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Abstract

Traditionally, programmers and software tools have focused on
mapping a single data-parallel kernel onto a heterogeneous com-
puting system consisting of multiple general-purpose processors
(CPUS) and graphics processing units (GPUs). These methodolo-
gies break down as application complexity grows to contain mul-
tiple communicating data-parallel kernels. This paper introduces
MKMD, an automatic system for mapping multiple kernels across
multiple computing devices in a seamless manner. MKMD is a two
phased approach that combines coarse grain scheduling of indivisi-
ble kernels followed by opportunistic fine-grained workgroup-level
partitioning to exploit idle resources. During this process, MKMD
considers kernel dependencies and the underlying systems along
with the execution time model built with a few sets of profile data.
With the scheduling decision, MKMD transparently manages the
order of executions and data transfers for each device. On a real
machine with one CPU and two different GPUs, MKMD achieves
a mean speedup of 1.89x compared to the in-order execution on the
fastest device for a set of applications with multiple kernels. 52%
of this speedup comes from the coarse-grained scheduling and the
other 48% is the result of the fine-grained partitioning.

1. INTRODUCTION

Over the past decade, heterogeneous computer systems that com-
bine multicore processors (CPUs) with graphics processing units
(GPUs) have emerged as the dominant platform for general-
purpose computing. New programming models, such as OpenCL [15]
and CUDA [25], enable programmers to efficiently develop data-
parallel kernels to execute on GPUs. As more application domains
focus on exploiting the computational power of GPUs, the com-
plexity of the applications being mapped onto heterogeneous sys-
tems has increased. Applications will grow from a single kernel
surrounded by the corresponding setup code, to a multitude of
communicating data parallel kernels with interspersed CPU code
that require exploiting all processing resources (CPUs and GPUs)
to achieve the desired performance level.

Unfortunately, applications with several data parallel kernels are
difficult to efficiently map onto multiple CPUs and GPUs for three
main reasons. First, the mapping decision must be made depending
on the number of available computing devices, being aware of their
performance capability. Second, kernel execution time is varied by
the input size, so kernels must be mapped considering the input
size of each kernel. However, programmers cannot determine the
input size that will be used for the real execution. Third, it is hard
to fully utilize computing resources due to kernel dependencies. If
no kernel can be executed in parallel due to dependencies, kernels
should be mapped to a single device in serial resulting in other
devices being idle.
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Figure 1: A kernel graph for solving a matrix equation,

A2BBTCB, consisting of six kernels. The system is equipped
with different computing devices with separated physical memory.
Devices are connected through PCI express (PCIe) interconnect.
Each kernel has different amount of computation, and each device
has different performance.

To explain these observations, Figure 1 illustrates an example
application with multiple kernels for solving a matrix equation,

A2BBTCB. In the equation, A and C are 1K×1K matrices, and
B is a 1K × 8K matrix. The target system has different devices
each of which shows different performance on different kernels.
First, kernels 1, 2, and 5 in Figure 1 are not dependent on each other,
thus they can be executed in parallel on separate devices if there
are enough devices. However, it is difficult for programmers to
allocate resources efficiently as they do not know the target system
at compile time.

Next, kernels 1 and 5 in Figure 1 are the same code, but have
different computation cost due to the input size. For this reason,
even though programmers target a specific system, they cannot
statically decide which kernel should be mapped to a faster device.

Last, kernel 6 in Figure 1 must be executed alone after all other
kernels are finished, which leaves the other devices idle. However,
the performance can be further improved by splitting kernel 6 into
sub-kernels, and mapping them to all devices.

To address these challenges, this paper proposes MKMD, or
multiple kernels on multiple devices, a runtime system that com-
bines temporal scheduling of multi-kernels along with spatial par-
titioning of data/computation across multiple computing devices.
The objective of MKMD is to complete all kernels and CPU code
in the least time. To achieve this goal, MKMD proposes a two-
phase scheduling approach considering the expected kernel exe-
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cution time, data transfer cost, and available bandwidth of the in-
terconnect. The first phase is coarse-grain scheduling, which con-
structs a kernel graph and schedules at a kernel granularity maxi-
mizing the resource utilization. This phase assumes kernels must be
entirely executed by a single device. The second phase is fine-grain
partitioning, which reschedules kernels at the work-group (thread-
block) granularity by spatially partitioning kernels into sub-kernels
across available computing devices. In this manner, this phase re-
moves idle computing periods on devices to reduce kernel execu-
tion time.

As MKMD schedules kernels before their execution, it must be
aware of the execution time for each kernel on each device for the
given input sizes. Offline profiling can be used for the execution
time estimation, but profiling all combinations of kernels, devices
and different input sizes is time-consuming and often infeasible.
In order to estimate the execution time with a few sets of offline
profile data, MKMD builds a regression model for each kernel on
each device, and uses the model for the different input sizes.

With MKMD, programmers are only responsible for enqueuing
data-parallel kernels to MKMD without worrying about mapping
kernels to target devices or splitting a kernel into sub-kernels. The
contributions of this paper are as follows:

• Input-variant performance estimation methodology that is spe-
cialized for data-parallel kernels.

• Mapping the list of data-parallel kernels to a task scheduling
problem where the goal is to assign kernels to compute devices
cognizant of execution capabilities and data transfer times.

• A fine-grain kernel partitioning algorithm that identifies idle
time slots and splits kernel execution across multiple idle de-
vices.

2. BACKGROUND

For MKMD, OpenCL is chosen as the input language because
both CPU and GPU vendors support OpenCL, while the language
supports a variety of different architectures with explicit support
for multiple communicating kernels. For a better understanding of
scheduling kernels at finer (work-group) granularity, this section
briefly discusses the background on OpenCL execution model and
OpenCL kernel decomposition.

