer
programmers a convenient abstraction, but
they can be of limited value in high-
throughput embedded systems. Strict real-
time requirements make deterministic ar-
chitectural behavior necessary. This implies
that microarchitectural features that trade
off good average-case performance for non-
deterministic and poor worst-case perfor-
mance (such as caching, multithreading,
and prediction) are ill suited to these
applications.

To reduce hardware complexity and
produce efficient deterministic code behav-
ior, we omit multithreading and cache
coherency support. Instead, our execution
model breaks up each protocol pipeline into
kernels and statically assigns each kernel to
a PE, which is then statically scheduled to
execute according to the algorithm data
flow. This model grew out of our observa-
tions that interkernel communication
throughput is low, and intrakernel compu-
tational throughput is high. Therefore, the
static scheduling approach can result in less
communication traffic than splitting kernels
into threads.

Scratch-pad memory with data streaming
In addition to data computation, pro-

grammers also need to handle the data

Figure 2. Physical layer operation of W-CDMA (a) and 802.11a (b) wireless protocols. Each block includes the algorithm’s

name, vector or scalar computation, vector width, and the data precision. We also grouped the algorithms into four

categories (shown in shaded boxes): filtering, modulation, channel estimation, and error correction.
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communications between algorithms. These
interalgorithm communications are usually
data-streaming buffers that are ideal for
nonblocking DMA transfers: while the
processors operate on the current data, we
can stream the next batch of data between
the memories and register files in the
background. Researchers have previously
proposed streaming computations for mul-
timedia processor architectures, including
the Imagine5 and IBM Cell2 processors.
They have shown that scratch-pad memo-
ries, instead of cache, are best suited for
streaming applications. We find that
streaming computation is also suitable for
wireless protocols.

Wide SIMD execution
The computationally intensive DSP algo-

rithms in wireless protocols usually contain
operations on wide vectors. In addition,
vector widths and strides can generally be
calculated at compile time. Although a vec-
tor architecture would be a good fit for
a wide-vector computation, the extra hard-
ware support for dynamic vector manage-
ment is unnecessary because we can stati-
cally schedule all data operations. This
favors a wide single-instruction, multiple-
data style clustered execution. Traditional
SIMD architectures have a narrow SIMD
width because of the difficulties in data
alignment. In addition, general-purpose
SIMD accelerators usually support a large
range of data sizes (for example, Intel’s
MMX6 supports 8-, 16-, 32-, and 64-bit
SIMD operation). Therefore, a SIMD sys-
tem’s bottlenecks are often the data move-
ment and alignment operations, not data
computation. Previous studies have ad-
dressed this problem through complex
multiported memories and register files or
a full crossbar interconnect. In the context
of the power budgets for mobile devices,
however, these are infeasible solutions.

Wireless protocols’ DSP algorithms have
well-defined intravector data-permutation
patterns and operate on 8- and 16-bit data.
These traits significantly simplify the data-
movement requirements. Therefore, we can
afford to scale up the SIMD width to
exploit DSP algorithms’ wide vector opera-
tions, with the intravector data permutation

supported through an SIMD shuffle net-
work.

Asymmetric VLIW instructions
In addition to the heavy vector compu-

tation, wireless protocols include many
small, yet equally important scalar DSP
algorithms. Wide SIMD execution units are
too inefficient for these scalar and narrow
SIMD operations. Therefore, architectural
support for scalar execution is also neces-
sary. In most cases, scalar operations can
execute concurrently in VLIW (very long
instruction word) lock-step with the SIMD
operations. The VLIW is asymmetric be-
cause instructions for SIMD pipeline can’t
execute on the scalar pipeline and vice versa.

SODA architecture implementation
Figure 3 shows the SODA multiproces-

sor architecture, which consists of multiple
PEs, a scalar control processor, and global
scratch-pad memory, all connected through
a shared bus. Each SODA PE consists of
five major components:

N a SIMD pipeline for supporting vector
operations,

N a scalar pipeline for sequential opera-
tions,

N two local scratch-pad memories for the
SIMD pipeline and the scalar pipeline,

N an address generation unit (AGU)
pipeline for providing the addresses
for local memory access, and

N a programmable DMA unit to transfer
data between memories and interface
with the outside system.

