
Hierarchical Coarse-grained Stream Compilation for
Software Defined Radio

Yuan Lin, Manjunath Kudlur, Scott Mahlke, and Trevor Mudge
Advanced Computer Architecture Laboratory

University of Michigan at Ann Arbor
{linyz, kvman, mahlke, tnm}@umich.edu

ABSTRACT
Software Defined Radio (SDR) is an emerging embedded
domain where the physical layer of wireless protocols is im-
plemented in software rather than the traditional applica-
tion specific hardware. The operation throughput require-
ments of current third-generation (3G) wireless protocols are
an order of magnitude higher than the capabilities of mod-
ern digital signal processors. Due to this steep performance
requirement, heterogeneous multiprocessor system-on-chip
designs have been proposed to support SDR. These het-
erogeneous multiprocessors provide difficult challenges for
programmers and compilers to efficiently map applications
onto the hardware. In this paper, we utilize a hierarchical
dataflow programming model, referred to as SPIR, that is
designed for modeling SDR applications. We then present a
coarse-grained dataflow compilation strategy that assigns a
SDR protocol’s DSP kernels onto multiple processors, allo-
cates memory buffers, and determines an execution sched-
ule that meets a prescribed throughput. Unlike traditional
approaches, coarse-grained compilation exploits task-level
parallelism by scheduling concurrent DSP kernels instead
of instructions. Because of the streaming nature of SDR
protocols, we adapted an existing instruction-level software
pipelining technique, modulo scheduling, for coarse-grained
compilation. Our compilation methodology is able to gen-
erate parallel code that achieves near linear speedup on a
SDR multiprocessor system.

Categories and Subject Descriptors
D.3.4 [Processors]: [Compilers]

Keywords
MPSoC Compilation, Modulo Scheduling, Software Defined
Radio, Dataflow Programming Model

1. INTRODUCTION
In recent years, we have seen the emergence of an in-

creasing number of wireless protocols that are applicable
to different types of networks. Traditionally, the physical

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’07, Sept. 30 - Oct. 5, 2007, Salzburg, Austria.
Copyright 2007 ACM 1-59593-543-6/06/0010 ...$5.00.

Interconnect Bus

Data

Processor

Global

Memory

DMA

Control

Processor

Data

Processor

Local

Memory

Local

Memory

Figure 1: SDR control-data decoupled MPSoC architecture con-
sisting of one general-purpose control processor, multiple data
processors, and a hierarchical scratchpad memory system that
are all interconnected with a bus.

layer of wireless protocols is implemented with fixed func-
tion ASICs. Software defined radio (SDR) promises to de-
liver a cost effective and flexible solution by implementing
the wide variety of wireless protocols in software. Such so-
lutions have many potential advantages: 1) Multiple proto-
cols can be supported simultaneously on the same hardware,
allowing users to automatically adapt to the available wire-
less networks; 2) Lower engineering and debugging efforts
are required for software solutions over hardware solutions;
3) Higher chip volume because the same chip can be used
for multiple protocols, which lowers the cost; and 4) Better
support for future protocol changes.

Due to the high-throughput and low-power requirements,
previous works have proposed using multiprocessor system-
on-chip (MPSoC) digital signal processors (DSPs) to sup-
port SDR [8] [17]. These systems, as shown in Figure 1,
fall under the category of control-data decoupled architec-
tures. In control-data decoupled systems, functionality is
separated into two classes of processors. Control processors
are typically general-purpose processors that are capable of
handling control-intensive code and are best suited for proto-
col scheduling and memory management. Conversely, data
processors are specialized DSP processors that can perform
heavy-duty data-intensive computations. Single-instruction
multiple-data (SIMD) or vector processing is typically em-
ployed in the data processors. The system has a non-uniform
memory architecture, with both a shared global memory and
local memories on the data processors. Many systems use
scratchpad memories instead of caches for local memories,
which makes memory management the responsibility of the
software. In many systems, one control processor is capable
of supporting multiple data processors as shown in Figure 1.

Wireless protocols are collections of disparate DSP al-

gorithm kernels that work together as one system. How-
ever, traditional DSP programming languages, such as C,
are designed for stand-alone algorithms running on unipro-
cessor architectures. They assume a sequential program-
ming model that is unfit for describing a wireless protocol’s
complex concurrent system-level behavior. Given that many
embedded programs are still manually compiled by the pro-
grammers, compiling for a MPSoC SDR architecture is going
to provide even greater challenges. One of the key advan-
tages of SDR is the lower engineering effort for develop-
ing software over hardware, therefore a viable SDR solution
must also provide programming language and compilation
support that eases the software development effort.

SDR Programming Model. Previous work has pro-
posed using the dataflow language to model streaming ap-
plications, including SDR protocols [21]. We implemented
a third generation wireless protocol, Wideband Code Divi-
sion Multiple Access (W-CDMA), as our SDR case study.
We found that the protocol should be modeled with multi-
ple decoupled dataflow streams expressed in a hierarchy, not
as the single flat dataflow stream that was used in previous
studies. This is because SDR protocols’ inter-kernel commu-
nications have highly diverse streaming rates and patterns.
In addition, traditional dataflow models express streaming
patterns as FIFO queues of scalar variables. In SDR ap-
plications, many inter-kernel communications are queues of
large meta variables, such as vectors and matrices. This re-
quires a hierarchical communication model to express both
the streaming patterns of the queues and the streaming pat-
terns of the meta elements within the queues. In this paper,
we present a hierarchical dataflow model, which effectively
captures these streaming attributes.

Coarse-grained Compilation. Mapping a software im-
plementation of wireless protocols onto MPSoC hardware
requires software tool support. This SDR tool chain can be
divided into two parts: the compilation of individual algo-
rithm kernels for a DSP data processor, and the execution
scheduling of the kernels for a MPSoC SDR system. This
paper focuses on the second part of the tool chain — the
MPSoC scheduling. For this study, the kernel compilation
process is treated as a black-box, where the MPSoC sched-
uler assumes that a data processor compiler is provided by
the MPSoC designers.

Previous work [16] has shown that the multi-processor
scheduling problem can be divided into three major tasks: 1)
processor assignment and memory allocation; 2) kernel ex-
ecution ordering; and 3) kernel execution timing. All three
tasks can be handled either statically by the compiler or dy-
namically by the run-time scheduler. In SDR protocols, the
execution behavior is relatively static with limited run-time
execution variations. The scheduling process needs to con-
sider the inter-kernel communications, meet the real-time
deadlines, and manage the scratchpad memories. This com-
bination of factors favors a compile-time solution. Thus, we
focus on designing a compiler for all three tasks. Coarse-
grained function-level scheduling under strict memory con-
straints presents new challenges that have not been fully
explored in previous compilation studies.

