
9

SKMD: Single Kernel on Multiple Devices for Transparent
CPU-GPU Collaboration

JANGHAENG LEE and MEHRZAD SAMADI, University of Michigan
YONGJUN PARK, Hongik University
SCOTT MAHLKE, University of Michigan

Heterogeneous computing on CPUs and GPUs has traditionally used fixed roles for each device: the GPU
handles data parallel work by taking advantage of its massive number of cores while the CPU handles non
data-parallel work, such as the sequential code or data transfer management. This work distribution can be
a poor solution as it underutilizes the CPU, has difficulty generalizing beyond the single CPU-GPU combina-
tion, and may waste a large fraction of time transferring data. Further, CPUs are performance competitive
with GPUs on many workloads, thus simply partitioning work based on the fixed roles may be a poor choice.
In this article, we present the single-kernel multiple devices (SKMD) system, a framework that transpar-
ently orchestrates collaborative execution of a single data-parallel kernel across multiple asymmetric CPUs
and GPUs. The programmer is responsible for developing a single data-parallel kernel in OpenCL, while
the system automatically partitions the workload across an arbitrary set of devices, generates kernels to
execute the partial workloads, and efficiently merges the partial outputs together. The goal is performance
improvement by maximally utilizing all available resources to execute the kernel. SKMD handles the dif-
ficult challenges of exposed data transfer costs and the performance variations GPUs have with respect to
input size. On real hardware, SKMD achieves an average speedup of 28% on a system with one multicore
CPU and two asymmetric GPUs compared to a fastest device execution strategy for a set of popular OpenCL
kernels.

CCS Concepts: � Software and its engineering → Runtime environments; Incremental compilers; �

Computing methodologies → Parallel programming languages;

Additional Key Words and Phrases: Compiler, runtime, CPU, GPU, collaboration, optimization

ACM Reference Format:
Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. 2015. SKMD: Single kernel on multiple
devices for transparent CPU-GPU collaboration. ACM Trans. Comput. Syst. 33, 3, Article 9 (August 2015),
27 pages.
DOI: http://dx.doi.org/10.1145/2798725

1. INTRODUCTION

Heterogeneous computing that combines traditional processors (CPUs) with graphic
processing units (GPUs) has become the standard in most systems from cell phones
to servers. GPUs achieve higher performance by providing a massively parallel

This research was supported by National Science Foundation grants CNS-0964478 and SHF-1217917, and
the Defense Advanced Research Projects Agency under the Power Efficiency Revolution for Embedded
Computing Technologies (PERFECT) program. This article extends an earlier version that appeared in the
Proceedings of the 22nd International Conference on Parallel Architectures and Compilation Techniques.
(PACT’13) [Lee et al. 2013].
Authors’ addresses: J. Lee, M. Samadi, and S. Mahlke, 2260 Hayward St, Computer Science and Engineering
Department, University of Michigan, Ann Arbor, MI, USA; emails: {jhaeng, mehrzads, mahlke}@umich.edu;
Y. Park, P501, 94, Wausan-ro, Mapo-gu, Department of Electronic and Electrical Engineering, Hongik Uni-
versity, Seoul, Korea; email: yongjun.park@hongik.ac.kr.
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by
others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions
from permissions@acm.org.
c© 2015 ACM 0734-2071/2015/08-ART9 $15.00
DOI: http://dx.doi.org/10.1145/2798725

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.

http://dx.doi.org/10.1145/2798725
http://dx.doi.org/10.1145/2798725


9:2 J. Lee et al.

architecture with hundreds of relatively simple cores while exposing parallelism to the
programmer. By leveraging new programming models, such as OpenCL [KHRONOS
2014] and CUDA [NVIDIA 2014a], programmers are able to effectively develop highly
threaded data-parallel kernels to execute on the GPUs. Meanwhile, CPUs also pro-
vide affordable performance on data-parallel applications armed with higher clock-
frequency, low memory access latency, an efficient cache hierarchy, single-instruction
multiple-data (SIMD) units, and multiple cores. With these hardware characteristics,
many studies have been done to improve the performance of data-parallel kernels
on both CPUs and GPUs [Lee et al. 2010; Stratton et al. 2008; Diamos et al. 2010;
Gummaraju et al. 2010; Karrenberg and Hack 2011; Hormati et al. 2011; Fung et al.
2007].

More recently, systems are configured with several different types of processing
devices, such as CPUs with integrated GPUs and multiple discrete GPUs for higher
performance. However, as most data-parallel applications are written to target a single
device, other devices will likely be idle, which results in underutilization of the avail-
able computing resources. One solution to improve the utilization is to asynchronously
execute data-parallel kernels on both CPUs and GPUs, which enables each device
to work on an independent kernel [Diamos and Yalamanchili 2008]. This approach re-
quires programmer effort to ensure there are no interkernel data dependences. In spite
of this effort, if dependences cannot be eliminated, but several kernels are dependent
on a heavy kernel, the default execution model of one kernel at a time must be used.

To alleviate this problem, several prior works have proposed the idea of splitting
threads of a single data-parallel kernel across multiple devices [Luk et al. 2009; Kim
et al. 2011; Kessler et al. 2012]. Luk et al. [2009] proposed the Qilin system, which
automatically partitions threads to CPUs and GPUs by providing new APIs. However,
Qilin only works for two devices (one CPU and one GPU), and the applicable data
parallel kernels are limited by usage of the APIs, which requires access locations
of all threads to be analyzed statically. Kim et al. [2011] proposed the illusion of a
single compute device image for multiple equivalent GPUs. Although they improved
the portability by using OpenCL as their input language, their work also puts several
constraints on the types of kernels in order to benefit from multiple equivalent GPUs.
For example, the access locations of each thread must have regular patterns, and the
number of threads must be a multiple of the number of GPUs.

Despite individual successes, the majority of data-parallel kernels still cannot benefit
from multiple computing devices due to strict limitations on the underlying hardware
and the type of data-parallel kernels. As hardware systems are configured with more
than two computing devices and more scientific applications have been converted to
more complicated OpenCL/CUDA data-parallel kernels in order to benefit from hetero-
geneous architectures, these limitations become more significant. To overcome these
limitations, we have identified three central challenges that must be solved to effec-
tively utilize multiple computing devices:

Challenge 1: Data-parallel kernels with irregular memory access patterns are hard to
partition over multiple devices. Memory read/write locations of adjacent threads may
not be contiguous, or the access location of each thread may depend on control flow
or input data. This kind of data-parallel kernel discourages partitioning over multiple
devices because the irregular locations of input data must be properly distributed over
multiple devices before execution, and output data must be gathered correctly after
execution.

Challenge 2: The partitioning decision becomes more complicated when systems are
equipped with several types of devices. As shown in Figure 1, a system may have
several GPUs that have different performance and memory bandwidth characteristics.
In addition, some computing devices, such as CPUs or integrated GPUs, can share

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



SKMD: Single Kernel on Multiple Devices for Transparent CPU-GPU Collaboration 9:3

Fig. 1. Physical OpenCL computing devices with different performances, memory spaces, and bandwidths.

the memory space with the host program while external GPUs cannot because they
are physically separated. In this case, the partitioning decision must be made very
carefully with regard to the cost of data transfer in addition to the performance of each
device.

Challenge 3: The performance of a GPU is often not constant to the amount of data
that it operates upon, and this variation will affect the partitioning decision. This
problem is more significant for memory-bound kernels, in which each thread spends
most of its time on memory accesses. For this type of kernel, GPUs hide memory access
latency by switching context to other groups of threads. With fewer threads, more
memory latency is exposed that often leads to disproportionately worse performance.
This behavior makes the partitioning decisions more complex since the partitioner
must consider the performance variation of GPUs.

In this article, we propose single kernel multiple devices (SKMDs), a dynamic sys-
tem that transparently orchestrates the execution of a single kernel across asymmetric
heterogeneous devices regardless of memory access pattern. SKMD transparently par-
titions an OpenCL kernel across multiple devices being aware of the transfer cost
and performance variation on the workload, launches parallel kernels, and merges the
partial results into the final output automatically. This dynamic system not only elim-
inates the tedious process of re-engineering applications when the hardware changes,
but also makes efficient partitioning decisions based on application characteristics,
input sizes, and the underlying hardware.

The challenge for transparent collaborative execution is threefold: (1) generating
kernels that execute a partial workload; (2) deciding how to partition the workload
accounting for transfer cost and performance variation; and (3) efficiently merging
irregular partial outputs. To solve these problems, this article makes the following
contributions:

—The SKMD runtime system, which accomplishes transparent collaborative execution
of a data-parallel kernel

—A code transformation methodology that distributes data and merges results in a
seamless and efficient manner regardless of the data-access pattern

—A performance prediction model that accurately predicts the execution time of
OpenCL kernels based on offline profile data.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



9:4 J. Lee et al.