The SIMD, scalar, and AGU pipelines
execute in VLIW-style lock-step, controlled
with one program counter (PC). The DMA
unit has its own PC; its main purpose is to
perform memory transfers and data rear-
rangement. It’s also the only unit that can
initiate memory accesses to the global
scratch-pad memory.

The SIMD pipeline, designed to handle
computationally intensive DSP algorithms,
consists of a 32-way 16-bit integer data
path, with 32 arithmetic units working in
lock-step. Each data path includes a two-
read-port, one-write-port 16-entry register
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file, and one 16-bit arithmetic logic unit
(ALU) with multiplier. The multiplier takes
two execution cycles when running at the
targeted 400 MHz. The SIMD pipeline
supports intraprocessor data movements
through the SIMD Shuffle Network
(SSN), which consists of a shuffle exchange
(SE) network, an inverse shuffle exchange
(ISE) network, and a feedback path. Pre-
vious work has shown that any permutation
of size N can be done with 2log2N – 1
iterations of either the SE or ISE network,
where N is the SIMD width.7 For SDR
algorithms’ permutation patterns, we found
that we can reduce the number of iterations
if we include both the SE and ISE networks.

The SIMD pipeline can take one of its
source operands from the scalar pipeline.
This feature, which is useful in implement-
ing trellis computations, is done through
the scalar-to-vector (STV) registers (see the
SIMD pipeline in Figure 3). The STV
contains four 16-bit registers, which only
the scalar pipeline can write and only the
SIMD pipeline can read. The SIMD
pipeline can read one, two, or all four
STV register values and replicate them into

32-element SIMD vectors. SIMD-to-scalar
operations transfer values from the SIMD
pipeline into the scalar pipeline, through the
vector-to-scalar (VTS) registers (see Fig-
ure 3). SODA supports several SIMD
reduction operations, including vector sum-
mation and finding the minimum and
maximum.

The DMA controller is responsible for
transferring data between memories. It’s the
only component in the processor that can
access the SIMD, scalar, and global mem-
ories. A traditional DMA controller per-
forms copies from one memory region to
another, where regions are either contiguous
or have a simple stride access patterns. It is
usually implemented as a slave device,
controlled through a set of DMA registers
and synchronization instructions that exe-
cute on the master processor. In our
processor, we also implement the DMA as
a slave device that the scalar pipeline
controls. However, it can execute its own
instructions on its internal register file and
ALU, similar to the scalar pipeline. This
gives the DMA the ability to access the
memory in various application-specific pat-

Figure 3. SODA for software-defined radio. The system consists of four data processing

elements (PEs), one control processor, and a global scratch-pad memory, all connected

through a shared bus. Each PE consists of a 32-wide 16-bit SIMD pipeline, a 16-bit scalar

pipeline, two local scratch-pad memories, an address generation unit (AGU) for calculating

memory addresses, and a direct memory access (DMA) unit for interprocessor data transfer.
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terns without assistance from the master
processor. This lets us efficiently implement
inherently scalar memory-transfer algo-
rithms.

Experimental evaluation
To test SODA’s performance, we first

developed W-CDMA and 802.11a physi-
cal-layer system implementations in C.
Next, the benchmarks were hand-coded
with the SODA instruction set. For perfor-
mance evaluation, an interprocessor net-
work simulator was built on top of our PE’s
cycle-accurate processor simulator. We also
implemented SODA in Verilog and syn-
thesized it for 400 MHz using the Taiwan
Semiconductor Manufacturing Company
(TSMC) 180-nm library. We generated
the memories with the Artisan SRAM
memory generator. We then estimated the
power and area results for 90-nm and 65-
nm processes using the Predictive Technol-
ogy Models (PTM; http://www.eas.asu.edu/
ptm/) and SPICE simulations assuming
a logic delay modeled by 20 fan-out-of-4
gates in 180-nm technology at 1.8 V, 90-
nm technology at 1 V, and 65-nm technol-
ogy at 0.8 V.

Through our simulations, we found that
we can meet the real-time computational
requirements of 2-Mbps W-CDMA and
24-Mbps 802.11a with four SODA PEs
running at 400 MHz. 802.11a has higher
overall computation requirements than W-
CDMA, but W-CDMA requires higher
computational cycles per bit due to higher
computation requirements for channel esti-
mation and error-correction algorithms.

