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Abstract— Heterogeneous computing on CPUs and GPUs has
traditionally used fixed roles for each device: the GPU handles
data parallel work by taking advantage of its massive number
of cores while the CPU handles non data-parallel work, such as
the sequential code or data transfer management. Unfortunately,
this work distribution can be a poor solution as it under utilizes
the CPU, has difficulty generalizing beyond the single CPU-GPU
combination, and may waste a large fraction of time transferring
data. Further, CPUs are performance competitive with GPUs
on many workloads, thus simply partitioning work based on
the fixed roles may be a poor choice. In this paper, we present
the single kernel multiple devices (SKMD) system, a framework
that transparently orchestrates collaborative execution of a single
data-parallel kernel across multiple asymmetric CPUs and GPUs.
The programmer is responsible for developing a single data-
parallel kernel in OpenCL, while the system automatically
partitions the workload across an arbitrary set of devices,
generates kernels to execute the partial workloads, and efficiently
merges the partial outputs together. The goal is performance
improvement by maximally utilizing all available resources to
execute the kernel. SKMD handles the difficult challenges of
exposed data transfer costs and the performance variations
GPUs have with respect to input size. On real hardware, SKMD
achieves an average speedup of 29% on a system with one
multicore CPU and two asymmetric GPUs compared to a fastest
device execution strategy for a set of popular OpenCL kernels.

Index Terms—GPGPU, OpenCL, Collaboration, Data parallel

I. INTRODUCTION

Heterogeneous computing that combines traditional pro-

cessors (CPUs) with graphic processing units (GPUs) has

become the standard in most systems from cell phones to

servers. GPUs achieve higher performance by providing a

massively parallel architecture with hundreds of relatively

simple cores while exposing parallelism to the programmer.

By leveraging new programming models, such as OpenCL [13]

and CUDA [1], programmers are able to effectively develop

highly threaded data-parallel kernels to execute on the GPUs.

Meanwhile, CPUs also provide affordable performance on

data-parallel applications armed with higher clock-frequency,

low memory access latency, an efficient cache hierarchy,

single-instruction multiple-data (SIMD) units, and multiple

cores. With these hardware characteristics, many studies have

been done to improve the performance of data-parallel kernels

on both CPUs and GPUs [18], [26], [3], [7], [10], [8], [5].

More recently, systems are configured with several different

types of processing devices, such as CPUs with integrated

GPUs and multiple discrete GPUs for higher performance.

However, as most data-parallel applications are written to

target a single device, other devices will likely be idle,

which results in underutilization of the available computing

resources. One solution to improve the utilization is to asyn-

chronously execute data-parallel kernels on both CPUs and

GPUs, which enables each device to work on an independent

kernel [4]. Unfortunately, applications that launch multiple

independent kernels are rare and require programmer effort

to ensure there are no inter-kernel data dependences. When

dependences cannot be eliminated, the default execution model

of one kernel at a time must be used.

To alleviate this problem, several prior works have proposed

the idea of splitting threads of a single data-parallel kernel

across multiple devices [21], [14], [12]. Luk et al. [21]

proposed the Qilin system that automatically partitions threads

to CPUs and GPUs by providing new APIs. However, Qilin

only works for two devices (one CPU and one GPU), and

the applicable data parallel kernels are limited by usage of

the APIs, which requires access locations of all threads to be

analyzed statically. Kim et al. [14] proposed the illusion of a

single compute device image for multiple equivalent GPUs.

Although they improved the portability by using OpenCL as

their input language, their work also puts several constraints on

the types of kernels in order to benefit from multiple equivalent

GPUs. For example, the access locations of each thread must

have regular patterns, and the number of threads must be a

multiple of the number of GPUs.

Despite individual successes, the majority of data parallel

kernels still cannot benefit from multiple computing devices

due to strict limitations on the underlying hardware and the

type of data-parallel kernels. As hardware systems are con-

figured with more than two computing devices and more sci-

entific applications have been converted to more complicated

OpenCL/CUDA data-parallel kernels in order to benefit from

heterogeneous architectures, these limitations become more

significant. To overcome these limitations, we have identified

three central challenges that must be solved to effectively

utilize multiple computing devices:

Challenge 1: Data-parallel kernels with irregular mem-

ory access patterns are hard to partition over multiple
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Fig. 1: Physical OpenCL Computing Devices with Different

Performances, Memory Spaces, and Bandwidths

devices. Memory read/write locations of adjacent threads may

not be contiguous, or the access location of each thread may

depend on control flow or input data. This kind of data-

parallel kernel discourages partitioning over multiple devices

because the irregular locations of input data must be properly

distributed over multiple devices before execution, and output

data must be gathered correctly after execution.