2.1 OpenCL Execution Model

In OpenCL, the basic unit of execution is a single work-item which
corresponds to a thread. A group of work-items executing the
same code are weaved together to form a work-group. These work-
groups are combined to form a unit of execution called NDRange,
N-Dimensional Range, where each NDRange is scheduled by a
command queue. For execution, the OpenCL program assumes
that the underlying devices consist of a number of compute units
(CUs) which are further split into processing elements (PEs). When
executing a kernel, work-groups are mapped to CUs, and work-
items are assigned to PEs. In order to launch a kernel, a programmer
must define the number of work-groups in NDRange, and the
number of work-items in a work-group. In real hardware, since the
number of actual cores are limited, CUs and PEs are virtualized by
the hardware scheduler or OpenCL drivers.

2.2 OpenCL Kernel Decomposition

OpenCL uses a relaxed memory consistency model for global
memory within a kernel’s workspace, an NDRange. Within a ker-
nel, the execution order of work-groups does not affect the output
until all work-groups reach a global synchronization point, which
is a new kernel invocation. This memory consistency enables CUs
to be virtualized by the hardware scheduler or OpenCL drivers
because they execute the work-groups in an arbitrary order.
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__kernel void sample(__global int *Output, ...) { 

    int tid = get_global_id(0); 

    [COMPUTE CODE] 

    Output[tid] = compute_value; 

} 

(a) Original code
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__kernel void sample(__global int *Output, ... 

        int exe_range_from, int exe_range_to) { 

    int tid = get_global_id(0); 

    int gid = get_group_id(0); 

    if ( gid < exe_range_from || gid > exe_range_to ) 

        return; 

    [COMPUTE CODE] 

    Output[tid] = compute_value; 

} 

(b) Code transformation for sub-kernel
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__kernel void sample(__global int *Output, ... 

        int merge_exe_from, int merge_exe_to, 

        __global int *Out_for_merge) { 

    int tid = get_global_id(0); 

    int gid = get_group_id(0); 

    if ( gid < merge_exe_from || gid > merge_exe_to ) 

        return; 

    [COMPUTE CODE]  // REMOVED 

    Output[tid] = Out_for_merge[tid]; 

} 

(c) Code transformation for merging output

Figure 2: Code transformation for sub-kernel execution and merg-
ing output

Motivated by this property, several previous works proposed
code transformation techniques in order to decompose an OpenCL
kernel into several sub-kernels, which execute a subset of work-
groups in a predefined order [20, 29]. To launch a sub-kernel they
linearize N-dimensional work-groups in the original kernel, and
identify the work-group by the linearized index after the kernel
invocation as shown in Figure 2(b). If the linearized index is not
identified to execute, the work-group immediately finishes, and the
hardware scheduler will schedule it out.

If sub-kernels are executed on different devices, the results on
each device must be properly merged. For merging outputs from
different devices, [29] proposed a way that checks differences
between two outputs and merges the values if they are different.
Another approach was proposed by [20], which transforms a kernel
to generate the addresses of outputs for the executed work-groups,
and selectively copies them based on generated addresses as shown
in Figure 2(c). MKMD follows the second approach, because it is
faster as it does not perform comparisons of memory values.

3. MKMD OVERVIEW

MKMD is a runtime library that is compatible with OpenCL APIs
as illustrated in Figure 3. Since MKMD is transparent to OpenCL
applications by providing the illusion of a single virtual device,
programmers can build an algorithm without concern for mapping
multiple kernels to several devices.

Instead, MKMD makes a scheduling decision by estimating
the execution time of each kernel on the underlying devices for
the given input size. In addition, each kernel can be decomposed
into several sub-kernels for scheduling at work-group granularity.
MKMD also predicts the execution time of sub-kernels with a
partial number of work-groups. In order to estimate the execution
time, MKMD operates in two different modes, profiling mode, and
execution mode, as shown in Figure 3.

In profiling mode, MKMD collects offline profile data by exe-
cuting the kernels with various input sizes and different numbers
of work-groups. As profiling the execution time for all possible in-
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Figure 3: MKMD workflow that operates in profiling mode and
execution mode. In profiling mode, MKMD builds a mathematical
model with a set of profile data for the execution time prediction.
In execution mode, MKMD predicts the execution time of kernels
on various input sizes using the model, and schedules kernels based
on the predicted time.

put sizes and numbers of work-groups is unrealistic, MKMD pro-
files kernels on each devices with a set of few representative inputs
and work-groups, and performs a regression analysis to construct
a mathematical model for a wide range of input and work-group
sizes. In order to facilitate the regression analysis, MKMD stati-
cally analyzes kernels to approximate the computational complex-
ity. Details of the modeling are discussed in Section 4.

Once the offline analysis is done, MKMD can be run in execu-
tion mode, which follows five steps as shown in Figure 3; 1) Ker-
nel graph construction; 2) Coarse-grain scheduling; 3) Fine-grain
multi-kernel partitioning; 4) Sub-kernel generation; and 5) Execu-
tion.

For the kernel graph construction, MKMD analyzes the param-
eters of each kernel, determines the data (buffer) flow between
kernels, and then constructs the graph. In the next step, MKMD
performs coarse-grain scheduling, which assigns kernels to the de-
vices considering kernel dependencies, predicted execution time,
and buffer transfer cost between the devices. After coarse-grain
scheduling, MKMD runs fine-grain partitioning to improve the
scheduling results, in which the scheduler could have left some de-
vices idle for certain amount of time due to insufficient kernel-level
parallelism. In order to utilize those idle devices, MKMD decom-
poses a kernel into a set of sub-kernels at work-group granularity,
offloads them to available devices, and adjusts the scheduling re-
sults.

After the scheduling decision is made, MKMD executes kernels
by generating the actual OpenCL commands for each device, which
include both kernel executions and data transfers. The details of
MKMD scheduling and partitioning are discussed in Section 5.