—A partitioning algorithm that balances the workload among multiple asymmetric
CPUs and GPUs, considering the performance variation of each device

2. BACKGROUND

This section briefly describes the OpenCL programming and execution model, then
discusses memory consistency of OpenCL to understand semantics of partitioning on
a single data-parallel kernel.

2.1. OpenCL Programming Model and Execution Model

The OpenCL programming model uses a single-instruction multiple-thread (SIMT)
model that enables implementation of general-purpose programs on heterogeneous
CPU/GPU systems. An OpenCL program consists of a host-code segment that controls
one or more OpenCL devices. Unlike the CUDA programming model, devices in OpenCL
can refer only to both CPUs and GPUs, whereas devices in CUDA usually refer to GPUs.
The host code contains the sequential code sections of the program, which are run on
the CPUs, and a parallel code is dynamically loaded into a program’s segment. The
parallel code section, that is, kernel, can be compiled at runtime if the target device
cannot be recognized at compile time, or if a kernel runs on multiple devices.

The OpenCL programming model assumes that underlying devices consist of mul-
tiple compute units (CUs), which are further divided into processing elements (PEs).
The OpenCL execution model consists of a three-level hierarchy. The basic unit of
execution is a single work item. A group of work items executing the same code are
stitched together to form a work group. Once again, these work groups are combined to
form parallel segments called NDRange, N-Dimensional Range, where each NDRange
is scheduled by a command queue. Work items in a work group are synchronized to-
gether through an explicit barrier operation. When executing a kernel, work groups
are mapped to CUs, and work items are assigned to PEs. In real hardware, since the
number of cores are limited, CUs and PEs are virtualized by the hardware scheduler or
OpenCL drivers. For example, NVIDIA devices virtualize an unlimited number of CUs
on physical streaming multiprocessors (SMs) by quickly switching context of a work
group to another using a hardware scheduler.

2.2. Memory Consistency and Multidevice Execution

The OpenCL programming model uses relaxed memory consistency model for local
memory within a work group and for global memory within a kernel’s workspace,
NDRange. Each work item in the same work group sees the same view of local memory
only at a synchronization point where a barrier appears. Likewise, every work group
in the same kernel is guaranteed to see the same view of the global memory only at
the end of kernel execution, which is another synchronization point. This means that
the ordering of execution is not guaranteed across work groups in a kernel, but only
guaranteed across synchronization points.

Based on this memory consistency model, an OpenCL kernel can be executed in
parallel at work-group granularity without concern of the execution order. If a kernel
executes a subset of work groups instead of the entire NDRange, the result at the end
of kernel execution would be incomplete. However, if the rest of the work groups are
executed after all, it would correctly complete regardless of type of application. This
feature enables collaborative execution of a single kernel even on separate devices
that use different address spaces. By simply assigning a subset of work groups to each
device exclusively, partial results would appear interleaved in their address spaces.
The final result can be made when the partial results are properly merged.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



SKMD: Single Kernel on Multiple Devices for Transparent CPU-GPU Collaboration 9:5

Another approach for multidevice execution is that several GPUs directly access the
host application’s address space with the support from the device driver and operating
systems [NVIDIA 2014a]. However, on-demand accesses have the following limitations:

—The host application must secure contiguous physical memory space so that GPUs
can access the memory directly without the OS’s memory management. This may
cause slowdown of the system as it reduces the amount of available physical memory
for paging.

—Discrete GPUs are attached to a PCI express (PCIe) bus, which has limited bandwidth
and long latency (tens of microseconds). As a result, frequent accesses for a small
chunk of data through a PCIe bus will cause significant overhead.

The combination of these factors makes on-demand accesses unfavorable for multi-
GPU executions.

3. SKMD SYSTEM

An SKMD is an abstraction layer located between applications and the OpenCL library.
Since OpenCL supports both CPUs and GPUs as computing devices, it is selected
as the language for SKMD. The SKMD layer hooks into every OpenCL application
programming interface (API) including querying-platform APIs. For querying-platform
APIs, an SKMD returns an illusion of virtual platform with only one large available
device. An SKMD maintains all information such as device buffer size, kernel name,
and kernel arguments in an internal mapping table and does not pass them to the
real OpenCL libraries, but returns a fake value (e.g., CL SUCCESS) immediately
to the application until the kernel launch (clEnqueueNDRangeKernel) is requested.
The framework consists of a profiler to collect performance metrics for each device by
varying the number of work groups, and a dynamic compiler to transform and execute
the data-parallel kernel on several devices, as shown in Figure 2.

The Dynamic compiler has four units: kernel transformer, buffer manager, parti-
tioner, and performance predictor, as shown in the gray boxes in Figure 2. The kernel
transformer changes the original kernel to the partition-ready kernel, which enables
the kernel to operate on a subset of work groups. After kernel transformation, the buffer
manager performs static analysis on kernels to determine the memory access pattern
of each work group. If the memory access range of each work group can be analyzed
statically, the buffer manager will transfer only necessary data back and forth from
each device once the partitioning decision is made. On the other hand, if the memory
access range cannot be analyzed, the entire input should be transferred to each device
and the output must be merged. In order to merge irregular locations of output from
different devices, the kernel transformer generates the merge kernel, and the SKMD
launches it on the CPU.

Once kernel analysis and transformation are done, ranges of work groups to execute
on each device are decided by the partitioner considering the workload performance
on each device. To estimate performance, the performance predictor utilizes a linear
regression model based on offline profile data. If the profile information does not exist,
the SKMD executes a dry run with partition-ready kernels varying number of the work
groups for each device in order to collect the data. After the partitioning decision is
made, the buffer manager transfers necessary data from the host to external devices;
then, the SKMD launches the actual kernel for each device.

The rest of this section discusses these three components of the SKMD: kernel trans-
formation, buffer management, performance prediction, and performance variation-
aware partitioning.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



9:6 J. Lee et al.

Fig. 2. The SKMD framework consisting of four units: kernel transformer, buffer manager, partitioner, and
profile database.

3.1. Kernel Transformation

As OpenCL kernels can launch up to three-dimensional work-groups, the kernel trans-
formation flattens N-dimensional work groups to one dimension to assign balanced
work over all devices at a work-group granularity. For example, Figure 3(a) shows
three-dimensional ranges, each of which has 8 work groups. Figure 3(b) shows the
flattened view, which has 512 work groups in a single dimension. Once the SKMD
framework has the flattened view of N-dimensional work-groups, it assigns a subset
of work groups in the flattened range, as shown in Figure 3(c). Based on this idea, the
next section discusses how the SKMD generates the partition-ready and merge kernels.

Partition-Ready Kernel: Assigning partial work groups can be done through the code
transformation shown in Figure 4. The lines of code with gray background illustrate
the generated code by dynamic compiler. As shown in the figure, it adds a parameter
WG_from and WG_to to represent the range of the flattened work group indices to be
computed on a device. In other words, the SKMD runs (WG from− WG to + 1) work
groups and skips the rest on a device. If a kernel launches more than a one-dimensional
NDRange, flattening code is inserted, as shown at Line 11 in Figure 4. After flattening,
each work item identifies its work-group index ( f lattened id) and determines whether
it is allowed to execute the kernel.

The additional code with gray background is lowered to 3 to 9 instructions in PTX
and x86-64 ISAs. These additional instructions consist of loading indices and dimension
sizes, MADDs, comparisons, and branches. For PTX code, however, there is no actual
load instruction for indices and sizes, because GPUs maintain special registers for
them, and they are available to each work item and work group [NVIDIA 2014b].
Nonetheless, these instructions can be unnecessary overhead for disabled work groups

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



SKMD: Single Kernel on Multiple Devices for Transparent CPU-GPU Collaboration 9:7

Fig. 3. OpenCL’s N-dimensional range.

Fig. 4. Partition-ready Blackscholes kernel.

in GPUs. To estimate this overhead, VectorAdd was tested with NVIDIA GTX 760 by
enabling only 1 out of 524,288 work groups, each of which consists of 256 work items.
As a result, the overhead for this checking code on the GPU is 2.687 ns / work-group.
This overhead can be eliminated if GPU vendors provide interfaces to the software
for work-group scheduling, so that the runtime system can run partial work groups
without imposing additional work for disabled work groups.

On the other hand, for x86 code, the checking code in CPUs may produce significant
overhead as the Intel OpenCL driver executes a kernel in the same way that Diamos
et al. [2010] proposed. In their work, the driver transforms a kernel to be wrapped by

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



9:8 J. Lee et al.

Fig. 5. Different memory access patterns of kernels.

N-nested loops in order for CPUs to execute N-dimensional work items in a work group.
This is necessary because the context of each work item in CPUs must be switched by
the code, not the hardware. After the transformation, the driver iterates over work
groups distributing them to multiple threads in order to fully utilize multiple CPU
cores. This leaves CPU execution inefficient for the Partition-ready kernel, however,
as CPUs must execute checking code serially with actual load instructions inside the
innermost loop, even though checking whether to execute is independent from inner
loops.