Through our power analysis, we found
that SODA can support W-CDMA and
802.11a consuming approximately 3 W in
180-nm process technology. A typical
cellular phone’s power budget for the
physical layer is approximately 200 mW.
To see if we could meet this constraint, we
estimated SODA’s power and area at state-
of-the-art technology nodes, 90 and 65 nm.
Designs in both technologies fall within the
range of acceptable power consumption:
450 and 250 mW, respectively.

The rest of our discussion focuses on W-
CDMA (instead of 802.11a) because its
behavior is more complex. Figure 4a shows

W-CDMA’s algorithm kernel mapping
onto SODA, and Figure 4b shows the
real-time system execution of one frame of
data. The dedicated channel (DCH) is a full
duplex channel consisting of the dedicated
physical data channel (DPDCH) for uplink
and the dedicated physical channel
(DPCH) for downlink. In the W-CDMA
specification, DCH also includes the ded-
icated physical control channel (DPCCH)
uplink, which we didn’t model in this
study. The uplink and downlink channels
are mapped onto their own PEs. This
assignment achieves a relatively balanced
workload across the four PEs.

To better understand W-CDMA execu-
tion, consider Figure 4b. The horizontal
axis is time, and the vertical axis lists the
SODA’s PEs and their real-time processing
utilization. The utilization of PE1, PE2,
PE3, and PE4 are 60, 50, 100, and 94
percent, respectively. One W-CDMA frame
contains 15 slots. Two hard, real-time
deadlines must be met in W-CDMA. The
first involves the power control critical path
that controls the transmission power based
on received signal quality. It needs to
update periodically once per slot
(0.67 ms). The critical path is the channel
between the finite impulse response (FIR)
receiver filter, demodulation, and power
control. This is a streaming channel with
minimal memory storage requirements. The
other real-time critical path is the channel
from the FIR filter to the searcher, which
must complete within 5 ms and requires
a large amount of data buffering. Because of
the static timing characteristics, compile-
time scheduling of the kernels suffices to
reduce unnecessary context switching over-
head. The interprocessor data-streaming
communications can be handled through
the DMA.

Untethered digital devices are already
ubiquitous. The world has more than

1 billion active cell phones, each a sophisti-
cated multiprocessor. With sales totaling
about $400 million every year, the cell
phone has arguably become the dominant
computing platform, a candidate for repla-
cing the PC. We expect to see both the
types and numbers of mobile digital devices
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increase in the near future; new devices will
improve on the mobile phone by incorpo-
rating advanced multimedia functionalities.
We also anticipate the emergence of
relatively simple, disposable devices that
support the pervasive computing infrastruc-
ture. With the performance requirements of
mobile devices increasing exponentially,
computer architects must adapt to keep
up. SDR promises to deliver a cost-effective,
flexible mobile communication solution by
implementing the various wireless protocols
in software. However, an SDR solution
requires extraordinary amounts of compu-
tation on a mobile device’s power budget.
For architects, this means that we need to
bring the power of a supercomputer to
mobile devices—a mobile supercomputer.8

The market’s interest in SDR is growing
rapidly, with companies like Sandbridge,9

Icera (www.icerasemi.com), and Phillips10

releasing new solutions. Sandbridge’s Sand-
blaster is a multicore system that consists of
four multithreaded SIMD processors.
Icera’s DXP is a deep-pipelined LIW pro-
cessor with four-wide SIMD execution. And
Phillips EVP is a 16-wide SIMD processor
with ASIC accelerators.

SODA is a DSP system consisting of one
general-purpose processor and four SIMD

processing elements, with data communica-
tion done through explicit DMA instruc-
tions. For current-generation wireless sys-
tems, SODA can meet the processing
requirements of two widely differing pro-
tocols (W-CDMA and 802.11a) within the
strict power constraints of a mobile termi-
nal. SODA is also well positioned to meet
the demands of next-generation wireless
protocols through more processing elements
with wider SIMD execution.

It’s worth noting that a large class of
computing platforms, especially those in the
embedded world, are organized as a ‘‘control
plane’’ processor with a collection of ‘‘data
plane’’ processors. Our solution is squarely in
this space, applying the control-data plane
multicore architecture to SDR’s embedded
domain. With the rapid growth of embedded
applications, we expect to see more of these
types of architectures in the future. MICRO
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