4. EXECUTION TIME MODELING

In order for MKMD to schedule kernels before it runs kernels, it
must be aware of the execution time for each kernel on each device
for the given input sizes. One way to estimate the kernel execution
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__kernel void square_matmul(__global float *C, 

    __global float *A, __global float *B, int N) { 

  int i = get_global_id(0); 

  int j = get_global_id(1); 

  for (int k = 0; k < N; ++k) 

    tmp += A[i * N + k] * B[k * N + j]; 

  C[i * N + j] = tmp; 

} 

(a) Matrix multiplication
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__kernel void vadd(__global float *C, 

    __global float *A, __global float *B, int N) { 

  int i = get_global_id(0); 

  int T = get_global_size(0); 

  for (int k = i; k < N; k += T) 

    C[k] = A[k] + B[k]; 

} 

(b) Vector addition

Figure 4: Upper bounds of trip count. The upper bounds are stati-

cally determined as N for (a), and N
T

for (b)

time is to refer to the offline profile data, which is gathered by
varying the combination of the number of work-groups, input size,
and device. However, it is often impractical to profile for every
possible input size.

To avoid a large number of profiling, another approach is to
build a model to predict the execution time for the given input size.
To build such a model, the relation between computational cost and
a given input must be analyzed first. Prior research has examined
experimental algorithmics in order to analyze the asymptotic cost
of programs using representative input sets [5, 22, 27, 34]. The intu-
ition behind these works is that the asymptotic cost can be inferred
from several executions with different input size by extrapolating
the trend of the result. [22] showed that a large number of input
sets may be required as there are some cases where cost functions
are hard to be discovered. To improve the accuracy on these cases,
[34] narrowed down the domains to specific data structures, and
[5] applied regression analysis techniques.

Although previous studies showed that empirical analyses can
provide accurate cost of a program, they mainly target legacy se-
quential applications on conventional processors. As traditional
software has dynamic behaviors and faces difficulties in static anal-
ysis due to complex data structures, asymptotic analyses may re-
quire considerable amount of profile data.

However, the asymptotic cost of OpenCL kernels can be stat-
ically analyzed in many cases due to restrictions of the program-
ming model and their deterministic properties. First, OpenCL does
not allow recursive calls, so expensive inter-procedural analysis can
be avoided by inlining function calls. Second, it prohibits system
calls and double pointers (pointers of pointers), which make ker-
nels more deterministic and easy to analyze. Third, the number of
work-items and the input/output size of the kernel is predefined
before kernel launch, thus the upper bound of the loop can be stati-
cally determined for many cases [11, 12].

Based on these observations, this work investigates the potential
of static analysis on OpenCL kernels, proposes an efficient method-
ology that requires a few input sets for modeling the execution time,
and evaluates the accuracy of proposed approach. Note that if the
cost function cannot be analyzed statically, it can also be modeled
using more profile data [5].

To illustrate the static cost analysis, Figure 4 shows two simple
code examples. In Figure 4(a), the upper bound of the loop trip
count is N , which is passed by the host program. Because the
kernel code is executed by the number of work-items defined by the
host program, the asymptotic cost of the kernel is O(TN), where
T is the number of work-items.
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Figure 5: Scalability of execution time on NVIDIA GTX760 vary-
ing input sizes and the number of enabled work-items (T ). The ex-
ecution time is linear to the value of cost function Tf(x1, ..., xN).

In contrast, some kernels are launched with a fixed number of
work-items, but each work-item iterates until all input elements are
properly handled as shown in Figure 4(b). In this case, the upper

bound of the loop trip count is analyzed as N
T

. Because the code
will also be executed by T work-items, the asymptotic cost of this
kernel becomes as O(N).

Since the asymptotic cost can be regarded as the dynamic in-
struction count in the worst case, the estimated dynamic instruction
count can be defined as,

c× Tf(x1, ..., xN ) (1)

where c is an estimated coefficient, T is the number of work-items,
and xi is a variable that can affect the trip count of a loop in the
kernel. Consequently, the estimated execution time on a device,
T imeest can be defined as

T imeest =
CPI

Freqclock
× c× Tf(x1, ..., xN ) (2)

In Equation 2, CPI (cycles per instruction) and Freqclock dif-
fer by device properties (e.g. the number of cores and memory hier-
archies), while the value of Tf(x1, ..., xN) can be determined stat-

ically at compile time. Therefore, the new coefficient, CPI
Freqclock

×c,

is estimated using a regression analysis.
To explain, Figure 5 illustrates the execution time of several

benchmarks from NVIDIA SDK [26], varying input sizes and the
number of work-items. Each legend represents the execution with
different input parameters. The X-axis in the figure is the value of
the cost function, Tf(x1, ..., xN), varying the number of work-
items, T , with the technique discussed in Section 2.

As shown in the figure, for the same input size, the execution
time is linear to the value of the cost function. Also, the slopes,

Kernel f(x1, ..., xN )
Avg. Error (%)

20 profiles 40 profiles

Blackscholes 8thArg 2.12 1.27

N-body
8thArg

LocalSize(0)
1.72 1.23

MatrixMul 6thArg 1.4 0.9

FDTD3d 6thArg 1.98 1.45

SobelFilter 1 1.18 0.97

MedianFilter 1 1.06 0.98

K-Means 4thArg ∗ 5thArg 1.42 1.18

Table 1: Execution time estimation on NVIDIA GTX 760. The cost
functions, f(x1, ..., xN ), were statically analyzed. For example,

8thArg means that the value of the 8th argument is the trip count
of a loop in the kernel. LocalSize(0) means the work-item count
per work-group in the first dimension, while the constant 1 means
that a loop was not found in the kernel.

CPI
Freqclock

× c, are equivalent regardless of the input size. Although

Figure 5 (a) and (b) show the same initial cost over different
input sizes, (c) and (d) show different initial cost despite the same
value of the cost function. The reason is that the number of work-
items (T ) is controlled by the software methodology as discussed
in Section 2, which activates the entire number of work-items
first, and selectively disables work-items by exiting work-items
immediately. In other words, the fixed cost increases as the total
number of work-items grows.