To avoid this problem, SKMD is configured with a specialized OpenCL driver for
CPU devices. The specialized driver directly takes the range of enabled work groups,
thus the SKMD system does not transform a kernel but the driver selectively iterates
over work groups. Through this loop-independent code motion, SKMD eliminates the
overhead of checking code within the kernel code.

Merge Kernel: Another challenge of collaborative execution of a single data-parallel
kernel is that several computing devices may use different address spaces, thus the
results from each device must be merged after execution. Some kernels have contiguous
memory accesses, called, contiguous kernel, in which each of the threads writes the
result in contiguous locations, as shown in Figure 5(a). In this case, partial outputs can
be merged at lower cost by simply concatenating partial output from the external GPU
devices to the host.

On the other hand, for discontiguous kernels that have discontiguous memory ac-
cesses, it is difficult to merge partial output. For example, matrix multiplication is
usually implemented by assigning a work group to work on a tile. Because a two-
dimensional matrix is flattened to a single-dimensional array, writing locations of con-
secutive work groups become discontiguous, as shown in Figure 5(b). Clearly, this type
of memory layout can cause significant overhead for merging outputs. The overhead
is high because the output cannot be copied at once, thus each device has to keep the
write location for merging and selectively copies the data afterward.

To solve this problem, the SKMD uses a code transformation technique that au-
tomatically merges the data without storing memory-write locations and takes full
advantage of the data/thread parallelism in multicore CPUs. The SKMD merges the
output without storing memory-write locations by reusing the original kernel function
for merging partial outputs. In the CPU device, enabled work items will write their
results to the host’s memory, while locations for disabled work items will remain un-
touched. Instead, the kernels launched in external GPU devices touch those locations
in their own address space. Thus, transferring the GPU devices’ output to the host and

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



SKMD: Single Kernel on Multiple Devices for Transparent CPU-GPU Collaboration 9:9

Fig. 6. Merge Kernel Transformation Process. Only global output parameters, call and put in (a), are
marked for merging. Using data flow analysis, store values to global output parameters are replaced with
the GPU’s partial results, and then proceed with dead code elimination (b). As a result, the merge kernel
does not have computational part (c).

then selectively copying them to the CPU output would complete the final results. In
order to selectively copy the external GPU results, SKMD launches the merge kernel
to regenerate the addresses that external GPU devices modified in their output.

To illustrate how merge kernel is generated, Figure 6(a) shows the original
Blackscholes kernel that generates two output arrays (call and put). For the merge
kernel shown in Figure 6(c), the dynamic compiler inserts a parameter GPU_from and
GPU_to, as well as two additional parameters, p_gpu and c_gpu, which are the GPU’s
partial output arrays (put prices and call prices) transferred to the host’s memory.
Output parameters of the kernel can be determined by the basic dataflow analysis,
checking whether __global pointer parameters are used for store. For kernels that
copy __global pointer parameters to temporary local variables, SKMD uses alias anal-
ysis to keep track of the usage of those pointer variables. The condition for enabled
work group of Merge kernel is equivalent to that of the partition-ready kernel as shown
at Line 13 in Figure 6(c).

Once the GPU output parameters have been set up, the dynamic compiler follows
several steps to transform the kernel, as illustrated in Figure 6(b). The first step is to
match the base of the store instruction to the base of the output parameter from the
GPU using use-def chains. After the dynamic compiler gets the corresponding base, it
inserts a load instruction with the base and the same offset of the store instruction.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



9:10 J. Lee et al.

Next, it replaces the value of store instruction with the loaded value, as shown in Lines
19 and 20 of Figure 6(c). Finally, it marks store instruction as live and proceeds with
dead code elimination using the mark-sweep algorithm [Torczon and Cooper 2011] to
remove all computation code. As a result of this transformation, all computation code,
Lines 11 through 15 in Figure 6(a), are removed. Note that every function call is inlined
before the transformation in order to avoid expensive interprocedural analysis.

Clearly, the transformed merge kernel does not contain any computation code, ex-
cept the calculation of index for the load and store. With this approach, the cost of
merging reaches the bandwidth between CPU cores and main memory (>20GB/s with
DDR-3) regardless of application. That is, 67MB of 4K × 4K single-precision floating
point matrix can be merged in a short time (<3.9ms) compared to total execution time
(<1500ms). However, if a kernel finishes the execution quickly, but still has to merge a
large amount of data, merging in the host can be a bottleneck. In this case, the SKMD
does not partition a kernel across multiple devices as the partitioning algorithm con-
siders merging cost, which is discussed in detail in Section 3.4.

3.2. Buffer Management

In the SKMD framework, the buffer manager is in charge of transferring I/O back and
forth between the host and external devices. Since the main idea of the SKMD is to
assign subsets of work groups to several devices, each device may not require the entire
input data. Likewise, each device will generate a subset of the output, so it is desirable
to send only updated output back to the host. Considering that the bandwidth of the PCI
express channel is relatively low (less than 6GB/s), it becomes critical to reduce the
amount of transferring I/O for external GPU devices.

To determine if it is safe to transfer partial data to GPU devices, the buffer manager
checks whether the kernel is a contiguous kernel by analyzing index space of each work
group. For index space analysis, the buffer manager uses dataflow analysis focusing
on the index operand of store and load instructions, which is represented as tid in
Figure 6(b). Using use-def chains, the buffer manager computes the function of index.
If the function is affine and represented as a · (W0 ·w0 + l0), it is defined as a contiguous
kernel. In this equation, a is a constant or an induction variable of loop, and wi, li,
and Wi represents work-group ID, work-item ID, and size of work group in the i-th
dimension, respectively. For this type of kernel, it is safe to transfer a subset of data to
each device proportional to assigned work groups.

On the other hand, if the index space of the kernel cannot be determined statically,
or the affine function fails to be recognized as delineated earlier, the buffer manager
gives up optimizing data transfer and defines it as a discontiguous kernel. In this case,
the entire I/O will be transferred back and forth between the host and external devices
if the kernel is partitioned and the Merge kernel will be launched at the end.

3.3. Performance Prediction

After the kernel transformations, the SKMD statically determines how many work
groups should be assigned across several devices. The goal of the partitioning is to
minimize the overall execution time by balancing workload across devices. Therefore,
accurate performance prediction for each device is necessary for optimal load balancing.
For performance prediction, the SKMD relies on offline profile data, which includes the
execution time along with the number of partial work groups and kernel parameters
such as the size of I/O, value of scalar parameters, and NDRange information. However,
the SKMD cannot simply rely on the raw profile data because kernel parameters of real
execution may be different from those of the profiling execution, and it is unrealistic to
profile with all combinations of execution parameters.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



SKMD: Single Kernel on Multiple Devices for Transparent CPU-GPU Collaboration 9:11

Fig. 7. Execution time varied by applications, input size, and the number of enabled work-groups. Depend-
ing on the application and input size, the number of enabled work-groups impacts on the execution time
differently.

Figure 7 illustrates the execution time of Blackscholes (a) and Matrix Multiplication
(b) varying the size of input (one of the kernel parameters) and the partial number
of work groups. As shown in the figure, the execution times of each application are
dependent both on the size of input and the number of enabled work groups. In response
to this property, the SKMD utilizes a linear regression analysis model [Montgomery
et al. 2001] using the following equation:

y = β0 +
n∑

i=1

βixi + ε. (1)

For the SKMD, the execution time corresponds to y, the dependent variable to be
predicted, and the properties that can affect the execution time are mapped to xi,
independent variables. Those properties are the size of each global argument, values
of scalar arguments, the dimension of NDRange, the number of work groups, and the
number of work items.

A linear regression model requires the dependent variable y to be linear to the
combination of coefficients βi and independent variables xi, but the execution time in
SKMD may not be represented as a simple combination of βi and xi as described in
Equation (1). Figure 7 illustrates such case since the execution time is not always linear
to the number of work groups, but becomes linear as the number of work groups grows.
Meanwhile, in some applications, the execution time also may not be linear to the input
size when the input size is very small, as shown in Figure 7(a). To handle these cases,
transformations are applied to independent variables, as shown in Equation (2).

y = β0 +
n∑

i=1

n∑

j=1

m∑

k=1

βk fk(xi, xj) + ε (2)

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



9:12 J. Lee et al.

This equation is still a linear regression model since y is linear in the coefficients βk,
but the only difference is that transformed independent variables ( fk(xi, xj)) are used
instead of simple xi. If modeling a linear equation is done by transforming independent
variables, the prediction can also be done by plugging transformed variables into the
linear equation.