Challenge 2: The partitioning decision becomes more

complicated when systems are equipped with several types

of devices. As shown in Figure 1, a system may have several

GPUs which have different performance and memory band-

width characteristics. In addition, some computing devices,

such as CPUs or integrated GPUs, can share the memory space

with the host program while external GPUs cannot because

they are physically separated. In this case, the partitioning

decision must be made very carefully with regard to the cost

of data transfer in addition to the performance of each device.

Challenge 3: The performance of a GPU is often not

constant to the amount of data that it operates upon,

and this variation will affect the partitioning decision. This

problem is more significant for memory-bound kernels where

each thread spends most of its time on memory accesses.

For this type of kernel, GPUs hide memory access latency

by switching context to other groups of threads. With fewer

threads, more memory latency is exposed that often leads to

disproportionately worse performance. This behavior makes

the partitioning decisions more complex since the partitioner

must consider the performance variation of GPUs.

In this paper, we propose SKMD (Single Kernel Multiple

Devices), a dynamic system that transparently orchestrates

the execution of a single kernel across asymmetric heteroge-

neous devices regardless of memory access pattern. SKMD

transparently partitions an OpenCL kernel across multiple

devices being aware of the transfer cost and performance

variation on the workload, launches parallel kernels, and

merges the partial results into the final output automatically.

This dynamic system not only eliminates the tedious process

of re-engineering applications when the hardware changes, but

also makes efficient partitioning decisions based on application

characteristics, input sizes, and the underlying hardware.

The challenge for transparent collaborative execution is

threefold: 1) generating kernels that execute a partial work-

load; 2) deciding how to partition the workload accounting

for transfer cost and performance variation; and, 3) efficiently

merging irregular partial outputs. To solve these problems, this

paper makes the following contributions:

• The SKMD runtime system that accomplishes transparent

collaborative execution of a data-parallel kernel.

• A code transformation methodology that distributes data

and merges results in a seamless and efficient manner

regardless of the data access pattern.

• A partitioning algorithm that balances the workload

among multiple asymmetric CPUs and GPUs considering

the performance variation of each device.

II. BACKGROUND

This section briefly describes the OpenCL programming and

execution model and then discusses memory consistency of

OpenCL to understand semantics of partitioning on a single

data-parallel kernel.

A. OpenCL Programming Model and Execution Model

The OpenCL programming model uses a single-instruction

multiple thread (SIMT) model that enables implementation

of general purpose programs on heterogeneous CPUs/GPUs

systems. An OpenCL program consists of a host code segment

that controls one or more OpenCL devices. Unlike the CUDA

programming model, devices in OpenCL can refer to both

CPUs and GPUs whereas devices in CUDA usually refer to

GPUs. Host code contains the sequential code sections of the

program, which is run only on the CPUs, and a parallel code

is dynamically loaded into a program’s segment. The parallel

code section, i.e. kernel, can be compiled at runtime if the

target devices cannot be recognized at compile time, or if a

kernel runs on multiple devices.

The OpenCL programming model assumes that underlying

devices consist of multiple compute units (CUs) which is

further divided into processing elements (PEs). The OpenCL

execution model consists of three levels of hierarchy. The basic

unit of execution is a single work-item. A group of work-

items executing the same code are stitched together to form

a work-group. Once again, these work-groups are combined

to form parallel segments called NDRange, N-Dimensional

Range where each NDRange is scheduled by a command

queue. Work-items in a work-group are synchronized together

through an explicit barrier operation. When executing a kernel,

work-groups are mapped to CUs, and work-items are assigned

to PEs. In real hardware, since the number of cores are limited,

CUs and PEs are virtualized by the hardware scheduler or

OpenCL drivers. For example, NVIDIA devices virtualize

an unlimited number of CUs on physical streaming multi-

processors (SMs) by quickly switching context of a work-

group to another using hardware scheduler.

B. Memory Consistency and Multi-Device Execution

The OpenCL programming model uses relaxed memory

consistency model for local memory within a work-group and

for global memory within a kernel’s workspace, NDRange.

Each work-item in the same work-group sees the same view
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Fig. 2: SKMD Framework consisting of Kernel Transformer,

Buffer Manager, Partitioner, and Profile Database

of local memory only at a synchronization point where a

barrier appears. Likewise, every work-group in the same

kernel is guaranteed to see the same view of the global

memory only at the end of the kernel execution, which is

another synchronization point. This means that the ordering

of execution is not guaranteed across work-groups in a kernel,

but only guaranteed across synchronization points.

Based on this memory consistency model, an OpenCL

kernel can be executed in parallel in work-group granularity

without concern of the execution order. If a kernel executes

a subset of work-groups instead of the entire NDRange, the

result at the end of kernel execution would be incomplete.

However, if the rest of the work-groups are executed after all,

it would correctly complete regardless of type of application.

This feature enables collaborative execution of a single kernel

even on separate devices that use different address spaces.