Coarse-grained Software Pipelining. Coarse-grained
compilation requires function-level parallelism to utilize a
MPSoC’s resources. SDR protocols do not have many ker-
nels that execute concurrently. They are streaming appli-
cations with coarse-grained pipeline-level parallelism. Soft-

ware pipelining was proposed as a method to exploit the
instruction-level parallelism by overlapping consecutive loop
iterations. Stream computation can be viewed as a loop
that iterates through each streaming data input, where the
computation for successive data inputs can also be over-
lapped. The coarse-grained scheduling process is similar
to instruction-level software pipelining, except that kernels
and bulk memory transfers are scheduled onto processors
and DMA engines, instead of scheduling instructions onto
ALUs and memory units. In this study, we apply a well-
known software pipelining technique, modulo scheduling,
on a macro-level to schedule the kernels and bulk memory
transfers onto the MPSoC system.

The contributions of this paper are two fold:

• A hierarchical dataflow programming model, SPIR, is
presented that is designed to model wireless protocol’s
system-level streaming behavior.

• A coarse-grained modulo scheduling methodology is
presented and evaluated that statically assigns SDR
kernels onto processors, allocates scratchpad memories
for inter-kernel communication, and creates a software
pipelined execution schedule for the kernels.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our SDR case study, the W-CDMA wire-
less protocol, and its software characteristics. Section 3 de-
scribes SPIR and its design rationale. Section 4 explains the
hierarchical dataflow compilation method. Finally, the effec-
tiveness of the hierarchical compilation strategy is evaluated
in Section 5, and we compare to related work in Section 6.

2. SDR CASE STUDY: W-CDMA
Wireless protocols are collections of disparate DSP algo-

rithm kernels that work together as one system. In this
study, we chose W-CDMA, as shown in Figure 2, as our case
study to understand the software execution requirements for
SDR systems. The top figure in Figure 2 shows the overall
protocol diagram. The bottom figure shows the stream rates
between kernels in W-CDMA receiver. For the sake of sim-
pler illustration, the rates in this paper are expressed as a
multiple of stream tokens. The actual size of a stream token
is different for different kernels. For example, in LPF-Rx, a
stream token is a complex number of two 12-bit fixed-point
values. In Turbo decoder, a stream token is one 8-bit integer
value. However, the sending and the receiving stream tokens
of every pair of communicating kernels have the same token
size. The following is a summary of the key observations.

Hierarchical algorithm description – Wireless protocols
are systems connected together with DSP kernels. On the
kernel level, each kernel consists of vector computations.
The system level fits the dataflow execution model, whereas
kernel level requires only a sequential execution model with
vector arithmetic support.

DSP kernel macro-pipelining – Wireless protocols usu-
ally consist of multiple DSP algorithm kernels connected to-
gether in feed-forward pipelines. Data is streamed through
kernels sequentially, resulting in almost no temporal locality.

Vector computations – Most of the computationally inten-
sive DSP algorithm kernels have abundant data-level paral-
lelism. Searcher, LPF, and Turbo decoder all operate on
very wide vectors.

Meta-variable streaming – In addition to scalar variables,
vectors and matrices are often passed between kernels. Some

W-CDMA DPCH

Receiver Dataflow

c
o

m

b

i
n

e
r

deinteleaver

descrambler
 despreader

searcher

Turbo

Decoder

descrambler
 despreader

descrambler
 despreader

descrambler
 despreader

LPF-Rx
1
1

32

32

32

32

32

32

32

32

2
5

6
0

2
5

6
0

320

4

4

4

4

1

1

1

1

1

1

1

1

1
640
 640
9600
 3200

F

r
o

n

t
e
n

d

FIR-Tx
 scrambler
 spreader
 interleaver

Channel

encoder

FIR-Rx

searcher

descrambler
 despreader

c
o

m

b

i
n

e
r
descrambler
 despreader

.
.
.

modulator

demodulator

deinteleaver

Channel

decoder

(turbo/viterbi)

U

p

p

e
r

l
a
y
e
r
s

Transmitter

Receiver

delay buffer

Rake receiver

Figure 2: W-CDMA system diagram. The top diagram shows the W-CDMA protocol with the transmitter and receiver. The bottom
diagram shows the W-CDMA DPCH (Dedicated Physical CHannel) receiver modeled as a dataflow. The source and destination nodes’
stream rates are shown on the edges. Two 2560-wide vectors are required as the delay buffer between LPF and the Rake receiver. The
dataflow stream rate also varies greatly between LPF’s 1 to Turbo decoder’s 9600. The rates are expressed as a multiple of stream
tokens. The size of one stream token is different for different kernels. For example, a LPF-Rx stream token is a complex number of two
12-bit fixed-point values, and a Turbo decoder stream token is one 8-bit integer value.

of these meta-variables are relatively large in size and may
be too large to fit onto a processor’s local memory. This be-
havior requires a more complex streaming pattern than con-
ventional scalar variable streaming. For example, as shown
in Figure 2 dataflow, the input of the rake receiver requires
two 2560-wide 32-bit vectors.

Large variations in streaming rate – While all kernels ex-
hibit streaming characteristics, the streaming throughput
rate maybe widely different between kernels in the same pro-
tocol. Some kernels, such as low-pass filters, can process in-
put data individually. Other kernels, such as the interleaver,
process data in large blocks with over 640 8-bit elements.

Real-time Deadlines – W-CDMA is a real-time application
with periodic deadlines. As we will show in Section 4.2, these
real-time deadlines can be translated into constraints on the
modulo schedule.

3. SDR PROGRAMMING MODEL
The embedded market is already saturated with program-

ming languages, such as Ada, C, Fortran, and Matlab, each
with different language extensions and intrinsic libraries. All
of these languages are based on the sequential programming
model, which is a mismatch for SDR’s MPSoC hardware and
wireless protocols’ streaming computations. However, be-
cause of the popularity of existing programming languages,
it is unlikely that the DSP programmers are willing to adopt
a completely new programming paradigm. Therefore, we
designed SPIR (Signal Processing Intermediate Represen-
tation), a concurrent programming model, as an intermedi-
ate representation that can be automatically generated from
existing high-level languages through a compiler frontend.
However, the description of this frontend compilation pro-
cess is beyond the scope of this paper.