Because Blackscholes in NVIDIA SDK uses the fixed number
of work-items similar to the example shown in Figure 4(b), and N-
body runs with a relatively small number of work-items, the initial
cost is similar regardless of the input size. On the other hand, the
other benchmarks, (c) and (d), have different initial cost because
they increase the number of work-items as the input size grows.
Note that the initial cost is linear to the number of work-item, but it
still can be different across devices. Therefore, initial cost must also
be considered during regression analysis, and the final equation for
the execution time can be expressed as,

y = β1Tf(x1, ..., xN ) + β2T + ǫ (3)

With Equation 3, the tuple, <y,Tf(x1, ..., xN), T>, is recorded
for each profile-run, and then β1, β2, and ǫ are modeled through the
regression analysis. Once the values of β1, β2, and ǫ are modeled,
the execution time ŷ can be estimated in runtime by putting the real
value of the tuple.

In order to evaluate the accuracy of the execution time model,
OpenCL applications from NVIDIA SDK and Rodinia [3] were
used. Table 1 shows the estimation result for a subset of applica-
tions from two benchmark suites on NVIDIA GTX 760. The exe-
cution time models were constructed with 20 and 40 sets varying
input sizes and work-group sizes. The sizes of input for the profiling
were more than 100 MB. The second column of Table 1 describes
the cost function, f(x1, ..., xN ), which is analyzed at compile time.
To compute the average error rate, 100 executions were performed
with random inputs and work-group sizes, and the estimated time
was compared with the observed time.

As shown in Table 1, the average performance prediction error
with random input remained under 3% with 20 profiling sets, and
under 2% with 40 profiling sets.

5. MKMD SCHEDULING

With a regression model constructed through profiling, MKMD
schedules multiple kernels to execute them in the least time. This
section discusses how to construct the kernel graph, and how to
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schedule the kernels in coarse granularity and partition them in finer
granularity.

5.1 Kernel Graph Construction

In order to launch multiple OpenCL kernels, the application en-
queues kernels in a specific order defined by programmer. After
enqueuing multiple kernels, the application issues the queue using
one of OpenCL APIs, such as clFlush or clFinish. Upon this issue
request, MKMD analyzes the dependencies between kernels to en-
sure that outputs are available for consuming kernels. Since kernels
in the queue are supposed to be executed once, MKMD constructs
a directed acyclic graph (DAG), which is called the kernel graph,
where nodes (Vi) and edges (Ei,j) correspond to the kernels and
buffers, respectively.

Each node has the average execution time of the kernel for all
devices as a node weight. Likewise, each edge contains the buffer
transfer time as the edge weight, which can be computed by the
buffer size divided by the interconnect bandwidth.

For the initial and final buffer transfers between the host pro-
gram and devices, MKMD also adds a source node and a sink node
to the graph. The source node has only out-edges that correspond
to the initial buffers from the host program, whereas the sink node
has only in-edges that correspond to the buffer being transferred
to the host. During scheduling, these two nodes are forced to be
scheduled in the CPU device, which shares the address space with
the host program. Note that the node weights of both source and
sink nodes are zero because they do not have actual computation.

5.2 Coarse-grain Scheduling

Once the kernel graph is constructed, MKMD schedules a task in
kernel granularity using a list scheduling algorithm. The basic idea
of list scheduling is to compute priorities of tasks, and make a
list of tasks ordered by the priorities. With the list, the scheduler
repeatedly selects the task with the highest priority, and assign it to
a resource that can accommodate the task.

Many prior researches have utilized list scheduling [23] for
certain cases [2, 32, 33]. The way that MKMD schedules in kernel
granularity is similar to the HEFT algorithm [33] as MKMD targets
heterogeneous OpenCL devices, but uses different metrics due to
the interconnect.

For listing the kernels, MKMD traverses down the graph from
the source node computing the priority of the node, P (Vi), defined
as

P (Vi) =

{

W (Vi) + max
Vj∈Succ(Vi)

(W (Ei,j) + P (Vj)), Vi 6= Vsink

0, otherwise
(4)

where W (Vi) is a node weight, and W (Ei,j) is an edge weight
from a node to the immediate successors. Because P (Vi) is ac-
cumulated with the max value of successors P (Vj) as shown in
Equation 4, the list ordered by the priority is topologically or-
dered, which means that it is guaranteed that all predecessor kernels
are scheduled before scheduling a kernel. After the prioritization,
MKMD selects the kernel with the highest priority in the list, and
schedules it on a device.

The first step for the selected kernel is to find the earliest slot
for each device. Note that a kernel cannot be scheduled before
predecessors finish, and must wait for the data from predecessors to
be transferred if they are scheduled in different devices. Therefore,
the earliest start-able time of kernel i on device k, EST (Vi, Dk),
can be defined as

EST (Vi, Dk) = max
Vj∈Pred(Vi)

{KTend(Vj) + Ttrans(Vj , Ej,i, k)}

(5)
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Figure 6: Coarse-grain scheduling result on three heterogeneous
devices. Dotted arrows presents the buffer transfer between de-
vices. PCI bus operates in full-duplex, but GTX760 and i3770 ex-
perience input and output congestion respectively.

where KTend(Vj) is the scheduled finish time of the predecessor
kernel Vj , where Ttrans(Vj , Ej,i, k) is the buffer transfer time
from the scheduled device of predecessor Vj to device k.

Note that if predecessors are scheduled in different devices,
buffers cannot be transferred to device k at the same time, but
transferred in serial. Thus, Ttrans(Vj , Ej,i, k) is defined as

Ttrans(Vj , Ej,i, k) =







W (Ej,i)× BWmax

AvailBW (KD(Vj), k)
, KD(Vj) 6= k

0, otherwise
(6)

where W (Ej,i) is the estimated transfer time at full band-
width, KD(Vj) is the scheduled device of the predecessor Vj , and
AvailBW () returns the available bandwidth between two devices
being aware of the buffer transfer schedule.