By simply assigning a subset of work-groups to each device

exclusively, partial results would appear interleaved in their

address spaces. Final results can be made when the partial

results are merged properly.

One limitation of distributing data-parallel workloads to

multiple devices at work-group granularity is that it must

handle global barriers or atomic operations carefully because

the execution of work-groups should be ordered at those

points in the middle of execution. In this paper, we do

not consider applications with these semantics since it will

produce significant overhead on multi-device execution.

III. SKMD SYSTEM

SKMD is an abstraction layer located between appli-

cations and the OpenCL library. Since OpenCL supports

both CPUs and GPUs as computing devices, it is selected

as the language for SKMD. The SKMD layer hooks into

every OpenCL API including querying-platform APIs. For

querying-platform APIs, SKMD returns an illusion of virtual

num_groups(0) 

num_groups(1) 

num_groups(2) 

(a) 3-dimensional work-group range

num_groups(0) 

num_groups(1) 

num_groups(2) 

(b) Flattened view of 3-dimensional work-groups

Dev1 (33%) Dev2 (50%) 

Flattened work-groups 

Dev3 (17%) 

(c) Partitioning on flattened work-groups

Fig. 3: OpenCL’s N-Dimensional Range

platform with only one large available device. When other

APIs were hooked, SKMD system maintains all informa-

tion such as device buffer size, kernel name, and kernel

arguments in an internal mapping table, and does not pass

them to real OpenCL libraries but returns fake value (e.g.

CL SUCCESS) immediately to the application until ker-

nel launch (clEnqueueNDRangeKernel) is requested. The

framework consists of a profiler to collect performance metrics

for each device by varying the number of work-groups, and a

dynamic compiler to transform and execute the data-parallel

kernel on several devices as shown in Figure 2.

The Dynamic compiler has three units: kernel transformer,

buffer manager and partitioner as shown in grey boxes in

Figure 2. The kernel transformer changes the original kernel

to Partition-Ready kernel, which enables the kernel to work

only on a subset of work-groups. After kernel transformation,

the buffer manager performs static analysis on kernels to

determine memory access pattern of each work-group. If

memory access range of each work-group can be analyzed

statically, the buffer manager will transfer only necessary data

back and forth from each device once partitioning decision

has been made. On the other hand, if memory access range

cannot be analyzed, entire input should be transferred to

each device and output must be merged. In order to merge

irregular locations of output from different devices, the kernel

transformer generates Merge kernel, and SKMD launches it

on CPU device.

Once kernel analysis and transformation are done, range

of work-groups to execute for each device is decided by

the partitioner considering performance effect of adjusting

workload to each device. If the profile information does not

exist, SKMD executes a dry run with Partition-Ready kernels

varying number of work-groups for each device in order to



1__kernel void Blackscholes_CPU(

2 __global float *call,

3 __global float *put,

4 __global float *price,

5 __global float *strike, float r, float v,

6 int WG_from, int WG_to)

7{

8 int idx = get_group_id(0);

9 int idy = get_group_id(1);

10 int size_x = get_num_groups(0);

11 int flattened_id = idx + idy * size_x;

12 // check whether to execute

13 if (flattened_id < WG_from || flattened_id > WG_to)

14 return;

15 int tid = get_global_id(1) * get_global_size(0)

16 + get_global_id(0);

17 float c, p;

18 BlackScholesBody(&c, &p,

19 price[tid], strike[tid], r, v);

20 call[tid] = c;

21 put[tid] = p;

22}

Fig. 4: Partition-Ready Blackscholes Kernel

collect the data. After partitioning decision has been made,

the buffer manager transfers necessary data from the host to

external devices, then SKMD launches the actual kernel for

each device.

Rest of this section discusses these three components of

SKMD: kernel transformation, buffer management, and per-

formance variation-aware partitioning.

A. Kernel Transformation

As OpenCL kernels can launch up to three dimensional

work-groups, the kernel transformation flattens N-dimensional

work-groups to one dimensional work-groups to assign bal-

anced work over all devices in a work-group granularity. For

example, Figure 3(a) shows three dimensional ranges, each of

which has 8 work-groups. Figure 3(b) shows flattened view

of the work-groups, which has 512 work-groups in a single

dimension. Once SKMD framework has flattened view of N-

dimensional work-groups, it assigns a subset of work-groups

in flattened range as shown in Figure 3(c). Based on this idea,

next subsection discuss how SKMD generates Partition-Ready

kernel and Merge kernel.

Partition-Ready Kernel: Assigning partial work-groups can

be done through code transformation as shown in Figure 4.

Lines of code with gray background in the figure illustrates

the generated code by dynamic compiler. As shown in the

figure, it adds a parameter WG_from and WG_to to represent

the range of flattened work-group indices to be computed on a

device. In other words, SKMD runs (WG from−WG to+
1) work-groups of the kernel and bails out the rest of the

work-groups on a device. If a kernel launches more than one

dimensional NDRange, flattening code is inserted as shown at

line 11 in Figure 4. After flattening the work-group index, each

work-item identifies its work-group index (flattened id) and

checks if it is allowed to execute the kernel.