SPIR represents a task graph consisting of a set of nodes
(tasks) interconnected together with edges (dataflow). Each
edge contains both input and output stream rates for the
source and destination nodes. A node’s stream rates cor-
respond to the amount of data consumed and produced
per invocation. Synchronous dataflow (SDF) is a restricted
dataflow model where the stream rates are statically defined.
This property allows a compiler to generate static execution
schedules. SPIR supports a less restrictive dataflow model
than the SDF, where dynamic stream rates are supported.
However, in the context of this study, we assume the SDF
model with static stream rates. Dynamic stream compila-
tion strategies will be discussed in our future studies. SPIR
supports hierarchy by allowing two types of nodes: a hierar-
chical node, which has a child graph made up of other SPIR
nodes and a non-hierarchical node which does not have a
child graph. Dataflow split and merge nodes are used to
support data stream duplications and convergences. An ex-
ample of the W-CDMA receiver’s SPIR representation is
shown in Figure 2’s bottom diagram.

SPIR supports two forms of hierarchy, communication
pattern and dataflow, which are described in the remain-
der of this section.

3.1 Hierarchical Communication Pattern
Vectors and matrices are often passed between DSP algo-

rithms, resulting in complex streaming patterns that cannot
be handled with a traditional one-dimensional FIFO stream
buffer. On the top level, the communication pattern may
be modeled as a buffer of vectors or matrices that are trans-
ferred between nodes. Within each FIFO element, vectors
may have different element-wise access patterns. For ex-
ample, a vector addition operation may be implemented by
accessing each vector element sequentially. On the other

Turbo

Decoder

300
 100

9

6
0

0

9

6
0

0

node2
9600
 3200
node1
38400
 9600

deinter-

leaver

640
 640
Rake

2560

640

6
4

0

6
4

0

c
o

m

b

i
n

e
r

descrambler
 despreader

searcher

descrambler
 despreader

descrambler
 despreader

descrambler
 despreader
LPF-Rx
256
256

128

128

128

128

128

128

128

128

320

128

128

128

128

32

32

32

32

32

32

32

32

32

LPF-Rx
2560
 2560

2
5

6
0

2
5

6
0

Hierarchical Rate Matched

W-CDMA DPCH Receiver

Figure 3: This graph shows W-CDMA DPCH receiver expressed as a rate matched hierarchical dataflow graph. Hierarchical dataflow
allows kernels with widely different stream rates to be modeled as separate dataflow streams. It also allows delay buffers to be modeled
hierarchically. Note that the hierarchy is defined by the user, but matched rates are the output of the SPIR compiler.

hand, a vector permutation will require access in the spe-
cific permutation pattern. In vector streaming, these are two
independent streaming descriptions: 1) How are the vectors
consumed and produced between nodes, and 2) How is each
vector accessed by source and destination nodes? This mo-
tivates SPIR to model the software behavior with a hierar-
chical description, where each level of the hierarchy models
a different type of streaming pattern.

One example that highlights the advantage of hierarchi-
cal communication is the DPCH receiver’s dataflow between
LPF-RX and Rake receiver shown in Figure 2. In W-CDMA,
data are bundled in slots, with each slot containing 2560
data points. Due to multipath fading effect, the actual start-
ing point for a slot can potentially be from any place within
its previous slot. This requires the descrambler’s input be
placed in a delay buffer of at least 5120 elements, contain-
ing the current and previous slots. To make matters worse,
there are multiple descramblers, each with a different start-
ing point. Traditional dataflow models can only describe
this as passing 2560 data points from LPF-Rx to Rake. On
the other hand, a hierarchical vector buffer can also model
the secondary communication pattern. On the top-level, it
is modeled as a FIFO vector buffer between the FIR and
Rake, where each element is a 2560-wide vector. On the
bottom-level, each descrambler in the Rake receiver streams
in data independently from its own starting point. Note that
the memory is only deallocated at the top-level after each
descrambler has streamed in 2560 data points, but data are
accessed at the bottom-level.

In SPIR, vector and matrix buffers are described as spe-
cial memory SPIR nodes. We currently support bounded
FIFO and LIFO memory buffer descriptions. The edges that
connect memory nodes in the same hierarchy layer describe
push and pop operations to the memory buffer nodes. The
child edges can only read or write to the memory buffers,
but they are not allowed to push or pop buffer elements.
This way, memory management of vector buffers is decou-

pled from the access patterns of each vector buffer element.

3.2 Hierarchical Dataflow
In SPIR’s hierarchical stream graph representation, each

dataflow node can contain its own dataflow graph. There are
three major advantages of modeling hierarchical dataflow.
The first reason is the hierarchical communication patterns
mentioned in the previous subsection. The second reason
is that SDR protocols’ inter-kernel communications have
widely different streaming rates. As shown in Figure 2,
the input stream rates of DPCH receiver’s LPF-Rx, dein-
terleaver, and Turbo decoder are 1, 640, and 9600, respec-
tively. In this case, if we are to schedule the graph as one
dataflow stream, then the stream rate of all three nodes must
be matched to the highest stream rate of 9600. This results
in unnecessarily large memory buffers for the LPF-RX and
the deinterleaver. If the dataflow is modeled as a hierarchi-
cal graph, as shown in Figure 3, then the optimal stream
rate of LPF-Rx, and deinterleaver can be determined inde-
pendently from the Turbo decoder, allowing the compiler to
find a more efficient schedule.

The third reason for the hierarchical dataflow is the need
to model the dataflow sizes in addition to the dataflow rates.
Many previous models assume a steady-state dataflow where
the inputs to the stream receive an infinite number of tokens.
However, this is not the case in SDR, where data are pro-
duced and processed in pre-defined data blocks. W-CDMA
specifies each W-CDMA slot containing 2560 data points, 15
slots form one W-CDMA frame, and up to 5 frames are bun-
dled into one W-CDMA TTI (Transmission Time Interval).
Data across different TTIs cannot be streamed together, be-
cause consecutive TTIs may be transmitted using different
W-CDMA channels. In addition, some algorithms must pro-
cess data every slot, such as FIR and Rake receiver; some
algorithms must process data on the frame boundary, such
as the interleaver and deinterleaver; and other algorithms
must process data on the TTI boundary, such as the Turbo

Children Nodes Compilation

FIR: 1 DSP

LPF:10cycles

Rake: 2 DSPs

Rake: 5cycles

Searcher:20cycles

LPF(128Bytes)

1280 cycles/iter.