For the transformation, an important observation regarding the SKMD is that the
execution time eventually becomes linear to the number of work groups when the
number of work groups is large, but the point at which the linearity appears is varied
by application characteristics, as shown in Figure 7. From this property, the number
of work groups is multiplied by a function that converges from 0 to 1 as the number
of work groups increases. The tan−1 function can meet this requirement because it
converges to π

2 from −π
2 . In order to make the tan−1 function converge from 0 to 1, the

tan−1 function is divided by π ; then 0.5 is added, as shown in Equation (3), where x is
the number of work groups.

g(x) = tan−1(a(x − b))
π

+ 0.5 (3)

In this equation, a is an arbitrary number that changes the slope of the tan−1 function,
and b is another arbitrary number that changes the point that starts to converge. As
a result of this function, the linearity to the number of work groups will grow as
the number of work groups increases. Note that the SKMD puts several transformed
functions with different a and b, so the regression solver will find the best a, b values
by computing the coefficients.

To this end, a complete transformed function can be represented as Equation (4),
where xi is the number of work groups and xj is another independent variable.

f (xi, xj) = xig(xi)h(xj) (4)

In this equation, the function h(xj) is applied for the independent variable xj because
the time complexity of the program may vary. For example, the time complexity of the
square matrix multiplication is O(N3), where N is the number of output elements. In
this case, h(xj) corresponds to xj

3, where xj is the size of the output buffer. Note that
the SKMD tries various time complexity functions for h(xj), then the linear regression
solver will eventually find the best transformed function by assigning a meaningful
coefficient.

3.4. Transfer Cost and Performance Variation-Aware Partitioning

Once the performance model for each device is ready, the SKMD makes a decision re-
garding how many work groups should be assigned to each device. The goal of assigning
is to minimize the overall execution time by balancing workloads among several de-
vices. This is an extension of the NP-Hard bin packing problem [Garey and Johnson
1990] and a common problem in load-balancing parallel systems [Lee et al. 2010].

The difference is that it involves more parameters, such as data transfer time be-
tween the host and devices, and the cost of merging partial outputs. Most important,
the performance of devices can vary as the number of work groups assigned to devices
changes. To illustrate, Figure 8 shows the relative execution time of the V ector Add
kernel normalized to the time spent executing 32,768 work groups on three devices.
As shown in the figure, execution time does not scale down well as the number of
work-groups decreases on discrete GPUs. If the partitioning decision is made without
considering transfer cost and performance variance of partitioning, it will be subopti-
mal or even cause slowdown compared to single-device execution.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



SKMD: Single Kernel on Multiple Devices for Transparent CPU-GPU Collaboration 9:13

Fig. 8. Performance impact on VectorAdd varying the number of work groups. The execution time of GPUs
does not scale down in spite of reduced number of work groups.

Fig. 9. Comparison of linear partitioning and ideal partitioning.

To illustrate, the example shown in Figure 9 assumes that there are three external
GPU devices, each of which has a different performance. If partitioning is done rely-
ing only on their maximum performance, partitioned execution may take longer than
single-device execution for two reasons: (1) serialized data transfer; and (2) decreased
performance due to small amount of workload, as shown in Figure 9(a). In this exam-
ple, since the CPU device does not have data transfer and GPU device 2 has significant
slowdown when it executes a small amount of work, more workload should have been
assigned to the CPU device instead of GPU device 2. Figure 9(b) shows the ideal case
for this example.

Regarding the cost of transfer and performance variance of devices, the partitioning
decision becomes a nonlinear integer programming problem. Many heuristics could
potentially be used for this problem; however, one limitation is that the SKMD performs
partitioning at runtime, thus the algorithm must be executed very quickly so as not to

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



9:14 J. Lee et al.

overwhelm potential benefits from collaborative execution. This restriction prohibits
the exact time-consuming integer programming solutions [Kudlur and Mahlke 2008].

To perform partitioning at runtime, the SKMD utilizes a decision tree heuris-
tic [Quinlan 1986]. For our system, the SKMD uses a top-down induction tree, in
which the root node is the initial status and all work groups are assigned to the fastest
device based on the estimation. A node in the tree represents a distribution of the work
groups among the devices. A node is branched to its children, and each child differs
from the parent in that a fixed number of work groups are offloaded from the fastest de-
vice to another from the parent’s partition. For each child, the partitioner estimates the
execution time for all devices considering data-transfer cost and performance variation
of assigned work groups. The induction is done by a greedy algorithm that chooses a
child with the most time difference between offloaded device and offloading device. The
partitioner traverses the tree until offloading does not decrease overall execution time.

In detail, the partitioner loads the linear regression equation for performance pre-
diction for each device. The performance equations for each device arecomputed offline
using profile data. By using the performance equation, the partitioner initially esti-
mates the execution time for single-device execution for all k devices to identify the
fastest device for each kernel. The execution time in the algorithm includes the transfer
cost, which can be estimated using buffer size allocated by the OpenCL APIs divided
by the bandwidth of PCIe.

Before the partitioner offloads work groups from the fastest device, it determines the
granularity of the number of work groups to offload (PartitionGranularity) based on
the total number of work groups (T otalWGs). In our framework, we limited the number
of induction steps to 2,048, so PartitionGranularity becomes Ceil(T otalWGs/2, 048).
One more thing to consider in terms of offloading is the number of minimum work
groups (MinWGs) that offsets the merge cost as a result of multiple-device execution.
If the kernel is a discontiguous kernel, the SKMD must merge output at the end. If the
fastest device offloads work groups to another device for the first time, the time reduced
from offloading must be greater than the merge cost. The merge cost can be roughly
estimated through the size of the output buffer divided by the bandwidth between CPUs
and the main memory. Note that the merge cost is computed only for a discontiguous
kernel, while for a contiguous kernel, it uses default PartitionGranularity for initial
offloading. After initial offloading, since the node in the tree contains enough work
groups to offset the merge cost already, the number of work groups offloaded to the
same device can be increased by PartitionGranularity.

Once the partitioner has prepared the necessary values for traversing, it starts to
traverse down the decision tree from the root node by offloading PartitionGranularity
work groups to k devices at each step. At each child node, the partitioner estimates
the execution time for all devices using the EstAllDevT ime function, which considers
data transfer, serialization of PCIe transfer, and performance variation as a result
of offloading. After the time estimation of all devices at a child node, the partitioner
chooses the maximum value among estimated time, and adds the merge cost to compute
the overall execution time. Then, the partitioner checks if the overall execution time is
reduced compared to the parent node. If a child node takes longer, it is not a candidate
for the induction. If the overall time of a child node is reduced, the partitioner marks
it as a candidate. For each candidate node, the partitioner computes the balancing
factor, which is the difference between the overall execution time in the parent node
and the time spent in the device that is offloaded from the parent. For the induction,
the partitioner selects the candidate node with the highest balancing factor among all
candidates.

If there are no candidates, the partitioner increases PartitionGranularity temporar-
ily to make sure that the slowdown does not come from the performance variance. If

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



SKMD: Single Kernel on Multiple Devices for Transparent CPU-GPU Collaboration 9:15

ALGORITHM 1: Performance Variation-Aware Partitioning
1: Partition[1..k] = 0 � Partition result of k devices
2: BaseDev = argmin

x∈k
{EstDevExeT ime(x, TotalWGs)}

3: PrevExeTime = Min{EstDevExeT ime(x, TotalWGs)}
4: Partition[BaseDev] = TotalWGs � Assign all groups to base device
5: if Contiguous Kernel then
6: MinOffloadCnt = PartitionGranularity
7: else
8: MinOffloadCnt = Cnt Of f setsMergeCost(BaseDev)
9: end if

10: TolerateCnt = 0
11: OffloadedCnt = 1
12: while (OffloadedCnt > 0 or TolerateCnt < 10) do
13: OffloadedCnt = 0
14: CandidateDevs[1..k].TrialCnt = 0
15: CandidateDevs[1..k].Diff = MAX V ALU E
16: for i = 1 to k do
17: if Partition[i] = 0 then
18: OffloadingTrial = MinOffloadCnt
19: else
20: OffloadingTrial = PartitionGranularity
21: end if
22: OffloadingTrial *= 2T olerateCnt

23: if OffloadingTrial > Partition[BaseDev] then
24: continue � Skip trial for this device
25: end if
26: Partition[BaseDev] −= OffloadingTrial
27: Partition[i] += OffloadingTrial
28: DevsTime[1..k] = EstAllDevsT ime(Partition)
29: EstExeTime = Min{DevsT ime[0..k − 1]}
30: if EstExeTime < PrevExeTime then
31: CandidateDevs[i].TrialCnt = OffloadingTrial
32: CandidateDevs[i].Diff = DevsTime[BaseDev] - DevsTime[i]
33: end if
34: Partition[BaseDev] += OffloadingTrial
35: Partition[i] −= OffloadingTrial
36: end for
37: OffloadDev = argmax

x∈k
{CandidateDevs[x].Di f f }

38: OffloadedCnt = CandidateDevs[OffloadDev].OffloadingTrial
39: Partition[OffloadDev] += OffloadedCnt
40: Partition[BaseDev] −= OffloadedCnt
41: if OffloadedCnt > 0 then
42: TolerateCnt = 0
43: else
44: TolerateCnt++
45: end if
46: end while
47: return Partition

there is still no candidate after additional trials, the partitioner stops traversing and
returns the status of child node, which has the partitioning results. Algorithm 1 shows
a high-level description of partitioning algorithm. While-Loop presented at Lines 12
through 46 corresponds to traversing down the decision tree, and For-Loop at Lines 16
through 36 corresponds to testing children of a node in the tree.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



9:16 J. Lee et al.