Once EST (Vi, Dk) is computed for each device, the next step
is to find a device that can finish the kernel in the earliest time. Be-
cause EST (Vi, Dk) does not consider if the device k has available
time slots in which the execution time of kernel i fits, the earliest
finish-able time of kernel i on device k, EFT (Vi, Dk), can be
defined as

EFT (Vi, Dk) = AvailEST (Vi,Dk) + Texe(Vi,Dk) (7)

where Texe(Vi, Dk) is the estimated execution time of kernel i on
device k, and AvailEST () returns the available earliest start-able
time of device k after EST (Vi, Dk) where Texe(Vi, Dk) fits into.

With EFT , the final schedule device, schedule start time, and
schedule end time of the kernel are defined as:

KD(Vi) = argmin
k∈Devs

{EFT (Vi,Dk)} (8)

KTstart(Vi) = AvailEST (Vi, KD(Vi)) (9)

KTend(Vi) = EFT (Vi,KD(Vi)) (10)

Figure 6 shows the scheduling result for the same application
shown in Figure 1 on a system with three different devices, Intel
i3770, NVIDIA GTX 760, and GTX 750. As shown in Figure 6,
the coarse-grain scheduling considers kernel dependencies and the
interconnect between devices, but still leaves some devices idle
for considerable amounts of time. For example, i3770 is idle from
53 ms, and GTX750 is idle from 138 ms. In order to remove the
idle periods from coarse-grain scheduling, MKMD performs fine-
grain multi-kernel partitioning on the results, which is discussed in
Section 5.3.

5.3 Fine-grain Multi-kernel Partitioning

The basic idea of partitioning is to split the kernel into finer gran-
ularities, work-groups, and then offload some work-groups to the
idle devices so that the original device can finish the kernel ear-
lier. As discussed in Section 2.2, an OpenCL kernel can be se-
lectively executed at work-group granularity. Through the trans-
formed kernel, MKMD can decompose a kernel into several sub-
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Figure 7: Available compute-time slots (dotted-squares) for parti-
tioning kernel 3. Because kernel 3 depends on kernel 2 (arrow), the
lower bound and upper bound of available time slots are the finish
time of kernel 2 and 3 respectively.

kernels, and distribute them across multiple devices as balanced as
possible based on the coarse-grain scheduling result. To achieve
this, MKMD follows several steps, prioritization, device availabil-
ity identification, partitioning, and adjusting successors’ schedule.

Prioritization: For fine-grain multi-kernel partitioning, MKMD
must consider the effects of partitioning on the overall scheduling
result. To illustrate, in Figure 6, finishing kernel 6 in the earliest
time is the objective, but the kernel depends on the results from
kernels 4 and 5. Again, kernel 4 is dependent on kernel 3, which
is also dependent on kernel 2. Because the earliest scheduled ker-
nel has a higher chance to have larger impact on later kernels as
they are scheduled with the consideration of kernel dependencies,
MKMD prioritizes the kernels by the order of schedule start time
from the coarse-grain scheduling result.

Starting from the kernel with the highest priority, MKMD par-
titions a kernel by offloading work-groups from the scheduled de-
vice to other devices. In Figure 6, MKMD starts from kernel 1, but
kernels 1 and 2 cannot be partitioned because of interconnect band-
width saturation. Thus, kernel 3 becomes the first kernel that will
be actually partitioned.

Device availability identification: When offloading work-
groups to other devices, MKMD must identify the temporal avail-
ability of the devices, so MKMD first identifies the available time
slots for each device. Then, a time slot becomes the basic unit to
which work-groups are offloaded. Note that one device can have
multiple time slots as it can be idle intermittently.

Available time slots for each device can be easily identified from
the scheduling result, but it is important to keep the consistency that
the offloaded work-groups cannot be executed before predecessor
kernels finish. For this reason, the time slots have lower and upper
limits where the lower limit is the latest finish time of predecessor
kernels, and the upper limit is the finish time of the kernel to be
partitioned. Figure 7 visualizes available time slots for partitioning
kernel 3 from the coarse-grain scheduling example in Figure 6.
Because kernel 3 depends on kernel 2, the lower bound is the finish
time of kernel 2.

Partitioning: With available time slots for each device, MKMD
partitions a kernel to minimize the schedule length by offloading
work-groups to available slots. The problem of minimizing the
schedule length is a bin-packing problem when time slots and
work-groups are mapped to bins and objects respectively. Bin-
packing is a NP-hard problem, but the partitioning must be done
quickly because the entire process of MKMD is done in runtime.
Therefore, MKMD uses a hill-climbing greedy heuristic, which is
further discussed in Section 5.4.

Schedule adjustment: As a result of partitioning, the schedule
length of a kernel can be reduced, and successor kernels can start
execution earlier. Therefore, MKMD adjusts the schedules of suc-
cessor kernels after partitioning. In order to minimize the overhead,
MKMD does not change the scheduled device of successor kernels,
but only adjusts successors’ start time.

Overall, Algorithm 1 shows a high-level description of multi-
kernel partitioning. In the algorithm, the first line prioritizes kernels

Algorithm 1 Multi-kernel partitioning

1: V[1..N]← kernels ordered by the start time
2: for i = 1 to N do
3: Vi ← V[i]
4: Reschedule Vi to EST(Vi, KD(Vi))
5: LB← max

Vj∈Pred(Vi)
{KTend(Vj)}

6: UB← KTend(Vi)
7: for k = 1 to NUMdevs do
8: Listslot[k]← Available time slots between LB and UB
9: end for

10: Partition Vi to Listslot[1..NUMdevs] by work-groups
11: if Partitioned then
12: Create new nodes SET

p∈Partitions
{Vi,p}

13: Update DAG with new nodes
14: Update Schedule with the partition result
15: end if
16: end for

by the schedule start time, and lines 5-9 compute available time
slots for a kernel. After that, a kernel is partitioned into the time
slots as shown at line 10, and the kernel graph and the schedule
are updated in lines 12-14. For line 10, Section 5.4 explains how to
partition a kernel into time slots in detail. As a result of partitioning,
the execution time of the kernel will be reduced. This means that
the following kernels that were dependent on the partitioned kernel
now can be scheduled earlier. For this reason, before partitioning,
the algorithm reschedules the kernel to the earliest start-able time
(EST) on the same device as shown at line 4 in Algorithm 1.