Rake(128)

512 cycles/iter.

DMA PE1->GMEM

DMA GMEM->PE2

loop(17)
 loop (17)

Searcher(320)

6400 cycles/iter.

loop (7)

DMA GMEM->PE3

1
 1
 32,320
 1
Buffer

@GMEM

Dataflow Rate Matching

Stream Size Selection

Modulo Scheduling

FIR: 1 DSP

LPF:10cycles

320
 320
 320
 80
Buffer

@GMEM

FIR: 1 DSP

LPF:10cycles

Buffer

@GMEM

LPF(128Bytes)

1280 cycles/iter.

Rake(128)

512 cycles/iter.

loop(17)

PE1
 PE1

loop (17)

Searcher(320)

6400 cycles/iter.

PE2

loop (7)

PE1
 PE2
 PE3
 BUS

2560
 2560
 2560
 514

Rake: 2 DSPs

Rake: 5cycles

Searcher:20cycles

Rake: 2 DSPs

Rake: 5cycles

Searcher:20cycles

Step 1

Step 2

Step 3

Step 4

Figure 4: Hierarchical dataflow compilation summarized in 4
steps. In step 1, the dataflow is rate matched between each
consumer/producer pair. In step 2, a multiple of the matched
dataflow rate is chosen as the stream rate. In step 3, each hier-
archical node is recursively scheduled. And in step 4, the graph
nodes are software pipelined using coarse-grained modulo schedul-
ing.

decoder. This leads naturally to a hierarchical graph rep-
resentation, where each hierarchical node specifies the total
amount of data streamed for its child graph.

4. COARSE-GRAINED COMPILATION
This section describes the hierarchical dataflow schedul-

ing process. The input is the hierarchical SPIR dataflow
graph as specified by the user in which rates on edges are
potentially not matched. Hierarchical dataflow scheduling
produces a software pipelined schedule in which rates are
matched and data sizes for kernels are hierarchically cho-
sen to fit the MPSoC’s memory configuration. Note that,
even though all the steps in the complete flow are outlined
here, the main focus of this paper is the modulo scheduling
algorithm used in software pipelining. All other steps are
briefly described, the details of which are beyond the scope
of this paper. Figure 4 shows the workflow of the scheduling
method. Dataflow rate matching and stream size selection
are done as preprocessing steps, prior to the actual hierar-
chical scheduling. The following subsections describe these
steps. For the sake of simpler explanation, we first explain
the basic coarse-grained modulo scheduling (step 4) before
we explain issues that deals specifically with hierarchical
scheduling (step 3).

4.1 Dataflow Graph Preprocessing
In this section, we first explain the DSP kernel compilation

interface with the coarse-grained compilation. Then, the
first two steps in Figure 4, are briefly explained.

Kernel Compilation and Profiling. Kernels form
the building blocks for the SDR protocol dataflow graph.
To make decisions for coarse-grained compilation, execution

DMA in 2

DMA_out 2

stream N bytes

loop N

DMA in N

DMA_out N

Case 1
 Case 2

DMA in M

DMA_out M

loop N/M

Case 3

Kernel(2)
 Kernel(N)
 Kernel(M)

Figure 5: Stream size selection. In case 1, the stream size is too
small, with very high overhead. In case 2, the stream size is too
large, and the kernel cannot be software pipelined. The optimal
stream size, M, is shown in case 3, striking a balance between the
two extremes.

information about each kernel is required. Kernels are com-
piled and profiled individually on each of the processor types
available on the MPSoC. Since each kernel can be instanti-
ated with varying input sizes in the dataflow graph, profil-
ing gathers information about the execution times of kernels
with different input sizes. Kernel profiles are entered in a
queryable format, so that later scheduling stages can easily
access the information.

Rate matching and Stream size selection. The
dataflow graph as specified by the programmer may have
unmatched rates on the dataflow edges. To get a meaning-
ful schedule, all rates have to be matched. The output of
rate matching step is the repetition vector, with an entry
for every kernel, and specifies how many times a kernel has
to be repeated before the dependent kernels can begin exe-
cution. In this study, we assume the synchronous dataflow
(SDF) model. There exists a large body of previous work
for SDF rate matching algorithms [2]. We implemented one
of these algorithms which finds the schedule with the mini-
mum buffer sizes. This schedule is the least repetition vec-
tor. Note that the least repetition vector may not be the
best option in terms of memory utilization and DMA traf-
fic. The stream size selection step chooses a multiple of
the repetition vector so that data transfer between kernels
happens at a coarse granularity to amortize the DMA trans-
fer overhead. Figure 5 illustrates the stream size selection
problem. In case 1, the kernel is repeated twice. Therefore,
for each invocation of the kernel, 2 bytes of data is trans-
ferred in and out of the processor, which results in high
DMA startup overhead. In case 2, the kernel is repeated N
times. Even though the DMA overhead is amortized over
N bytes, the processor may not have enough memory to
hold the data required for N invocations of the kernel. Case
3 strikes a balance by choosing a repetition factor of M .
The DMA overhead is amortized for N/M transfers, and at
the same time, only M bytes are transfered which could fit
in the processor’s memory. We currently perform a binary
search through all possible values of M for a dataflow graph
to determine the optimal value based on shortest execution
latency.

4.2 Coarse-grained Modulo Scheduling
In traditional compilation, software pipelining is a tech-

nique to extract instruction-level parallelism by overlapping
the execution of operations from successive loop iterations.
In coarse-grained kernel scheduling, stream computation can
be viewed as a loop that iterates through each streaming
data input, where the computation for successive data in-
puts can also be overlapped. Modulo scheduling [19] is a
well-known software pipelining algorithm that can achieve
very good solutions. In this section, we present a coarse-
grained modulo scheduling algorithm used to schedule a rate
matched hierarchical dataflow graph on to a MPSoC. Similar
to instruction-level modulo scheduling, coarse-grained mod-
ulo scheduling has to honor resource and dependency con-
straints between dataflow nodes. However, coarse-grained
modulo scheduling differs from traditional modulo schedul-
ing in the following ways.

Storage assignment. In traditional modulo schedul-
ing, allocation of storage (e.g., rotating registers) used for
carrying values between operations is performed as a post-
processing step. Enough storage is assumed to be available
during the scheduling phase, while the register allocation
phase does the actual storage allocation. In coarse-grained
modulo scheduling, memory buffers must be allocated on the
processors where dataflow nodes are scheduled. Typically,
the local memory available on processors is limited. Also,
MPSoCs can have processing elements with varying memory
capacities. This limited non-uniform distribution of mem-
ories makes the storage assignment a first-class scheduling
constraint. Postponing storage assignment to a later phase
results in the scheduler making aggressive decisions about
node placements on processors. Consequently, storage as-
signment fails in many cases. Therefore, in the coarse-
grained modulo scheduling method presented, scheduling
and storage assignment are performed in a single phase.