Additional code with gray background is lowered to 3-9

instructions in PTX ISAs and x86-64 ISAs. These additional

instructions consist of loading index and dimension size,

MADD, comparison, and branch. For PTX code, however,

there is no actual load instruction for indices and sizes,
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Fig. 5: Different Memory Access Patterns of Kernels

because GPUs maintain special registers for them, and they

are available to each work-item and work-groups [22]. The

overhead of checking code becomes more invisible in case of

a memory-bound kernel that hides the time for computation

code.

However, for x86 code, load instructions for the indices and

sizes appears, and the checking code in CPUs may produce

significant overhead as Intel OpenCL driver executes a kernel

in the same way that Gregory et al. [3] proposed. In their

work, the driver transforms a kernel to be wrapped by N -

nested loops in order for CPUs to execute N -dimensional

work-items in a work-group. This is necessary because the

context of each work-item in CPUs must be switched by the

code, not the hardware After the transformation, the driver

iterates over work-groups distributing them to multiple threads

in order to fully utilize multiple CPU cores. Unfortunately,

this leaves CPU execution very inefficient for Partition-Ready

kernel as CPUs must execute checking code serially inside the

innermost loop, even though checking whether to execute is

independent from inner loops.

To avoid this problem, SKMD system is configured with

the enhanced OpenCL driver for CPU devices. The enhanced

driver takes the range of enabled work-group directly from the

SKMD system, so SKMD system does not transform a kernel

but the driver selectively iterate over work-groups. Through

this loop-independent code motion, SKMD eliminates the

overhead of checking code for CPU devices.

Merge Kernel: Another challenge of collaborative execution

of a single data-parallel kernel is that several computing

devices may use different address spaces, so results from each

device must be merged after execution. Some kernels have

contiguous memory accesses, so called Contiguous Kernel,

where each of threads writes the result in contiguous locations

as shown in Figure 5(a). In this case, partial output can be

merged at lower cost by simply concatenating partial output

from the external GPU devices to the host.

On the other hand, for Discontiguous Kernels, which have

discontiguous memory accesses, it is difficult to merge partial

output. For example, matrix multiplication kernel is usually

implemented assigning a work-group to work on a tile. Since

two dimensional matrix is flattened to a single dimensional



1__kernel void Blackscholes(

2 __global float *call,

3 __global float *put,

4 __global float *price,

5 __global float *strike,

6 float r,

7 float v)

8{

9 int tid = get_global_id(1) *
10 get_global_size(0) +

11 get_global_id(0);

12 float c, p;

13 BlackScholesBody(&c, &p,

14 price[tid],

15 strike[tid],

16 r, v);

17 call[tid] = c;

18 put[tid] = p;

19}
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1__kernel void Blackscholes_Merge(

2 __global float *call,

3 __global float *put,

4 __global float *c_gpu,

5 __global float *p_gpu,

6 int GPU_from, int GPU_to)

7{

8 int idx = get_group_id(0);

9 int idy = get_group_id(1);

10 int size_x = get_num_groups(0);

11 int flat_id = idx + idy * size_x;

12 // check whether to execute

13 if (flat_id < GPU_from || flat_id > GPU_to)

14 return;

15 int tid = get_global_id(1) *
16 get_global_size(0) +

17 get_global_id(0);

18 // computation code is removed by DCE

19 call[tid] = c_gpu[tid];

20 put[tid] = p_gpu[tid];

21}
(c) Merge Kernel for Blackscholes

Fig. 6: Merge Kernel Transformation Process

array, writing locations of consecutive work-groups become

discontiguous as shown in Figure 5(b). Clearly, this type of

memory layout can cause significant overhead for merging

output. The overhead is high because the output cannot be

copied at once, so each device has to keep the write location

for merging and selectively copies the data afterward.

To solve this problem, SKMD uses a novel code transfor-

mation technique that automatically merges the data without

storing memory-write locations and takes full advantage of

data/thread parallelism in multi-core CPUs. SKMD merges

the output without storing memory-write locations by reusing

the original kernel function for merging partial output. In the

CPU device, enabled work-items will write their results in the

host’s memory, while locations for disabled work-items will

remain untouched. Instead, the kernels launched in external

GPU devices touch those locations in their own address space.

Thus, transferring the GPU devices’ output to the host and then

selectively copying them to the CPU output would complete

the final results. In order to selectively copy the external GPU

results, SKMD launches the Merge kernel to regenerate the

addresses that external GPU devices modified in their output.