Table I. Experimental Setup

Device

Intel Core
i7-3770

(Ivy Bridge)

NVIDIA
GTX 760

(Kepler-GK104)

NVIDIA
GTX 750

Ti(Maxwell-GM107)
# of Cores 4 (8 Threads) 1,152 640
Clock Frequency 3.4 GHz 1.62 GHz 1.28 GHz
Memory 32GB DDR3 (1866) 2GB GDDR 5 2GB GDDR 5
Peak Performance 435.2 GFlops 2,258 GFlops 1,306 GFlops
OpenCL Driver Intel SDK 2014(Enhanced) NVIDIA CUDA SDK 6.0
PCIe N/A 3.0 x8
OS Ubuntu Linux 12.04 LTS

Overall, the time complexity of this algorithm is O(kN), where k is the number of
devices, and N is the number of total work groups. Note that N can be reduced to a
constant by limiting the number of induction steps as described earlier.

3.5. Limitations

As the SKMD partitions workloads at a work group granularity, global barriers or
atomic operations must be handled carefully.

For global barriers, the execution of work groups should be ordered at synchroniza-
tion points in the middle of execution. If work groups are distributed across multiple
devices, work groups in each device must make sure that the other devices reached
the same synchronization point. One approach to handle this case is to break down the
entire kernel into multiple kernels at the global synchronization point, similar to loop
fission [Padua and Wolfe 1986]; then the split kernels are executed in order.

For atomic operations, the value must be updated with atomicity across all the
work items in the NDRange. However, if work groups are scattered across multiple
devices, each device will end up having their own partial atomic values. If the atomic
operations are associative and commutative, intermediate atomic values from different
devices can be aggregated later in the host. According to OpenCL specification, there
are 11 atomic operations [KHRONOS 2014]. If an OpenCL compiler can analyze the
atomic operations during compilation and detect whether they are associative and
commutative, OpenCL kernels can still benefit from the idea of SKMD by running
special aggregation code in the runtime system.

Also, kernels that have irregular behaviors may not benefit from the SKMD system.
The main reason is that an SKMD predicts the execution time based on a regression
model, as discussed in Section 3.3, which builds a model with NDRange information, the
size of array parameters, and value of scalar parameters. However, it does not consider
the value of array parameters. If control flows of a kernel are heavily dependent on the
value of array (e.g., breath first search), the execution time is unpredictable only with
the size of array. Because an SKMD partitions a kernel statically before distributing
work groups, it is difficult to partition this kind of kernel optimally across several
devices if the execution time is unpredictable. Applications with these semantics were
not handled in this article, as an SKMD gives up partitioning if a kernel has array-
value-dependent control flows.

4. EVALUATION

The SKMD was evaluated on a real machine that has three different types of computing
devices, as shown in Table I. Intel Ivy Bridge has an integrated GPU, but it does not
support OpenCL in UNIX-based operating systems, thus the integrated GPU is not
considered to be a computing device in our experiments. However, the idea of an SKMD
framework is not limited to discrete GPUs. The SKMD was prototyped using Low-Level

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



SKMD: Single Kernel on Multiple Devices for Transparent CPU-GPU Collaboration 9:17

Table II. Benchmark Specification

Buffer Size # of Work Contiguous
Application Execution Parameters Input Output groups Access
AESEncrypt 4,096 × 4,096 BMP image 48 MB 48 MB 16,384 N
AESDecrypt 4,096 × 4,096 BMP image 48 MB 48 MB 16,384 N
BinomialOption 524,288 options 8 MB 8 MB 524,288 Y
Blackscholes 32 million options 400 MB 270 MB 32,768 Y
BoxMuller 192 million numbers 768 MB 768 MB 256 N
FDTD3d 3D dimsize = 256,

Radius = 2
68 MB 68 MB 256 N

Histogram (1st-round) 67 million numbers 256 MB 2 MB 2,048 N
MatrixMultiplication 8,192 × 8,192 matrices 512 MB 256 MB 65,536 N
MatrixTranspose 8,192×8,192 matrices 512 MB 256 MB 65,536 N
MedianFilter 7,680 × 4,320 PPM image 128 MB 128 MB 518,400 N
MersenneTwister 192 million numbers 512 KB 768 MB 256 N
Nbody 524,288 particles 16 MB 16 MB 1,024 N
Reduction (1st-round) 67 million numbers (float) 256 MB 65 KB 16,384 N
ScanLargeArrays 8 million numbers (float) 32 MB 32 MB 32,768 Y
SobelFilter 7,680 × 4,320 PPM image 128 MB 128 MB 518,400 N
VectorAdd 50 million numbers (float) 400 MB 200 MB 196,608 Y

VectorAdd, Blackscholes, BinomialOption, and ScanLargeArrays are classified as contiguous kernels,
whereas others are defined as discontiguous kernels.

Virtual Machine (LLVM) 3.4 [Lattner and Adve 2004], on top of a Linux system with an
NVIDIA driver for GPU execution, and an Intel OpenCL driver for the CPU execution.

Every function call to the OpenCL library was hooked by our custom library that
leverages the SKMD’s compilation framework. Inside the framework, we used Clang
for the OpenCL front end, and LLVM 3.4 incorporated with libclc extension was used
for the PTX back end [LLVM 2014]. However, the PTX back end is used only for merge
kernels, while partition-ready kernels were transformed at the source level and then
directly fed into the NVIDIA OpenCL driver.

Enhanced OpenCL driver for CPUs: For partition-ready kernels in CPUs, simply
transforming a kernel at the source level and passing it to the Intel OpenCL driver
may cause significant overhead, as discussed in Section 3.1. This is mainly because
checking code for disabled work groups will be executed for all work groups within the
innermost loop. To address this problem, we implemented an enhanced OpenCL driver
that takes the range of enabled work group directly so that it can selectively iterate
over work groups. In order to keep the aggressive optimizations made by the Intel
driver, we used Intel’s offline OpenCL compiler that generates optimized LLVM-IRs,
then we reverse-engineered them to implement the enhanced driver that executes the
generated IRs for partial work groups. As a result of the enhanced driver, the overhead
for partition-ready kernels is removed for the CPU.

Benchmarks: For the experiments, a set of benchmarks from the AMD SDK [AMD
2012] and the NVIDIA SDK [NVIDIA 2012] were used to evaluate SKMD. Some bench-
marks that either do not create enough work groups regardless of input size or have
atomic operations were excluded. Input sizes for each benchmark for the evaluation
are shown in Table II. The applications from the benchmark suite were compiled with-
out any modification. In Table II, Histogram and Reduction were marked as 1st round,
because the OpenCL kernels are used for generating intermediate results, and the host
applications finalize the results later.

To explain Histogram in NVIDIA SDK implementation, each work group consists of
256 work items, and each work item has its own 256 bins in the local memory (65,536

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



9:18 J. Lee et al.

bins per work group). The entire set of data is divided by the number of work groups;
these chunks are split again into 256 parts for work items. Thus, one work item will
increment its own 256 bins by inspecting one part of data. After incrementing the bins,
256 work items are in charge of aggregating bins in the local memory. For example,
work item 0 in a work group aggregates bin 0 of all 256 work items, and work item
1 gathers bin 1s, and so on. In this manner, bins for every chunk are gathered for
each work group, and these aggregations are done for all work groups in the OpenCL
kernel, which is referred to as Histogram (1st-round) in Table II. With the result from
the OpenCL kernel, the final aggregation is done in the second round by the host
application.

Similarily, Reduction from NVIDIA SDK is implemented without atomic operations.
Instead, work items in a work group reduce two numbers at the first step, and reach the
local barrier. After that, half of them reduce the reduced numbers again until only one
work item remains. As a result, the last work item will generate the reduced number for
the entire work group. These steps are done for all work groups in the OpenCL kernel,
which is also referred to as Reduction (1st-round) in Table II. The reduced numbers for
all work groups are finally reduced in the second round in the host application.

Methodology: Before the real execution, offline profiling is performed to collect perfor-
mance data for each benchmark. For offline profiling, it is important to collect enough
data to model linear regression accurately. If the model is computed with too few data,
the error rate can be high, especially when execution parameters of the real execution
differ much from profile-run. For this reason, the SKMD requires an application to
use profiling mode if there is not enough profile data. With profiling mode, the SKMD
launches the OpenCL kernel on each device several times, varying the number of work
groups. Because it is important to catch the point that linearity appears, as discussed in
Section 3.3, the SKMD increases the number of work groups by four (finer granularity)
until it reaches 16, then increases the granularity as the number of work groups grows.
Once profile data is collected, the SKMD performs the linear regression analysis, as
discussed in Section 3.3.