Scheduling data movement. Traditional modulo
scheduling assumes that the value written to the register by
an operation is available to dependent operations in the very
next cycle. This is because the register file is connected to all
function units. However, in a MPSoC, processors have their
own local memories and the data is transported between
processors. DMA operations used for moving the data be-
tween processors take significant amount of time, and depen-
dent operations must wait for the DMAs to complete before
they can begin execution. Thus, unlike traditional modulo
scheduling, the coarse-grained modulo scheduler must ex-
plicitly schedule the DMA operations used for moving data
between processors.

II Selection. In modulo scheduling, II (initiation in-
terval) is the interval between the start of successive itera-
tions. The minimum initiation interval (MII) is defined as
MII = Max(ResMII,RecMII), where ResMII is the re-
source constrained MII, and RecMII is the recurrence con-
strained MII. In coarse-grained modulo scheduling, ResMII
is defined by the total latency of all nodes in the graph di-
vided by the number of processors allocated to the graph.
RecMII is defined by the maximum latency of each feedback
path.

Since SDR protocols are real-time applications, the sched-
uler must also take timing constraints into consideration. In
W-CDMA, the timing constraint is defined by the overall
data throughput, which is 2Mbps as the output rate of the
receiving data channel. If we use the matched data rates
shown in Figure 3, then at the top hierarchical level, the
maximum II must be 610K clock cycles on a MPSoC with

400MHz data processors as an example. Like instruction-
level modulo scheduling, the II selection process starts at
MII, and is iteratively increased until all of the nodes are
scheduled or the maximum II is reached. If the maximum
II is reached and no valid schedule is found, then a failure
message is returned.

For each II, the modulo scheduler assigns nodes to proces-
sors and allocates DMA buffers for producer/consumer node
pairs that are assigned to different processors. In the fol-
lowing two subsections, we present two modulo schedulers.
The first uses a greedy heuristic which naively assigns nodes
to processors based only on execution latencies. We then
present a SMT(Satisfiability Modulo Theory)-based modulo
scheduler, which takes data processors’ scratchpad memory
size constraints into consideration.

4.2.1 Greedy Scheduling
In greedy scheduling, nodes are scheduled sequentially in

each hierarchical level based on their priorities. The hier-
archical graph is scheduled bottom-up, starting from the
lowest hierarchy layers with only non-hierarchical nodes.
Each node is scheduled onto the processors with the light-
est workload. The priority is based on hierarchy, with the
hierarchical nodes have higher priority over non-hierarchical
nodes. Within hierarchical nodes, the priority is based on
the number of child nodes, then the number of processors
allocated to the node, and finally by the execution latency of
the node. Non-hierarchical nodes are only allocated to one
processor, so they are prioritized only by execution latency.
After nodes are assigned to processors, DMA operations are
assigned to each SPIR edge where the source and destina-
tion are on different processors. DMA operations are also
assigned if the source or the destination node is a memory
SPIR node.

4.2.2 SMT based Scheduling
This section describes an exhaustive modulo scheduler

that forms resource constraints and uses a Satisfiability Mod-
ulo Theory (SMT) solver — Yices [5] to get a valid modulo
schedule. The input is a rate matched hierarchical dataflow
graph, and the output is assignment of dataflow nodes to
processors, dataflow edges to DMA engines, and the allo-
cation of buffers on processors’ local memories. Hierarchi-
cal nodes are recursively scheduled before the graph which
contains the hierarchical node is itself scheduled. Because
the local schedules of a hierarchical node can use more than
one processor, each hierarchical node is broken into multiple
sub-nodes such that each sub-node’s schedule only uses one
processor. Issues related to hierarchical modulo scheduling
are explained in the next section. The following descriptions
assumes this sub-node decomposition is already done by our
compiler, and each node is assigned to only one processor.

Consider a dataflow graph G = (V, E), with P nodes
and Q edges. Associated with every dataflow node vi ∈ V
is exec time(vi), the time required to execute the node.
Associated with every dataflow edge ei = (u, v) ∈ E is
data size(ei), the amount of data in bytes produced by node
u and consumed by node v per invocation. Let N be the
number of data processors in the SDR MPSoC, N boolean
variables aij , j ∈ {1, N} are introduced for every node vi to
denote the status of node vi assigned to the processor j. To
ensure each node is assigned to one and only processor, the

following boolean constraints are asserted.

N
_

j=1

aij == true i ∈ {1, P}

aij1 ∧ aij2 == false 1 <= j1 < j2 <= N, j1 6= j2
(1)

Let II be the initiation interval, the number of cycles be-
tween successive instantiations of the dataflow graph in-
stances. Since every processor will have to repeat its jobs
every II cycles, the total time taken by the nodes assigned to
a processor should not exceed II. The following constraint
ensures that.

P
X

i=1

aij × exec time(vi) <= II j ∈ {1, N} (2)

Consider an edge ei = (vp, vc). If the producer node vp

and consumer node vc are assigned to different processors,
a DMA has to be scheduled to transfer the data. Let D be
the number of simultaneous DMA operations supported by
the DMA engine in the system. D boolean variables dij are
introduced for every edge ei to denote the fact that the data
transfer corresponding to the edge uses up one of the avail-
able DMAs. The following assertions are added to ensure
that either vp and vc get assigned to the same processor, or a
DMA is reserved for the data transfer. tj , j ∈ 1, N expresses
the status of the producer p and consumer c assigned to the
same processor j, and tN+j , j ∈ 1, D expresses the status of
a DMA operation assigned on DMA engine j.

tj = apj ∧ acj j ∈ 1, N

tN+j = dij j ∈ 1, D

N+D
_

j=1

tj == true

tj1 ∧ tj2 == false 1 <= j1 < j2 <= N + D, j1 6= j2
(3)

Let dma time(ei) denote the time required by the DMA en-
gine to transfer the data corresponding to edge ei. dma time(ei)
would depend on data size(ei), the DMA startup overhead,
bus width and bus latency. Since the DMA engine has to
repeat its job every II cycles, the amount of time occupied
by all the edges assigned to a DMA should not exceed II.
This is guaranteed by the following constraint.