5.4 Partitioning a Kernel to Time Slots

As discussed in Section 5.3, partitioning a kernel across multi-
ple time slots can be reduced to a bin-packing problem as the ob-
jective is to minimize the finish time by packing work-groups into
time slots. In addition, there are two more challenges to be consid-
ered.

The first challenge is that the usage of interconnect bandwidth
must be considered when work-groups are offloaded. For example,
even if a device has a large available time slot for a specific kernel,
offloading work-groups may not be possible if interconnect band-
width is saturated during the period because the input cannot be
transferred.

Another challenge is that the cost of merging output may occur
if sub-kernels are executed on different physical devices. Because
different physical devices use different address spaces, sub-kernels
will generate partial results in their own address space. Using the
methodology discussed in Section 2.2, several partial results can
be merged efficiently by executing the merge-kernel. Because the
merge-kernel is executed for merging two partial results, the cost of
merging grows as the number of devices that execute sub-kernels
increases.

Partitioning Heuristic: To tackle these challenges, the optimal
partitioning solution can be found through an exhaustive search,
but the overhead will be significant. Since MKMD partitioning
is performed at runtime before the execution, MKMD uses a hill
climbing heuristic to minimize the overhead. The inputs of the
partitioning algorithm are the scheduled time slot from coarse-grain
scheduling and available time slots for each device.

The hill climbing algorithm starts from a coarse-grain schedul-
ing solution, which is the state where all the work-groups are as-
signed to a scheduled slot. Next, it duplicates the current state to
several candidate states. The number of candidates is as many as the
number of available time slots. Once candidate states are created,
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Algorithm 2 Kernel partitioning to available time slots

1: Slots[1..S-1]← all available time slots in Listslot[1..Numdevs]
2: Slots[S]← Scheduled time slot for kernel v
3: currState.Slots[1..S]← Slots[1..S]
4: Woff ← number of work-groups to offload at a time

5: Timecurr ← max
s∈S
{currState.Slots[s].FinishTime}

6: Timeprev ← Timecurr + 1
7: while Timecurr < Timeprev do
8: Timeprev ← Timecurr
9: nextState[1..S]← currState

10: sfrom ← argmax
s∈S

{currState.Slots[s].FinishTime}

11: for s = 1 to S do
12: nextState[s].tryOffload(sfrom , s, Woff )
13: end for
14: spick ← argmax

s∈S

{nextState,Slots[s].FinishTime}

15: currState← nextState[spick ]

16: Timecurr ← max
s∈S
{currState.Slots[s].FinishTime}

17: end while
18: return currState.Slots
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(a) Partitioning result for kernel 3
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(b) Final scheduling result

Figure 8: Kernel partitioning process. The decimal numbers in a
parenthesis shows the ratio of work-groups. The mark (M) is the
cost for mering nonlinear outputs.

each candidate attempts to offload a fixed number of work-groups
to their available time slot.

While candidates offload the work-groups, they estimate the ex-
ecution time considering available interconnect bandwidth, amount
of buffer transfer, and additional cost for merging outputs. During
the estimation, MKMD also checks if the execution time for of-
floaded work-groups fits in the time slot, or if the finish time of
the slot is later than the upper bound. In this case, the candidate is
disqualified.

Among qualified candidates, the algorithm picks the candidate
who finishes the kernel in the earliest time. The current state is
updated with the picked candidate state, and the algorithm repeats
the process of finding candidates until no candidate state is found.

Algorithm 2 describes the procedure of partitioning. In the algo-
rithm, line 9 corresponds to duplicating the current state to several
candidate states, and in lines 11-13, each candidate state tries of-
floading a fixed number of work-groups to a different time slot.
While the algorithm tries to offload in line 12, it considers current
status of the interconnect, and the merge cost in case of kernel de-

Device
Intel Core i7

3770

NVIDIA

GTX 760

NVIDIA

GTX 750 Ti

# of Cores 4 (8 Threads) 1152 640

Clock Freq. 3.2 GHz 0.98 GHz 1.02 GHz

Memory

(B/W)

32 GB DDR3

(12.8 GB/s)

2 GB GDDR5

(192 GB/s)

2 GB GDDR5

(88 GB/s)

Peak Perf. 435.2 GFlops [13] 2,258 GFlops 1,306 GFlops

OpenCL Ver. Intel SDK 2013 CUDA SDK 5.5

PCIe (B/W) - 3.0 x8 x2 (7.88 GB/s)

OS Ubuntu Linux 12.04 LTS

Table 2: Experimental Setup

composition. After the offloading trials, in line 14, the algorithm
picks the candidate state which finishes the earliest time.

Note that the trip count of the while loop in lines 7-17 can be
controlled by defining Woff as the total number of work-groups
divided by the trip count. In MKMD, the trip count of the while
loop is limited to 100 to reduce the time complexity. In other words,
each iteration tries to offload 1% of work-groups, and reaching
100 iterations means that all work-groups are offloaded to other
time slots. Therefore, in most cases, the while loop stops iterating
before it reaches the limit of 100. As the while loop is reduced to a
constant, the final time complexity of the partitioning algorithm is
O(S), where S is the number of time slots.

As a result of the algorithm, kernel 3 in Figure 7 is partitioned
as shown in Figure 8(a). After partitioning the rest of kernels, the
final scheduling result is illustrated in Figure 8(b).

5.5 Overhead and Limitations

The coarse-grain scheduling costs O(V 2K), where V is the num-
ber of kernels and K is the number of device. After the coarse-grain
scheduling, partitioning is performed for each kernel at the cost of
O(V S), where S is the number of time slots. Because the number
of time slots can not exceed V ×K, the partitioning algorithm is in
proportion to to V 2K as well. Therefore, the entire cost of MKMD

scheduling algorithm is O(V 2K), which is evaluated in Section 6.
Because MKMD makes a scheduling decision of multiple ker-

nels based on the execution time model before it runs a kernel, it
has two main limitations.