To illustrate how merge kernel is generated, Figure 6(a)

shows the original Blackscholes kernel that generates two out-

put arrays. For merge kernel shown in Figure 6(c), the dynamic

compiler inserts a parameter GPU_from and GPU_to, as

well as two additional parameters p_gpu and c_gpu which

are GPU’s partial output arrays (put prices and call prices)

transferred to the host’s memory. Output parameters of the

kernel can be determined by the basic data-flow analysis,

checking whether __global pointer parameters are used for

store. For kernels that copy __global pointer parameters to

temporary local variables, SKMD uses alias analysis to keep

track of usage of those pointer variables. The condition for

enabled work-group of Merge kernel is equivalent to that of

Partition-Ready kernel as shown at line 13.

Once GPU output parameters have been setup, the dynamic

compiler follows several steps to transform the kernel as

illustrated in Figure 6(b). The first step is to match the base of

the store instruction to the base of the output parameter from

GPU using use-def chains. After the dynamic compiler gets

corresponding base, it inserts a load instruction with the base

and the same offset of the store instruction. Next, it replaces

the value of store instruction with loaded value as shown in

lines 19-20 of Figure 6(c). Finally, it marks store instruction as

live and proceeds with dead code elimination using the mark-

sweep algorithm [27] to remove all computation code. As a

result of this transformation, computation code, line 12-16 in

Figure 6(a), are removed. Note that the transformation is done

in IR level where every function call is inlined in general, as

OpenCL adopts SIMT execution model that does not allow

threads to execute different instructions at a time.

Clearly, transformed merge kernel does not contain any

computation code, except the calculation of index for load

and store. With this approach, the cost of merging reaches

the bandwidth between CPU cores and main memory (<20

GB/s) regardless of applications. That is, 4 MBytes of 1K ×
1K single-precision floating point matrix can be merged in

negligible time(< 0.2ms.)

B. Buffer Management

In SKMD framework, the buffer management unit is in

charge of transferring input/output back and forth between

the host and external devices. Since the main idea of SKMD

is to assign subset of work-groups to several devices, each

device may not require the entire input data. Likewise, each

device will generate subset of output, so it is desirable to

send only updated output back to the host. Considering that

the bandwidth of PCI express channel is relatively low (less

than 6 GB/sec), it becomes critical to reduce the amount of

transferring input and output for external GPU devices.

To determine if it is safe to transfer partial data to GPU

devices, the buffer manager checks if the kernel is a contiguous

kernel by analyzing index space of each work-group. For index

space analysis, the buffer manager uses data flow analysis

focusing on index operand of the store and load instructions,

which is described as tid in Figure 6(b). Using use-def chains
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from tid node, the buffer manager computes the function of in-

dex. If the function is affine and represented as a·(W0·w0+l0),
it is defined as a Contiguous Kernel. In this equation, a is a

constant or an induction variable of loop, and wi, li, and Wi

represents work-group ID, work-item ID, and size of work-

group in i-th dimension respectively. For this type of kernel,

it is safe to transfer subset of data to each device proportional

to assigned work-groups.

On the other hand, if index space of the kernel cannot

be determined statically, or the affine function fails to be

recognized as above, the buffer manager gives up optimizing

data transfer and defines it as discontiguous kernel. In this

case, entire input and output will be transferred back and

forth between the host and external devices if the kernel is

partitioned and Merge kernel will be launched at the end.

C. Transfer Cost and Perf. Variation-Aware Partitioning

Once the kernel transformation is done, SKMD determines

how many work-groups should be assigned to the underlying

devices. The goal of the partitioning is to minimize the

overall execution time by balancing workloads among several

devices. This is an extension of the NP-Hard bin packing

problem [6] and a common problem in load balancing parallel

systems [17].

The difference is that it involves more parameters, such as

data transfer time between the host and devices and the cost

of merging partial outputs. Most importantly, the performance

of devices can vary as the number of work-groups assigned to

the device changes. To illustrate, Figure 7 shows the relative

execution time of the V ectorAdd kernel normalized to the

time spent executing 32,768 work-groups on three devices.

As shown in the figure, execution time does not scale down

well as the number of work-groups decreases on GPUs. If the

partitioning decision is made without considering transfer cost

and performance variance of partitioning, it will be suboptimal

or even cause slowdown compared to single-device execution.

To illustrate, the example shown in Figure 8 assumes that

there are three external GPU devices, each of which has differ-

ent performance. If partitioning is done relying only on their

maximum performance, partitioned execution may take longer

than single device execution for two reasons: 1) serialized data

transfer; and 2) decreased performance due to small amount
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ing

of workload as shown in Figure 8(a). In this example, since

the CPU device does not have data transfer and GPU device 2

has significant slowdown when it executes a small amount of

work, more workload should have been assigned to the CPU

device instead of GPU device 2. Figure 8(b) describes the ideal

case for this example.