Q
X

i=1

dij × dma time(ei) <= II j ∈ {1, D} (4)

Consider an edge ei = (vp, vc), with vp and vc assigned to
different processors. When the producer vp finishes execu-
tion, its output buffer has to be transfered to the processor
on which vc is assigned. Until the DMA transfer is com-
plete, next instance of vp cannot start writing to the same
output buffer. For overlapping the DMA transfer and the
next instance of vp, two buffers have to be allocated for stor-
ing the output of vp. Symmetrically, the DMA transfer to
the vc processor and the execution of vc can be overlapped
only if two buffers are allocated to store the input to vc. For
every edge ei, integer variables bpi and bci are introduced
to denote the number of buffers allocated on the input side
and output side of the DMA respectively. The following
constraint ensures that enough buffers are present on the
input and output sides to guarantee that the given II is

achievable.

same proc =
N
_

j=1

apj ∧ acj

dmap ⇔ (dma time(ei) + exec time(vp) <= II × bpi)

dmac ⇔ (dma time(ei) + exec time(vc) <= II × bci)

¬same proc → (dmap ∧ dmac) == true
(5)

The processor on which a node vi is assigned should have
enough local memory to contain all the input and output
buffers needed by vi. Let mem size(p) be the size of local
memory available on processor p. If a node vi is assigned
to p, the following assertion ensures that the local memory
available on p is greater than the size of buffers allocated for
all incoming and outgoing data.

m1 =
X

j∈in edges(vi)

aip × bcj × data size(ej)

m2 =
X

j∈out edges(vi)

aip × bpj × data size(ej)

m1 + m2 <= mem size(p)

(6)

Note that the equation involves a product of a boolean vari-
able and an integer variable. Yices allows modeling such an
expression using If-then-else construct. For example, prod-
uct of boolean variable b and integer variable x can be mod-
eled as (ite b x 0).

Solving for boolean variables aij , dij and integer vari-
ables bci and bpi under the constraints given by equations 1
through 6 produces a legal modulo schedule with initiation
interval II for the graph G. A SPIR dataflow graph may
contain hierarchical nodes which themselves are dataflow
graphs. Hierarchical nodes are recursively traversed and
scheduled using the same formulation as above. Schedul-
ing decisions are passed up to the higher levels of hierarchy
where decisions from multiple hierarchical nodes are com-
bined to form the modulo schedule for the entire graph.

4.3 Hierarchical Scheduling
In this section, we will briefly discuss a few issues that are

specific to the hierarchical modulo scheduling.
Virtual Resource Assignment. The processor and

DMA assignments for each child node cannot be tied to
physical resources because scheduling the parent node may
alter its child nodes’ schedules. For example, if a child node
has two kernels, A and B, that are assigned to two different
processors, and a DMA is generated for the data transfer.
The scheduler for the parent node may choose to put A and
B on the same processor due to other resource constraints.
And the DMA operations must be replaced with a memory
move operation to ensure execution correctness. Physical
resources are only assigned at the root level of SPIR.

Hierarchical Synchronization. In a hierarchical SPIR
graph, each hierarchical node is modulo scheduled before
the graph itself is scheduled. Therefore, each hierarchical
node contains its own independent modulo schedule, which
may occupy multiple hardware resources. Within a modulo
schedule, the start and end times of each resource must be
the same to prevent data race conditions. In a hierarchical
schedule, execution of one modulo schedule may be blocked
even if all of its resources are free, because one of its re-
sources is waiting to synchronize as part of another modulo

Greedy Schedule

SMT Schedule

Uplink DPDCH

0

2

4

6

8

10

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
11
12
13
14
15
16

Number of processors

N

o

r
m

a

l
i

z

e

d

s

p

e

e

d

u

p

Uplink DPCCH

0

1

2

3

4

5

6

7

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
11
12
13
14
15
16

Number of processors

N

o

r
m

a

l
i

z

e

d

s

p

e

e

d

u

p

Downlink DPCH

0

1

2

3

4

5

6

7

8

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
11
12
13
14
15
16

Number of processors

N

o

r
m

a

l
i

z

e

d

s

p

e

e

d

u

p

Downlink DPCH + Turbo

0

1

2

3

4

5

6

7

8

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
11
12
13
14
15
16

Number of processors

N

o

r
m

a

l
i

z

e

d

s

p

e

e

d

u

p

CPICH

0

1

2

3

4

5

6

7

1
 2
 3
 4
 5
 6
 7
 8
 9
 10
11
12
13
14
15
16

Number of processors

N

o

r
m

a

l
i

z

e

d

s

p

e

e

d

u

p

Figure 6: Execution speedup for W-CDMA benchmarks compiled by greedy and modulo schedulers running on 1 to 16 data processors.

schedule. Too many layers of hierarchy will create unnec-
essary synchronization overheads, which can be detrimental
to the overall performance.

Prolog and Epilog Generation. In coarse-grained soft-
ware pipelining, the prolog and epilog overheads are much
greater due to the DMA transfers between the kernels. For
a N stage pipeline, up to N + 1 stages of DMA transfers
will be inserted, which requires a maximum of 2N stages
for each of the prolog and epilog. For a hierarchical mod-
ulo schedule, executing its children nodes’ prolog and epilog
for each invocation requires too much overhead. Therefore,
prolog and epilog generations are postponed until after the
entire hierarchical graph is scheduled to reduce the overall
execution overhead.

4.4 Post Scheduling Compilation
The SDR MPSoC system includes one control processor

and multiple data processors. The DSP kernels are executed
on the data processors. The multiprocessor schedule is exe-
cuted on the control processor through a set of Remote Pro-
cedure Calls (RPCs) and Directed Memory Access (DMA)
operations. Inter-processor synchronizations are also man-
aged centrally by the control processor.

The final step of the compilation process converts the
schedule into a set of finite states. This execution sched-
ule consists a list of remote procedure calls (RPCs), DMAs,
and a set of synchronization barriers. Each RPC and DMA
is translated into a pair of states: the first state issues the
RPC/DMA call on the target data processor, and the second
state waits for its completion. A synchronization barrier is
the state when all of the synchronizing resources reach their
second states. The output of this process is a C file, which
is then compiled onto the control processor by its native
compiler.