First, the scheduling decisions can be suboptimal for irregular
applications, because they are hard to model the execution time.
For example, if the trip count of a loop is varied by work-groups
and it is dependent on the value of input array, it is difficult to build
a model to predict the entire execution time.

Second, the scheduling decision is made assuming that all un-
derlying devices are exclusive to the application until it finishes the
execution. However, if other applications occupy the hardware re-
sources in the middle of the execution, the scheduling result is not
optimal anymore because available resources are changed.

6. EVALUATION

Implementation: MKMD was prototyped as a library, and it over-
loads OpenCL API calls from the application through dynamic
linker redirection. Inside MKMD, it uses the Clang [4] for the
OpenCL front-end, and the Low-Level Virtual Machine (LLVM)
3.6 [19] for the back-end. For execution of partial work-groups,
LLVM transforms the kernel to a sub-kernel by adding a checking
code to the beginning. Taking the range of linearized work-group
indices as parameters, the checking code filters out the work-groups
that are not in the range. Once the kernels are built, MKMD can
operate in profiling mode for building a regression model. For each
parameter, MKMD executes kernels multiple times with different
numbers of work-groups.
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Name Equation Domain

Algebraic Bernoulli (ABE) ATX + XA − XBBTX System Theory

Biconjugate gradient

stabilized (BiCGSTAB)

iterative method

with 11 operations
Linear Systems

Triple commutator
ABC + BCA + CAB

−BAC − ACB − CBA
Mathematics

Generalized Algebraic

Bernoulli (GABE)

ATXE + ETXA

−ETXGXE
System Theory

Reachability Gramian AP + PAT + BBT Control Theory

Jacobi D−1(L+ U)x + D−1b Linear Systems

Continuous Lyapunov AX + XAT + Q Control Theory

Continuous Algebraic

Riccati (CARE)

ATX + XA

−XBR−1BTX + Q
Control Theory

Stein AXAT
− X Probability

Singular value

decomposition (SVD)
UΣV T Signal Processing

Sylvester AX + XB − C Mathematics

Table 3: Benchmark Specification

In execution mode, MKMD takes the list of OpenCL commands
from the application, and performs scheduling as discussed in Sec-
tion 5.

Baseline: For the experiments, we configured a real machine
as shown in Table 2. The baseline of our experiment is in-order
OpenCL execution on a single device assuming that the pro-
grammer picks the fastest device, GTX 760 in our experimental
setup, and simply enqueues the OpenCL commands to that device.
We also compared MKMD with the coarse-grain-only (Coarse-
Only) algorithm, excluding the fine-grain multi-kernel partitioning.
Scheduling assumes that initial status is where the host has initial
inputs and the final status is that the final output is gathered to the
host. Based on these statuses, kernels will be scheduled.

Benchmarks: In order to evaluate MKMD for more complex
kernel graphs, we used linear algebra equations found in various
scientific domains as our benchmarks. For each linear algebra ker-
nel, we used the OpenCL implementation from NVIDIA SDK [26].
The equations and their domains are listed in Table 3. The sizes of
vectors and matrices used in the equations are 4K and 4K × 4K,
respectively.

6.1 Results

First, we measured the speedup of MKMD over in-order execution.
As shown in Figure 9(a), MKMD performs better than in-order ex-
ecutions on every benchmark. The difference between Coarse-Only
and MKMD is the performance gain from fine-grain kernel parti-
tioning as discussed in Section 5.3. In geometric mean, MKMD
brings 89% performance improvement over in-order single device
execution. Among 89% performance improvement, approximately
half comes from the coarse-grain scheduling by assigning kernels
out of order across multiple devices, and the other half comes from
the fine-grain multi-kernel partitioning by splitting the kernels into
several sub-kernels and assigning them to the idle devices.

For BiCGSTAB, both coarse-only and MKMD scheduling do
not show much speedup as shown in Figure 9(a). The reason is that
it is composed of many matrix-vector multiplications, which are
fairly memory-intensive and run much faster on GPUs. As a result,
Coarse-Only scheduling assigns most of kernels to a single GPU in
order to execute quickly and to avoid multiple data transfers. Even
multi-kernel partitioning cannot help reducing the execution time,
as the kernel execution time is relatively small compared to buffer
transfer time. Thus, MKMD shows the same speedup as Coarse-
Only scheduling.

The reason why the Coarse-Only also shows less speedups on
Stein and SVD is that there are not many kernels that can be run in
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Figure 10: MKMD scheduling overhead.
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Figure 11: Kernel graph for triple commutator.

parallel. Therefore, the Coarse-Only execution is similar to in-order
execution. On the other hand, MKMD achieves 1.9x speedup for
both benchmarks taking advantage of fine-grain kernel partitioning.

Figure 9(b) shows the average idle time of devices normalized
to the entire execution time, or the ratio of device underutilization.
As shown in the figure, in geometric mean, MKMD utilizes the
devices 94% of the time, while in-order execution makes use of the
devices 30% of the time.

For some benchmarks, such as ABE and commutator, device
underutilization of MKMD is low. This shows that MKMD utilizes
all available resources to improve performance. The detailed be-
havior of the devices on commutator is discussed Section 6.2.

Figure 10 illustrates scheduling overhead for each benchmark.
As shown in the figure, the absolute time of scheduling overhead is
less than 10 msec for all benchmarks. In terms of the overhead ra-
tio normalized to the entire execution time, BiCGSTAB and Jacobi
have 6.4% and 4.2%, respectively, and the other benchmarks have
less than 0.1%. The main reason why BiCGSTAB and Jacobi have
relatively large overhead is that they finish in a very short time (less
than 70 msec). As discussed in Section 5.3, the scheduling over-
head is not relative to the input size or kernel execution time, but
relative to the number of kernels and devices, and Figure 10 shows
such pattern. Nonetheless, the overhead of those two benchmarks
does not overwhelm the performance improvement from MKMD,
as BiCGSTAB and Jacobi get speedups of 1.12x.