Regarding the cost of transfer and performance variance

of devices, partitioning decision becomes a nonlinear integer

programming problem. Many heuristics could potentially be

used for this problem, however, one limitation is that SKMD

performs partitioning at runtime, thus the algorithm must

be executed very quickly so as not to overwhelm potential

benefits from collaborative execution. This restriction prohibits

the exact time consuming integer programming solutions [15].

To perform partitioning at runtime, SKMD utilizes a deci-

sion tree heuristic [25]. For our system, SKMD uses top-down

induction tree, where the root node is the initial status and

all work-groups are assigned to the fastest device based on

the estimation. A node in the tree represents a distribution of

the work-groups among the devices. A node is branched to

its children, and each child differs from the parent in that a

fixed number of work-groups are offloaded from the fastest

device to another from the parent’s partition. For each child,

the partitioner estimates the execution time for all devices

considering data transfer cost and performance variation of

assigned work-groups. The induction is done by a greedy

algorithm which chooses a child that has the most time

difference between offloaded device and offloading device.

The partitioner traverses the tree until offloading does not

decrease overall execution time.

In detail, the partitioner loads the Performance Table for

the application from the profile database. The performance

table consists of k columns, each of which contains perfor-

mance values for one device. Each row of this table has the

performance value in certain range of work-groups for each

device as shown in Figure 2 By using the performance table,

the partitioner initially estimates the execution time for single



Algorithm 1 Performance Variation-Aware Partitioning

1: Partition[1..k] = 0 ⊲ Partition result of k devices

2: Perf[k][1..M] = ReadProfileData()
3: BaseDev = argmin

x∈k

{EstDevExeTime(x, Perf, TotalWGs)}

4: PrevExeTime = Min{EstDevExeTime(x, Perf, TotalWGs)}
5: Partition[BaseDev] = TotalWGs ⊲ Assign all groups to base device

6: if Contiguous Kernel then

7: MinOffloadCnt = PartitionGranularity
8: else

9: MinOffloadCnt = Cnt OffsetsMergeCost(BaseDev, Perf)
10: end if

11: TolerateCnt = 0

12: OffloadedCnt = 1

13: while (OffloadedCnt > 0 or TolerateCnt < 10) do

14: OffloadedCnt = 0

15: CandidateDevs[1..k].TrialCnt = 0

16: CandidateDevs[1..k].Diff = MAX V ALUE

17: for i = 1 to k do

18: if Partition[i] = 0 then

19: OffloadingTrial = MinOffloadCnt

20: else

21: OffloadingTrial = PartitionGranularity

22: end if

23: OffloadingTrial *= 2TolerateCnt

24: if OffloadingTrial > Partition[BaseDev] then

25: continue ⊲ Skip trial for this device

26: end if

27: Partition[BaseDev] -= OffloadingTrial

28: Partition[i] += OffloadingTrial

29: DevsTime[1..k] = EstAllDevsTime(Partition, Perf)
30: EstExeTime = Min{DevsTime[0..k − 1]}
31: if EstExeTime < PrevExeTime then

32: CandidateDevs[i].TrialCnt = OffloadingTrial

33: CandidateDevs[i].Diff = DevsTime[BaseDev] - DevsTime[i]

34: end if

35: Partition[BaseDev] += OffloadingTrial

36: Partition[i] -= OffloadingTrial

37: end for

38: OffloadDev = argmax
x∈k

{CandidateDevs[x].Diff}

39: OffloadedCnt = CandidateDevs[OffloadDev].OffloadingTrial

40: Partition[OffloadDev] += OffloadedCnt

41: Partition[BaseDev] -= OffloadedCnt

42: if OffloadedCnt > 0 then

43: TolerateCnt = 0

44: else

45: TolerateCnt++

46: end if

47: end while

48: return Partition

device execution for all k devices to identify the fastest device

for the kernel. The execution time includes the transfer cost,

which can be calculated using buffer size allocated by the

OpenCL APIs divided by the bandwidth of PCIe.

Before the partitioner offloads the work-groups from the

fastest device, it determines the granularity of the number

of work-groups to offload (PartitionGranularity) based on

the total number of work-groups (TotalWGs). In our frame-

work, we limited the number of induction steps to 2,048, so

PartitionGranularity becomes Ceil(TotalWGs/2, 048).
One more thing to consider in terms of offloading is the

number of minimum work-groups (MinWGs) that offsets

the merge cost as a result of multiple-device execution. If

the kernel is a discontiguous kernel, SKMD must merge

output at the end. If the fastest device offloaded work-groups

to another device for the first time, the time reduced from

offloading must be greater than the merge cost. The merge

cost can be roughly estimated through the size of output

buffer divided by the bandwidth between CPUs and the main

memory. Note that the merge cost is computed only for a

discontiguous kernel, while for a contiguous kernel, it uses

Device

Intel Xeon

E3-1230

(SandyBridge)