5. EXPERIMENTATION
The compilation framework is implemented on top of the

SUIF compiler infrastructure [11]. In this study, SPIR bench-
marks are written by hand. We are currently implementing
a frontend parser in SUIF that translates C to SPIR. The

SPIR code is compiled by our SPIR compiler to generate a
coarse-grained modulo schedule. The schedule is then con-
verted back into SUIF IR, and C code is generated through a
SUIF-to-C backend. The final C code is then compiled and
simulated to generate system-level execution profile. The
simulator is designed for SODA [17], a MPSoC architecture
for SDR. SODA has an ARM control processor, multiple
SIMD data processors, and a 64KB global scratchpad mem-
ory. Each data processor has a 12KB local scratchpad mem-
ory. The processors and the global memory are connected
together through a 200MHz 32-bit shared bus. Our modulo
scheduler’s SMT solver is implemented using the Yices C
library [5].

5.1 SDR Case Study: W-CDMA
W-CDMA protocol specifications [12] define multiple trans-

mission modes for different purposes, ranging from data and
voice transmissions to synchronization. In this study, we
picked five operating modes that cover the essential W-
CDMA operations, and handcoded them in SPIR. These
five modes are: downlink DPCH(Dedicated Physical CHan-
nel); uplink DPCCH(Dedicated Physical Control CHannel);
uplink DPDCH (Dedicated Physical Data CHannel); and
CPICH (Common Pilot CHannel). Downlink DPCH is the
main data receiver channel, it is time-multiplexed between
receiving protocol control and user data. We included two
versions of the downlink DPCH, one with the Turbo decoder
and one without. This is because many proposed SDR solu-
tions still use Turbo ASIC accelerators [22] due to its high
computation requirements. Uplink DPCCH and DPDCH
are the transmitter counter-parts of the downlink DPCH.
And finally, CPICH is the synchronization channel, which is
used to measure signal strength and synchronize data trans-
mission.

Greedy vs. SMT Modulo Scheduling. Figure 6
shows the overall execution speedup for the W-CDMA bench-
marks compiled with the two schedulers, running on 1 to 16
data processors with 1 control processor. The execution
speedup is normalized to the execution time of the bench-
marks running on 1 data processor. For all of the bench-

0

1

2

3

4

5

6

7

8

1
 2
 3
 4
 5
 6
 7
 8

Number of Data Processors

N
o

rm
al

iz
ed

 S
p

ee
d

u
p

Hierarchical dataflow graph
 Flat dataflow graph

(a) Downlink DPCH’s normalized execution
latency speedup on a hierarchical dataflow
versus flat dataflow graph

0

10

20

30

40

50

60

70

80

90

1
 2
 3
 4
 5
 6
 7
 8

Number of Data Processors

T
o

ta
l M

em
o

ry
 B

u
ff

er
 S

iz
e

(K

B
)

Hierarchical dataflow graph
 Flat dataflow graph

(b) Downlink DPCH’s total DMA memory
buffer sizes on a hierarchical dataflow versus
flat dataflow graph

Figure 7: Comparisons between compilation of a hierarchical
dataflow graph versus a flat dataflow graph for downlink DPCH.

marks, the SMT scheduler achieves near-linear speedup up
to 8 processors. However, it cannot efficiently utilize more
than 10 processors, even though there are many more ker-
nels in the benchmarks. The reason is because there are
a few bottleneck algorithms, such as filter, searcher, and
Turbo decoder, that require much more computational re-
sources then the rest of the algorithms. Therefore, even
though there are many processors available, the majority of
the time are spend waiting for the bottleneck algorithms to
finish. Compared to the SMT scheduler, the greedy sched-
uler is able to achieve equal speedup on a few benchmarks,
such as the uplink DPCCH running on 5 and 6 data pro-
cessors. On average, the greedy scheduler achieves 20% less
speedup than the SMT scheduler.

Flat vs. Hierarchical Dataflow. In W-CDMA, data
are divided into TTI (Transmission Time Interval) blocks.
Inter-TTI data blocks cannot be pipelined because each TTI
may be operating in a different transmission mode. Each
TTI block contains a maximum of 5 W-CDMA frames. Based
on the W-CDMA protocol specification, the interleaver and
deinterleaver need to buffer data as frame blocks. If we
rate-match the flat graph, then all of the kernel computa-
tions are processed with the stream rate of one W-CDMA
frame block. Therefore, one cannot generate a software-
pipelined schedule for most W-CDMA transmission modes
with a flat graph. The only successful benchmark is the

downlink DPCH, because it does not use the interleaver or
deinterleaver. The comparison results for this benchmark
are shown in Figure 7. In Figure 7(a), the execution latency
for the software pipelined flat dataflow graph is lower than
the hierarchical dataflow graph. This is due to the addition
synchronization overhead for the hierarchical module sched-
ules. However, as shown in Figure 7(b), the DMA memory
buffers allocated for the flat dataflow graph is 2 to 3 times
higher than the hierarchical dataflow graph. This is be-
cause the hierarchical dataflow can independently optimize
the data buffer size at each level. The results show that hier-
archy should be used sparingly, as excessive number of hier-
archical layers can result in unnecessary performance degra-
dation. However, hierarchical dataflow graphs can achieve
more efficient memory utilization over flat dataflow graphs.
Hierarchy also allows more dataflow graphs to be software
pipelined.

6. RELATED WORK
Dataflow Languages. There have been many previ-

ous studies on dataflow programming model and languages.
Dataflow was first proposed as the Kahn process network [13].
In Kahn’s model, network nodes communicate concurrently
through unidirectional infinite-capacity FIFO queues. Each
network node contains its own internal state. Reading from
the FIFO queues is blocking, and writing to the FIFO queues
is non-blocking. Because of the blocking-read operation, the
context switching overhead is high. Researchers have later
proposed dataflow process networks [14], which are a special
case of the Kahn network. In dataflow process networks, the
communication rates (firing rules) between network nodes
(actors) are explicitly defined. Many variations of dataflow
processor networks have been proposed. One of the most
popular is the Synchronous Dataflow (SDF), in which the
firing rates are static. A great amount of work on dataflow
process network has been done as a part of the Ptolemy
project [15]. They have developed an extensive software
framework for dataflow modeling and simulations. In terms
of compilation support, MIT’s StreamIt [9] language is mod-
eled after the synchronous dataflow model, and a dataflow
compiler was designed for tiled-based architectures.