For the dynamic overheads, we did not consider the cost of kernel analysis and
transformation because they can be done during offline profiling, but we measured the
partitioning overhead, which is done in the real execution. To reduce the overhead,
we forced the height of decision tree used in partitioning algorithm to be within 1,024
steps. In other words, for kernels that launch more than 1,024 work groups, the SKMD
increases partitioning granularity. As a result, 1,024 × 2 (the number of offloading
devices) estimations are done in the worst case. As 2,048 time estimations can be
done with less than 100K instructions, the overhead for the partitioning algorithm is
observed as less than 1ms, which is negligible for all benchmarks.

We measured wall clock execution time including the transfer time between host and
GPU devices, kernel execution time, and data-merging cost in the case of discontiguous
access kernels. Because the CPU resource is shared with the OS or other applications,
the execution time on the CPU device can vary. Therefore, we ran 1,000 times for each
benchmark and selected 100 sets of results that have the least CPU execution time,
and used the average of those 100 results for the final result.

4.1. Results and Analysis

Figure 10(a) shows speedup of the SKMD compared to the fastest single-device execu-
tion and the linear partitioning execution, which is similar to prior approaches [Luk
et al. 2009; Kim et al. 2011]. In linear partitioning, the number of work groups assigned
to each device is proportional to the predicted performance without consideration of
the transfer cost. The baseline is different for each benchmark based on its character-
istics. For each benchmark, we ran them on all devices and chose the fastest device

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



SKMD: Single Kernel on Multiple Devices for Transparent CPU-GPU Collaboration 9:19

Fig. 10. Speedup and work-group distribution. Each benchmark has a different baseline (a), as the fastest
device differs by kernels. The fastest device is determined with regard to the execution time and data transfer
cost.

(including the transfer cost) as the baseline. Three benchmarks, Reduction, Histogram,
and VectorAdd, used CPU-only execution as their baseline because data transfer cost
overwhelms the benefits of executing on GPUs, as they are extremely memory-bound
kernels.

As illustrated in Figure 10(a), the SKMD performs 28% faster than single-device
execution on average as it considers the transfer cost and performance variation of
each device during partitioning. An important point from this result is that the linear
partitioning causes slowdown on memory-bound kernels compared to single-device
execution. This is mainly because it does not take the transfer cost into account during
partitioning although collaborative execution is not favorable due to the transfer cost.

To illustrate how the SKMD partitions work groups across different devices,
Figure 10(b) shows the work distribution of all applications. On average, SKMD par-
titioning, which considers the transfer cost, assigns more workload to the CPU than
linear partitioning. Linear partitioning makes a bad decision for memory-bound appli-
cations by assigning less workload to the CPU, although a considerable amount of time
is spent on transferring the data. On the other hand, SKMD partitioning assigns more
workload to the CPU, as the CPU can work more while the data is being transferred to
the external GPUs.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



9:20 J. Lee et al.

Reduction, Histogram, VectorAdd: Reduction, Histogram, and VectorAdd are ex-
tremely memory-bound kernels, thus the SKMD assigns most of the work to the CPU
device. The difference is that Reduction and Histogram are recognized as discontiguous
kernels, therefore the host program must transfer the entire input to the external GPU
device, which discourages collaborative execution due to the high cost of data transfer.
On the other hand, VectorAdd, which is a contiguous kernel, does not require the entire
input for the partial execution, so there is still a chance for the CPU to offload work
groups to the GPU devices.

MatrixMultiplication, AESEncrypt/Decrypt, Nbody, BinomialOption: These bench-
marks are compute-bound kernels for which a significant amount of time is spent on
computation, not memory accesses. For these benchmarks, the portion of the workload
assigned to the GPUs is higher than the CPU because of its massively data-parallel
structure. As mentioned earlier, because GTX 760 is a high-performance GPU, it exe-
cutes more work groups than GTX 750 Ti.

MatrixTranspose: MatrixTranspose is a memory-bound kernel, but SKMD assigns
all of the work to GTX 750 Ti despite the high cost of data transfer. This is due to the
very low performance of the CPU. Since the OpenCL implementation targets GPUs,
each work group has a local memory to store input in order to avoid uncoalesced
global memory accesses among work items. However, for the CPU execution, having
local memory does not benefit from coalesced memory access, but rather produces
unnecessary overhead of copying data to additional space. This overhead may not be
significant for other benchmarks, but for MatrixTranspose in the CPU, copying input
to the scratchpad is an equal amount of work compared to the naive transpose.

ScanLargeArrays: ScanLargeArrays has large memory foot-prints with contiguous
memory access patterns. Similar to VectorAdd, it does not have to transfer the entire
data back and forth between the CPU and the GPUs. However, it has more compu-
tations than VectorAdd that are faster on GPUs, thus a larger portion of workload is
offloaded to the GPUs than VectorAdd.

Other benchmarks have a considerable amount of computations and large memory
footprints with discontiguous access patterns. In this case, both compute and transfer
costs are proportional to the size of data, therefore the data transfer time could offset
the reduced computation time from the collaborative execution. As a result, the speedup
from the collaborative execution is relatively low, as shown in Figure 10.

4.2. Execution Time Breakdown

In this section, we show how the SKMD transfers data between the CPU and GPUs, and
assigns work groups to different devices. Figure 11 shows the execution time breakdown
of three sample applications: VectorAdd, Matrix Multiplication, and Histogram.

For VectorAdd, CPU-only is the baseline because it is an extremely memory-bound
kernel. As shown in Figure 11(a), the SKMD starts the execution on the CPU while
transferring a huge amount of data to GTX 760 in the background. As soon as the
data transfer is finished, the SKMD launches the kernel on GTX 760; at the same time,
it transfers data needed for the remaining work groups to GTX 750 Ti and then launches
the kernel. The transfer time for GTX 750 Ti is smaller because it is a less powerful
GPU for VectorAdd, thus the size of data assigned to it is smaller. Since VectorAdd has
contiguous memory accesses, there is no need to merge the data. After both kernels are
done, the buffer manager transfers the data from the GPUs and simply puts them in
the final result. As shown in the figure, the CPU finishes execution almost at the same
time as the GPUs finish their data transfer as a result of accurate partitioning.

The baseline of MatrixMultiplication is GTX 760-only, as shown in Figure 11(b).
Since Matrix Multiplication takes much more time in computation than VectorAdd, the
impact of transferring time is less for this benchmark. However, the SKMD transfers

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



SKMD: Single Kernel on Multiple Devices for Transparent CPU-GPU Collaboration 9:21

Fig. 11. Breakdown of the execution time on each device. The bars on the top show the baseline, which is
the fastest single-device execution. The SKMD considers the transfer cost, and offloads work groups in order
to balance the workload among the three devices.

the entire I/O back and forth between the host and GPU devices, as it is classified as a
discontiguous kernel. Similar to the VectorAdd benchmark, GTX 760 starts execution
first, followed by GTX 750 Ti, but finishes later than GTX 750 Ti because it has more
work groups to execute due to its higher performance. At the end, the CPU merges all
partial results to generate the final output by launching the merge kernel.

Histogram shows different behavior from the other cases. The baseline for Histogram
is CPU-only execution because it has a large input, which incurs high transfer cost for
the GPU execution. In terms of execution performance, GTX 750 Ti outperforms GTX
760 for Histogram, as shown in Figure 10(b)-Linear Partition, which partitions kernels
linear to the performance. Therefore, GTX 750 Ti has higher priority for offloading.
Also, the output size is much smaller than input size, as shown in Table II.

Histogram is categorized as a discontiguous kernel, thus the SKMD still has to
transfer the entire input to the external GPU devices. As shown in Figure 11(c), the
SKMD does not assign any work groups to GTX 760 after assigning some work groups to
GTX 750 Ti, because serialized input data transfer to GTX 760 would break balanced
execution among the three devices. As the output size is small, the overhead of the
merging kernel is negligible for this benchmark.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



9:22 J. Lee et al.