NVIDIA

GTX 560

(Fermi)

NVIDIA

Quadro 600

(Fermi)

# of Cores 4 (8 Threads) 336 96

Clock Freq. 3.2 GHz 1.62 GHz 1.28 GHz

Memory 8 GB DDR3 1 GB GDDR 5 1 GB GDDR 3

Peak Perf. 409 GFlops [9] 1,088 GFlops 245 GFlops

OpenCL Driver
Enhanced

Intel SDK 1.5

NVIDIA

SDK 4.0

PCIe N/A 2.0 x16

OS Ubuntu Linux 12.04 LTS

TABLE I: Experimental Setup

default PartitionGranularity for initial offloading. After

initial offloading, since the node in the tree contains enough

work-groups to offset the merge cost already, the number of

work-groups offloaded to the same device can be increased by

PartitionGranularity.

Once the partitioner has prepared the necessary values for

traversing, it starts to traverse down the decision tree from

the root node by offloading PartitionGranularity work-

groups to k devices at each step. At each child node, the

partitioner estimates the execution time for all devices using

the EstAllDevT ime function, which considers data transfer,

serialization of PCIe transfer, and performance variation as a

result of offloading. After the time estimation of all devices

at a child node, the partitioner chooses the maximum value

among estimated time, and add the merge cost to compute

the overall execution time. Then, the partitioner checks if

the overall execution time is reduced compared to the parent

node. If a child node takes longer, it is not a candidate for

the induction. If the overall time of a child node is reduced,

the partitioner marks it as a candidate. For each candidate

node, the partitioner computes Balancing Factor, which is the

difference between the overall execution time in parent node’s

and the time spent in the device that is offloaded from the

parent. For the induction, the partitioner selects the candidate

node with the highest Balancing Factor among all candidates.

If there is no candidates, the partitioner increases

PartitionGranularity temporarily to make sure that the

slowdown does not come from the performance variance. If

there is still no candidate after additional trials, the partitioner

stops traversing and returns the status of child node which

has the partitioning results. Algorithm 1 shows a high-level

description of partitioning algorithm. While-Loop presented

at Line 13-47 corresponds to traversing down the decision tree,

and For-Loop at line 17-37 corresponds to testing children

of a node in the tree.

Overall, the time complexity of this algorithm is

O(kNlogM) where k is the number of devices, and N is

the number of total work-groups with M discrete range of

performance variance data. Note that N can be reduced to a

constant by limiting the number of induction steps as described

above, and searching performance data among M ranges can

be done in logarithmic time using binary search.



Benchmark Source
Contiguous

Access

Input Output Work-

GroupsType Size Buf Size Type Size Buf Size

AESEncrypt/Decript AMDSDK N Bitmap image 2048×2048 4MB Bitmap image 2048×2048 4MB 4,096

BinomialOption AMDSDK Y # of Stock Price 16,384 256KB # of FP numbers 16,384 256KB 16,384

Blackscholes NVIDIA SDK Y # of Stock Price 1,048,576 4MB # of FP numbers 2,097,152 8MB 1,024

Histogram AMDSDK N # of 8-bit numbers 16 millions 16MB 32-bit integer bins 256 1KB 512

MatrixMultiplication AMDSDK N Matrix size 1,024×1,024 8MB Matrix size 1,024×1,024 4MB 1,024

MatrixTranspose AMDSDK N Matrix size 1,024×1,024 4MB Matrix size 1,024×1,024 4MB 1,024

QuasiRandomSequence AMDSDK N # of vectors, dimensions 131,072, 64 8K # of FP numbers 8,338,608 32MB 64

Reduction(Partial) AMDSDK N # of 32-bit numbers 4,194,304 16MB # of FP numbers 8,192 32KB 2,048

ScanLargeArrays AMDSDK Y # of FP numbers 1,048,576 4MB # of FP numbers 1,048,576 4MB 4,096

VectorAdd NVIDIA SDK Y # of FP numbers 4,194,304×2 32MB # of FP numbers 4,194,304 16MB 16,384

TABLE II: Benchmark Specification

IV. EVALUATION

We tested our framework on a real machine, which has

three different type computing devices as shown in Table I.

Intel SandyBridge has integrated GPUs but it does not support

OpenCL, so integrated GPU is not considered as a computing

device in our experiments. However, the idea of SKMD frame-

work is not limited to discrete GPUs. SKMD was prototyped

using Low-Level Virtual Machine (LLVM) 3.1 [16], on top of

a Linux system with NVIDIA driver for GPU execution, and

Intel OpenCL driver for CPU execution.

Every function call to the OpenCL library was hooked

by our custom library that leverages SKMD’s compilation

framework. Inside the framework, we used Clang for OpenCL

frontend, and LLVM 3.1 incorporated with libclc extension

was used for PTX backend [20]. However, PTX backend is

used only for Merge kernels, while Partition-Ready kernels

were transformed in source level and then directly fed into

OpenCL drivers.