6.2 Case Study

This section further investigates the behavior of MKMD on triple
commutator because it is composed of many compute-intensive
kernels. The kernel graph of triple commutator is built as shown
in Figure 11, and the execution timeline is depicted in Figure 12.
While MKMD performs coarse-grain scheduling, the kernel with
the highest priority is kernel 1, the next is 2, and so on according
to the Equation 4. Therefore, kernel 1 will be scheduled on the
device which can finish it at earliest, which is GTX 760. Next,
for kernel 2, the scheduler will assign it to GTX 750 as shown in
Figure 12(a), because there is no dependency between kernels 1 and
2. While the scheduler assigns several matrix multiplication kernels
to the GPUs, it does not assign a single kernel to the CPU (i3770),
which leaves it idle as shown in Figure 12(a). The reason is that
assigning the entire kernel to the CPU will increase the schedule

8



0

0.5

1

1.5

2

2.5

S
p

ee
d

u
p

 

CoarseOnly MKMD

(a) Speedup over in-order OpenCL executions

0

0.2

0.4

0.6

0.8

1

N
o

r
m

a
li

z
e
d

 I
d

le
 T

im
e
 

SERIAL CoarseOnly MKMD

(b) Average device idle time normalized to the entire execution time

Figure 9: (a) Speedup of MKMD over in-order executions, and (b) the average device idle time normalized to the finish time.
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Figure 12: Execution timeline for triple commutator. Because ma-
trix computation is too expensive on i3770, (a) the coarse-grain
scheduler does not schedule any matrix multiplication kernel on it
while GPUs take more than 4 kernels. With MKMD, (b) all devices
are almost fully utilized.

length more than assigning it to GPUs even if several kernels are
already assigned to them.

Based on coarse-grain scheduling results in Figure 12(a),
MKMD starts multi-kernel partitioning as discussed in Section 5.3.
With prioritization by the start time, kernel 1 will be partitioned
first, and kernels scheduled later will be adjusted after partitioning.
For this reason, kernel 1 utilizes the CPU more (15% of work-
groups) than kernel 2 does (6% of work-groups) as shown in Fig-
ure 12(b). In the end, MKMD almost fully utilizes all three devices
as shown in Figure 12 by splitting kernels into sub-kernels, execut-
ing them out of order without breaking the consistency.

7. RELATED WORK

As the systems become more heterogeneous, programming sev-
eral data parallel kernels for heterogeneous devices has become
extremely difficult.

Research has been done for task scheduling on heterogeneous
processors or distributed systems using various programming lan-
guages [9, 28]. Using StreamIt [9], [8] proposed a compiler frame-
work that refines stream graph of StreamIt program to a multi-core
CPUs. Kudlur et al. also proposed a way to map StreamIt languages

to distributed shared memory systems [18]. However, the usage of
StreamIt language is strictly limited to certain cases, and the pro-
grammer must explicitly define the communication graph even for
data parallel tasks. [28] proposed a set of compiler directives at
a higher level, which hides hardware details from programmers.
Despite these efforts, programmers still must know the underlying
devices to explicitly schedule data parallel code and manage the
buffer transfer between devices.

Rather than programming languages, many prior works pro-
posed ways to alleviate the efforts in programming data parallel
kernels on multiple heterogeneous devices [16, 17, 20, 21, 29]. [21]
proposed Qilin system that automatically partitions threads to one
CPU and one GPU by providing new APIs that abstract away two
different programming models, Intel Thread Building Blocks and
CUDA. However, they do not consider multiple kernels, and the
number of devices is limited to two. [17] proposed a similar run-
time system that distributes OpenCL workloads over multiple het-
erogeneous devices with the performance prediction based on an
artificial neural network. However, they limited the type of OpenCL
kernels to have regular memory access pattern. [7, 14, 16, 20, 29]
proposed runtime systems that can distribute any type of kernels to
several devices. Nonetheless, all these works only focus on opti-
mizing a single OpenCL kernel for multiple devices, not consider-
ing the interaction between multiple kernels.

Research for virtualizing GPU resources has been done [30, 31].
PTask [30] proposes APIs that work with operating systems to man-
age tasks on GPUs by using a data-ow programming model. Dan-
delion [31] also proposes a compiler/runtime framework that works
on C# sources with newer APIs. In this work, a compiler converts
C# to CUDA, and the runtime framework manages execution be-
tween CPUs and GPUs using PTask [30]. While these works target
C# code and require program modification to use additional APIs,
MKMD transparently works on multiple OpenCL kernels without
program modification.

For scheduling multiple data parallel kernels on heterogeneous
devices, [6] proposed the Harmony system, which schedules data
parallel kernels considering the performance of device. [1] pro-
posed StarPU system, which also schedules multiple data parallel
kernels on heterogeneous devices. [10] dynamically assigns ker-
nel to devices of a heterogeneous system based on historical run-
time data. However, all of these works schedule kernels at a ker-
nel granularity, which can cause devices to idle for a considerable
amount of time as evaluated in Section 6. [24] proposed Hyper-Q
that supports multiple kernels on heterogeneous architectures, but
it only considers multiple kernels on a single device, and requires
programmers to identify the order of kernel execution.
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8. CONCLUSION

As applications become more complex, programs commonly exe-
cute multiple data parallel kernels. In the meantime, the complexity
of underlying hardware continues to increase with a wider variety
of computation accelerators. In order to maximally utilize the un-
derlying resources for applications with multiple data parallel ker-
nels, this paper presented MKMD, a runtime framework that auto-
matically builds a dependence graph from the OpenCL command
queue, and schedules kernels out of order considering the costs of
data transfer and execution time on each device. Execution time
estimates are adaptive to input size using a regression model that
is driven by a small number of profiling runs. MKMD combines
coarse-grain kernel scheduling with fine-grain kernel partitioning
to densely make use of all available time slots among devices. For
a system with three different computing devices, MKMD achieves
a mean 1.89x speedup over in order execution on the fastest device
for a set of multi-kernel benchmarks.
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