Table III. Profile Execution Parameters and Real Execution Parameters for Evaluating
Performance Prediction Accuracy

Profile Parameters Real Parameters
Application Profile 1 Profile 2 (same as Table II)
AESEncrypt 1,024 × 1,024 BMP

image
2,048 × 2,048 BMP
image

4,096 × 4,096 BMP
image

AESDecrypt 1,024 × 1,024 BMP
image

2,048 × 2,048 BMP
image

4,096 × 4,096 BMP
image

BinomialOption 16,384 options 65,536 options 524,288 options
Blackscholes 1 million options 8 million options 32 million options
BoxMuller 8 million numbers 32 million options 192 million options
FDTD3d 3D dimsize = 64,

Radius = 1
3D dimsize = 128,
Radius = 2

3D dimsize = 256,
Radius = 2

Histogram (1st-round) 4 million numbers 16 million numbers 67 million numbers
MatrixMultiplication 1,024 × 1,024 matrices 2,048 × 2,048 matrices 8,192 × 8,192 matrices
MatrixTranspose 1,024 × 1,024 matrices 2,048 × 2,048 matrices 8,192 × 8,192 matrices
MedianFilter 1,920 × 1,080 PPM

image
3,840 × 2,160 PPM
image

7,680 × 4,320 PPM
image

MersenneTwister 8 million numbers 64 million numbers 192 million numbers
Nbody 65,536 particles 131,072 particles 524,288 particles
Reduction (1st-round) 8 million numbers 34 million numbers 67 million numbers
ScanLargeArrays 500,000 numbers 1 million numbers 8 million numbers
SobelFilter 1,920 × 1,080 PPM

image
3,840 × 2,160 PPM
image

7,680 × 4,320 PPM
image

VectorAdd 8 million numbers (float) 16 million numbers 50 million numbers
For each profile, 16 sets of profile data were collected, varying the number of work groups.

4.3. Performance Prediction Accuracy

To evaluate the accuracy of performance prediction on the CPU and the GPUs, we
profiled the applications with two sets of execution parameters, as shown in Profile
Parameters of Table III. With the profiled data from two sets of execution parameters,
the SKMD performed a linear regression analysis to get the coefficients. After the com-
putation of the coefficients, we ran the applications with the real execution parameters,
as shown in Real Parametersin Table III. For the real execution, we randomly picked
the number of partial work groups 128 times, and compared the real execution time
with the predicted execution time.

Figure 12(a) shows the L2-Norm errors between predicted time and execution time;
Figure 12(b) shows the average error rate for each benchmark. The L2-Norm error
means Euclidean distance between two time vectors, thus it represents the amount
of error in milliseconds, while the average error rate shows the difference over the
real execution time. For all benchmarks, high error ratios were observed when the
SKMD predicts the execution time with a very low number of work groups. This is
mainly because the execution time is very short with a low number of work groups.
As a result, even small error values can result in high error ratios. For example, if the
SKMD predicted the time as 0.011ms, but the real execution took 0.01ms, then the error
ratio becomes 10% in spite of only 0.001ms of misprediction. Considering that the
execution time for the execution parameters shown in Table III takes more than 10ms
for all benchmarks, the errors in prediction time are negligible since the error remains
under 0.1ms in most cases, as shown in Figure 12(a).

5. RELATED WORK

A significant focus has been on the execution of data-parallel applications on CPUs.
Lee et al. [2010] examined several data-parallel applications to show that CPUs can

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



SKMD: Single Kernel on Multiple Devices for Transparent CPU-GPU Collaboration 9:23

Fig. 12. Performance prediction accuracy. L2-Norm error (a) shows Euclidean distance between the real
execution time and predicted execution time in milliseconds. Average error rate (b) shows the average
percentage of errors in predictions.

have comparable performance to GPUs if they take full advantage of multicores with
SIMD units. There has also been some work on efficient execution of OpenCL/CUDA
applications on CPUs. Stratton et al. [2008] proposed a source-to-source compiler that
translates a CUDA program into a standard C program using a loop-fission technique
to eliminate synchronization. Similarly, Diamos et al. [2010] developed the Ocelot,
a runtime system that dynamically transforms OpenCL/CUDA kernels for CPU ex-
ecution. Gummaraju et al. [2010] performed a similar study, but approached it in a
lightweight thread (LWT) execution model. In a similar fashion, Karrenberg and Hack
[2011] have focused on more efficient execution of OpenCL applications using whole-
function vectorization. All of these works are focusing on performance improvement on
CPUs to show that CPUs can perform as well as GPUs for some applications, but none
deals with collaborative execution with GPUs.

Performance modeling of GPUs for a certain set of applications has been studied
for several years [Jia et al. 2012; Hong and Kim 2009]. Hong and Kim [2009] pro-
posed an analytical model for a GPU architecture with awareness of memory-level and
thread-level parallelism. However, this model relies only on static information of GPU
architectures and applications, such as the number of registers, the size of memory on
the device, and those numbers required by the application. Also, this study was based
on relatively simple GPU architectures compared to contemporary GPU architectures,

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



9:24 J. Lee et al.

which makes it much harder to predict the performance statically. Meanwhile, Jia et al.
[2012] proposed a GPU performance prediction method based on a linear regression
model, but the work used the prediction model for GPU space exploration varying GPU
architectures. On the other hand, our work described the linear regression model that
fits for various execution parameters in order to optimize the performance.

Dynamic decision of execution on heterogeneous systems with CPUs and GPUs has
been studied in the past [Diamos and Yalamanchili 2008; Linderman et al. 2008; Luk
et al. 2009; Brown et al. 2011; Kessler et al. 2012]. Harmony [Diamos and Yalaman-
chili 2008] reasons about the whole program by building a data-dependency graph
and then scheduling independent kernels to run in parallel. However, our approach is
different from prior works in that our system is working on finer granularity (work
groups) rather than function or task level. MERGE [Linderman et al. 2008] is a pred-
icate dispatch-based library system for managing map-reduction applications on het-
erogeneous systems. Luk et al. [2009] proposed Qilin, which automatically partitions
threads to one CPU and one GPU by providing new APIs that abstract away two differ-
ent programming models, Intel Thread Building Block and CUDA. Kim et al. [2011]
also proposed a framework that distributes workload of an OpenCL kernel to multiple
equivalent GPUs for specific types of data-parallel kernels. Delite [Brown et al. 2011] is
a compilation framework that takes a program written in OptiML and converts it into
a C++/CUDA program. Then runtime system manages execution between the CPU
and GPUs. While this work is limited to domain-specific languages, an SKMD pro-
vides more generality as it supports a variety of OpenCL applications. The PEPPHER
proposed by Kessler et al. [2012] improved the performance by tuning the execution
strategy on a heterogeneous system based on their performance prediction model. Our
approach differs from prior work in that our system supports more than two differ-
ent types of devices and considers data-transfer cost and performance variance during
partitioning. Also, our approach does not rely on additional programming extensions
or APIs.

In the mean time, a series of studies has been done for virtualizing GPU re-
sources [Rossbach et al. 2011; Kato et al. 2012; Rossbach et al. 2013; Wang et al. 2014;
Suzuki et al. 2014; Lee et al. 2014]. PTask [Rossbach et al. 2011] provides APIs that
work with OS abstraction layers to manage compute tasks on GPUs by using a data-ow
programming model. Dandelion [Rossbach et al. 2013] also proposes a compiler/runtime
framework that takes C# sources with newer APIs, and converts them to CUDA code,
and runtime manages execution between CPUs and GPUs using PTask [Rossbach et al.
2011]. Kato et al. [2012] proposed Gdev, which manages GPU resources in the OS level,
so that GPUs can be treated as first-class computing resources in multitasking systems.
The SKMD is different from these prior works as it does not require programmers to
use additional APIs or language extensions, but it is transparent to OpenCL applica-
tions, which can further optimize parallel kernels by utilizing local memories. Wang
et al. [2014] and Suzuki et al. [2014] also proposed virtualization layers for GPUs,
which take over the control of GPU memory space from applications without changing
APIs. Through these techniques, GPUs can access the data in the host directly on page
faults. Similarly, NVIDIA recently offered Unified Virtual Address to provide an ab-
stract view of unified memory system in separate physical memory [NVIDIA 2014a].
The main purpose of this idea is removing the burden of managing multiple memory
spaces [Keckler et al. 2011], but it still leaves work distribution between devices as
the programmer’s responsibility. On the other hand, the SKMD focuses on balancing
workloads across multiple computing devices and transfers the entire working sets at
once in order to avoid high overhead from frequent PCIe bus transactions for page fault
handling.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.



SKMD: Single Kernel on Multiple Devices for Transparent CPU-GPU Collaboration 9:25

6. CONCLUSION

In this article, we presented the SKMD, a framework that transparently manages
collaborative execution on CPUs and GPUs of a single OpenCL kernel. The SKMD
leverages assigning a subset of data-parallel workload over multiple CPUs and GPUs
to increase overall performance. As a part of the exploration, this article introduced
several techniques that transparently enable a kernel to work on a partial workload
and efficiently merge results from separate devices. In order to distribute a balanced
workload, we also presented an accurate performance prediction model and an effi-
cient methodology for balancing workload between CPUs and GPUs, being aware of
data-transfer cost and performance variance depending on the type of device. By ex-
perimenting with OpenCL applications on real hardware, we showed that the SKMD
yields a geometric means of 28% speedup on a machine with one CPU and two different
GPUs as compared to the fastest device-only execution.

ACKNOWLEDGMENTS

Much gratitude goes to the anonymous referees who provided excellent feedback.

REFERENCES

AMD. 2012. Accelerated Parallel Processing (APP) SDK. http://developer.amd.com/tools-and-sdks/opencl-
zone/amd-accelerated-parallel-processing-app-sdk/.