Software Pipelining. In the compiler domain, modulo
scheduling is a well known software pipelining technique [19].
There has been previous work purposing constraint-based
modulo scheduling, including [7], and [1]. But all of these
techniques are geared toward instruction-level modulo sched-
uling. [20] extends the modulo scheduling to software pipe-
line any loop nest in a multi-dimensional loop, which concep-
tually is similar to coarse-grained modulo scheduling. To our
knowledge, there have not been any previous work exploring
coarse-grained modulo scheduling for MPSoC architectures.
However, the idea of coarse-grained software pipelining has
been explored before. [6] has proposed an algorithm that
automatically breaks up nested loops, function calls, and
control code into sets of coarse-grain filters based on a cost
model. And, these sets of filters are then generated for par-
allel execution. [4] has proposed of using function-level
software pipelining to stream data on the Imagine Stream
Architecture. The problems of kernel profiling and stream
size selection are also discussed in this paper. [10] also ex-
plored the idea of coarse-grained software pipelining on a
tiled architecture.

Hierarchical Modeling and Compilation. Hierarchi-
cal dataflow models have been proposed before to model
multi-rate DSP applications with constraints [3]. [23] has
also noted that traditional 1-dimensional streams descrip-
tion are not efficient for modeling complex DSP streaming
behavior. [18] has proposed a hierarchical multiprocessor
scheduling algorithm. Because the algorithm didn’t target
toward a specific processor, it is not directly applicable as a
SDR scheduling solution.

7. CONCLUSION
In this study, we proposed a hierarchical dataflow pro-

gramming model for describing Software Defined Radio wire-
less protocols. We then proposed a coarse-grained compi-
lation strategy for scheduling SDR applications onto MP-
SoC architectures. Because coarse-grained compilation re-
quires function-level parallelism, we adapted a well known
instruction-level software pipelining technique, modulo sched-
uling, to exploit SDR applications’ coarse-grained pipeline-
level parallelism. We used W-CDMA as our SDR case study,
and developed a set of key W-CDMA operation modes in
our programming model. Our results have shown that our
compiler is able to generate multi-processor schedules that
get near linear speedups for various MPSoC system con-
figurations, while dealing effectively with the tight memory
constraints of embedded MPSoC systems.

8. ACKNOWLEDGMENT
Yuan Lin is supported by a Motorola University Partner-

ship in Research Grant. This research is also supported by
ARM Ltd., the National Science Foundation grant NSF-ITR
CCR-0325898 and CCR-0325761.

9. REFERENCES

[1] E. Altman and G. Gao. Optimal Modulo Scheduling
Through Enumeration. In International Journal of
Parallel Programming, pages 313–344, 1998.

[2] S. S. Bhattacharyya, P. K. Murthy, and E. A. Lee.
Synthesis of Embedded Software from Synchronous
Dataflow Specifications. In Journal of VLSI Signal
Processing Systems, volume 21, no. 2, pages 151–166,
June 1999.

[3] N. Chandrachoodan and S. S. Bhattacharyya. The
Hierarchical Timing Pair Model for Multirate DSP
Applications. In IEEE Transactions on Signal
Processing, volume 52, no. 5, May 2004.

[4] A. Das, W. Dally, and P. Mattson. Compiling for
Stream Processing. In Parallel Architectures and
Compilation Techniques (PACT), Sept. 2006.

[5] L. de Moura and B. Dutertre. Yices 1.0: An Efficient
SMT Solver. In The Satisfiability Modulo Theories
Competition (SMT-COMP), August 2006.

[6] W. Du, R. Ferreira, and G. Agrawal. Compiler
Support for Exploiting Coarse-Grained Pipelined
Parallelism. In Supercomputing Conference (SC), Nov.
2003.

[7] A. Eichenberger and E. Davidson. Efficient
Formulation For Optimal Modulo Schedulers. In Proc.
of Programming Language Design and
Implementation, pages 194–205, June 1997.

[8] J. Glossner, E. Hokenek, and M. Moudgill. The
Sandbridge Sandblaster Communications Processor.
In 3rd Workshop on Application Specific Processors,
pages 53–58, Sept. 2004.

[9] M. Gordon et al. A Stream Compiler for
Communication-Exposed Architecture. In
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), Oct. 2004.

[10] M. Gordon, W. Thies, and S. Amarasinghe.
Exploiting Coarse-Grained Task, Data, and Pipeline
Parallelism in Stream Programs. In Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), Oct. 2006.

[11] M. Hall et al. Maximizing Multiprocessor Performance
with the SUIF Compiler. In IEEE Computer, Dec.
1996.

[12] H. Holma and A. Toskala. WCDMA for UMTS: Radio
Access For Third Generation Mobile Communications.
John Wiley and Sons, LTD, New York, New York,
2001.

[13] G. Kahn. The semantics of a simple language for
parallel programming. J.L. Rosenfeld, Ed.
North-Holland Publishing Co., 1974.

[14] E. Lee and T. Park. Dataflow Process Networks. Proc.
IEEE, pages 773–801, 83 1995.

[15] E. A. Lee. Overview of the Ptolemy Project. In
Technical Memorandum No. UCB/ERL M03/25,
University of California, Berkeley, July 2003.

[16] E. A. Lee and S. Ha. Scheduling Strategies for
Multiprocessor Real-time DSP. In Global
Telecommunications Conference, pages 1279–1283,
Nov. 1989.

[17] Y. Lin et al. SODA: A Low-power Architecture For
Software Radio. In Proceedings of the 33rd Annual
International Symposium on Computer Architecture,
2006.

[18] J. L. Pino, S. Bhattacharyya, and E. Lee. A
Hierarchical Multiprocessor Scheduling System for
DSP Applications. In Twenty-Ninth Annual Asilomar
Conference on Signals, Systems, and Computers, Oct
1995.

[19] B. R. Rau. Iterative Modulo Scheduling: An
Algorithm for Software Pipelined Loops. In Proc. of
27th Annual International Symposium on
Microarchitecture, pages 63–74, Nov. 1994.

[20] H. Rong et al. Single-Dimension Software Pipelining
for Multi-Dimensional Loops. In Proc. of the
International Symposium on Code Generation and
Optimization, March 2004.

[21] W. Thies, M. Karczmarek, and S. Amarasinghe.
StreamIt: A Language for Streaming Applications. In
Proc. of the 2002 International Conference on
Compiler Construction, June 2002.

[22] C. van Berkel et al. Vector Processing as an Enabler
for Software-Defined Radio in Handsets From
3G+WLAN Onwards. In Proc. 2004 Software Defined
Radio Technical Conference, Nov. 2004.

[23] S. wei Liao, Z. Du, G. Wu, and G.-Y. Lueh. Data and
Computation Transformations for Brook Streaming
Applications on Multiprocessors. In International
Symposium on Code Generation and
Optimization(CGO), March 2006.