Kevin J. Brown, Arvind K. Sujeeth, Hyouk Joong Lee, Tiark Rompf, Hassan Chafi, Martin Odersky, and Kunle
Olukotun. 2011. A heterogeneous parallel framework for domain-specific languages. In Proceedings of
the 20th International Conference on Parallel Architectures and Compilation Techniques. 89–100.

Gregory Diamos, Andrew Kerr, Sudhakar Yalamanchili, and Nathan Clark. 2010. Ocelot: A dynamic opti-
mization framework for bulk-synchronous applications in heterogeneous systems. In Proceedings of the
19th International Conference on Parallel Architectures and Compilation Techniques. 353–364.

Gregory F. Diamos and Sudhakar Yalamanchili. 2008. Harmony: An execution model and runtime for hetero-
geneous many core systems. In Proceedings of the 17th International Symposium on High Performance
Distributed Computing. 197–200.

Wilson W. L. Fung, Ivan Sham, George Yuan, and Tor M. Aamodt. 2007. Dynamic warp formation and
scheduling for efficient GPU control flow. In Proceedings of the 40th Annual International Symposium
on Microarchitecture. 407–420.

M. R. Garey and D. S. Johnson. 1990. Computers and Intractability; A Guide to the Theory of NP-
Completeness. W. H. Freeman & Co., New York, NY.

Jayanth Gummaraju, Laurent Morichetti, Michael Houston, Ben Sander, Benedict R. Gaster, and Bixia
Zheng. 2010. Twin Peaks: A software platform for heterogeneous computing on general-purpose and
graphics processors. In Proceedings of the 19th International Conference on Parallel Architectures and
Compilation Techniques. 205–216.

Sunpyo Hong and Hyesoon Kim. 2009. An analytical model for a GPU architecture with memory-level and
thread-level parallelism awareness. In Proceedings of the 36th Annual International Symposium on
Computer Architecture. 152–163.

Amir H. Hormati, Mehrzad Samadi, Mark Woh, Trevor Mudge, and Scott Mahlke. 2011. Sponge: Portable
stream programming on graphics engines. In 16th International Conference on Architectural Support
for Programming Languages and Operating Systems. 381–392.

Wenhao Jia, Kelly A. Shaw, and Margaret Martonosi. 2012. Stargazer: Automated regression-based GPU
design space exploration. In Proceedings of the 2012 IEEE Symposium on Performance Analysis of
Systems and Software. 2–13.

Ralf Karrenberg and Sebastian Hack. 2011. Whole-function vectorization. In Proceedings of the 2011 Inter-
national Symposium on Code Generation and Optimization.

Shinpei Kato, Michael McThrow, Carlos Maltzahn, and Scott Brandt. 2012. Gdev: First-class GPU resource
management in the operating system. In Proceedings of the USENIX Annual Technical Conference
(USENIX ATC’12). 401–412.

Stephen W. Keckler, William J. Dally, Brucek Khailany, Michael Garland, and David Glasco. 2011. GPUs
and the future of parallel computing. IEEE Micro 31, 5, 7–17.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.

http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/.
http://developer.amd.com/tools-and-sdks/opencl-zone/amd-accelerated-parallel-processing-app-sdk/.


9:26 J. Lee et al.

Christoph Kessler, Usman Dastgeer, Samuel Thibault, Raymond Namyst, Andrew Richards, Uwe Dolinsky,
Siegfried Benkner, Jesper Larsson Traff, and Sabri Pllana. 2012. Programmability and performance
portability aspects of heterogeneous multi-/manycore systems. In Proceedings of the 2012 Design, Au-
tomation and Test in Europe. 1403–1408.

KHRONOS. 2014. OpenCL—The open standard for parallel programming of heterogeneous systems.
http://www.khronos.org.

Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. 2011. Achieving a single compute device image
in OpenCL for multiple GPUs. In Proceedings of the 16th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 277–288.

Manjunath Kudlur and Scott Mahlke. 2008. Orchestrating the execution of stream programs on multicore
platforms. In Proceedings of the ’08 Conference on Programming Language Design and Implementation.
114–124.

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for lifelong program analysis &
transformation. In Proceedings of the 2004 International Symposium on Code Generation and Optimiza-
tion. 75–86.

Janghaeng Lee, Mehrzad Samadi, and Scott Mahlke. 2014. VAST: The illusion of a large memory space for
GPUs. In Proceedings of the 23rd International Conference on Parallel Architectures and Compilation
Techniques. 443–454.

Janghaeng Lee, Mehrzad Samadi, Yongjun Park, and Scott Mahlke. 2013. Transparent CPU-GPU collab-
oration for data-parallel kernels on heterogeneous systems. In Proceedings of the 22nd International
Conference on Parallel Architectures and Compilation Techniques. 245–256.

Janghaeng Lee, Haicheng Wu, Madhumitha Ravichandran, and Nathan Clark. 2010. Thread tailor: Dynam-
ically weaving threads together for efficient, adaptive parallel applications. In Proceedings of the 37th
Annual International Symposium on Computer Architecture. 270–279.

Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim, Anthony D. Nguyen,
Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty, Per Hammarlund, Ronak Singhal, and
Pradeep Dubey. 2010. Debunking the 100X GPU vs. CPU myth: An evaluation of throughput computing
on CPU and GPU. In Proceedings of the 37th Annual International Symposium on Computer Architecture.
451–460.

Michael D. Linderman, Jamison D. Collins, Hong Wang, and Teresa H. Meng. 2008. Merge: A programming
model for heterogeneous multi-core systems. In 13th International Conference on Architectural Support
for Programming Languages and Operating Systems. 287–296.

LLVM. 2014. libclc. Retrieved July 23, 2015 from http://libclc.llvm.org.
Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. 2009. Qilin: Exploiting parallelism on heterogeneous

multiprocessors with adaptive mapping. In Proceedings of the 42nd Annual International Symposium
on Microarchitecture. 45–55.

Douglas C. Montgomery, Elizabeth A. Peck, and G. Geoffrey Vining. 2001. Introduction to linear regression
analysis (3rd ed.). Wiley, New York, NY.

NVIDIA. 2012. CUDA Toolkit 4.2. Retrieved July 23, 2015 from https://developer.nvidia.com/cuda-
toolkit-42-archive.

NVIDIA. 2014a. CUDA C Programming Guide. Retrieved July 23, 2015 from http://docs.nvidia.com/cuda.
NVIDIA. 2014b. PTX: Parallel Thread Execution ISA. Retrieved July 23, 2015 from http://docs.nvidia.

com/cuda/parallel-thread-execution.
David A. Padua and Michael J. Wolfe. 1986. Advanced compiler optimizations for supercomputers. Commu-

nications of the ACM 29, 12, 1184–1201.
J. R. Quinlan. 1986. Induction of decision trees. Journal of Machine Learning 1, 1, 81–106.
Christopher J. Rossbach, Jon Currey, Mark Silberstein, Baishakhi Ray, and Emmett Witchel. 2011. PTask:

Operating system abstractions to manage GPUs as compute devices. In Proceedings of the 23rd ACM
Symposium on Operating Systems Principles. 233–248.

Christopher J. Rossbach, Yuan Yu, Jon Currey, Jean-Philippe Martin, and Dennis Fetterly. 2013. Dandelion:
A compiler and runtime for heterogeneous systems. In Proceedings of the 24th ACM Symposium on
Operating Systems Principles. 49–68.

John A. Stratton, Sam S. Stone, and Wen-Mei W. Hwu. 2008. MCUDA: An efficient implementation of CUDA
kernels for multi-core CPUs. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming. 16–30.

Yusuke Suzuki, Shinpei Kato, Hiroshi Yamada, and Kenji Kono. 2014. GPUvm: Why not virtualizing GPUs
at the hypervisor?. In Proceedings of the USENIX Annual Technical Conference (USENIX ATC’14).
109–120.

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.

http://www.khronos.org.
http://libclc.llvm.org
https://developer.nvidia.com/cuda-toolkit-42-archive
https://developer.nvidia.com/cuda-toolkit-42-archive
http://docs.nvidia.com/cuda
http://docs.nvidia.com/cuda/parallel-thread-execution
http://docs.nvidia.com/cuda/parallel-thread-execution


SKMD: Single Kernel on Multiple Devices for Transparent CPU-GPU Collaboration 9:27

Linda Torczon and Keith Cooper. 2011. Engineering A Compiler (2nd ed.). Morgan Kaufmann Publishers
Inc., Burlington, MA.

Kaibo Wang, Xiaoning Ding, Rubao Lee, Shinpei Kato, and Xiaodong Zhang. 2014. GDM: Device memory
management for GPGPU computing. In 2014 ACM SIGMETRICS International Conference on Measure-
ment and Modeling of Computer Systems. 533–545.

Received July 2014; revised February 2015; accepted June 2015

ACM Transactions on Computer Systems, Vol. 33, No. 3, Article 9, Publication date: August 2015.