For the experiments, a set of benchmarks from the

AMDSDK [2] and the NVIDIA SDK [23] were used to

evaluate SKMD. Some benchmarks that do not create enough

work-groups regardless of input size were excluded. Input size

for each benchmark for the evaluation is shown in Table II. The

applications from the benchmark suite were compiled without

any modification.

Before real execution, we executed profile-run to collect

performance variation on the number of work-groups. For each

benchmark, 16 discrete ranges of data were collected. For ex-

ample, Histogram launches 512 work-groups, so performance

of each device were measured decreasing 32 work-groups from

512. SKMD system is also capable of online profiling by

reducing the profiling time.

For online profiling, reducing profiling time is important as

the overhead is added to the initial execution time and fully

exposed to the user. In order to optimize profiling time, both

the number of runs per kernel and the number of work-groups

executed per run can be scaled back. The performance table

would be filled in with a combination of actual values and

values obtained by extrapolation. Many kernels have highly

predictable behavior, so substantially less profiling is necessary

in practice. For kernels that do not have data dependent control

flow, the profiling time can be further reduced by using random

input, whichever is in the devices’ memory. This eliminates

the time for input transfer. With these optimization methods,

profiling 3 devices can be done in less than 2 seconds for most

benchmarks. In our experiment, we considered the profiling as

offline in order to focus on the benefit of SKMD system.

For other dynamic overheads, we did not consider the cost

of kernel analysis and transformation because they can be

done during offline profiling, but we measured the partitioning

overhead, which is done in real execution. To reduce the

overhead, we forced the height of decision tree in partitioning

algorithm not to exceed 2,048 steps. In other words, for kernels

that launch more than 2,048 work-groups, SKMD increases

partitioning granularity. As a result, 3×2, 048× log16 estima-

tions are done in worst case so the overhead for partitioning

algorithm becomes less than 0.1ms which is negligible for

every benchmark we tested.

We measured wall clock execution time including the trans-

fer time between the host and GPU devices, kernel execution

time, and data merging cost in case of discontiguous access

kernel. Since CPU resource is shared with operating system or

other applications, which may affect execution time on CPU

device, we ran 1,000 times for each benchmark and selected

100 sets of result that have minimum CPU execution time,

and used average of those 100 results for the final result.

A. Results and Analysis

Figure 9(a) shows speedup of SKMD framework compared

to single device execution and linear partitioning execution,

which is similar to prior approaches [21], [14]. In linear

partitioning scheme, the number of work-groups are assigned

to each device is proportional to its performance without

considering the transfer cost. The baseline is different for each

benchmark based on its characteristics. For each benchmark,

we ran them on all devices and chose the fastest device as

the baseline. Three benchmarks, Reduction, Histogram, and

VectorAdd, used CPU-only execution as their baseline because

data transfer cost overwhelms the benefits from executing on

GPUs, as they are memory-bound kernels.

As illustrated in Figure 9(a), SKMD performs 29% faster

than single device execution on average as it considers transfer

cost and performance variance of each device during par-

titioning. Through performance variation-aware partitioning,

it brings 6% performance gains out of 29%. An important

point from this result is that the linear partitioning causes

huge slowdown on memory-bound kernels compared to single

device execution. This is mainly because it does not take

the transfer cost into account during partitioning although

collaborative execution is not favorable due to the transfer

cost.
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Fig. 9: Speedup and Work-group Distribution

To illustrate how SKMD partitions work-groups across dif-

ferent devices, Figure 9(b) shows work distribution of all ap-

plications on the system with the CPU and two different GPUs.

As the performance of NVIDIA Quadro 600 is relatively lower

than GTX 560, the number of work-groups assigned to Quadro

600 is smaller than to GTX 560 on average.

Reduction, VectorAdd: Reduction and VectorAdd are ex-

tremely memory-bound data-parallel kernels so SKMD assigns

most of work to the CPU device. The difference is that

Reduction is recognized as a discontiguous kernel, so the host

program must transfer entire input to external GPU device for

Reduction, which discourages collaborative execution due to

expensive cost of data transfer. On the other hand, VectorAdd,

a contiguous kernel, does not require transferring entire input

for subset of work-group , so there is still chance for CPUs

to offload work-groups to GPU devices.

Histogram: For histogram, we examined 256-bins his-

togram that allocates 256 bins multiplied by the number of

work-items in the shared memory. Each thread has its own 256

bins in the shared memory, and accesses consecutive address in

its working-set by incrementing the counter for corresponding

bin. Considering that GPUs have very limited number of banks

in the shared local memory (32 banks for tested GPUs) and

32 cores in GPUs shares the local memory, the probability of

bank conflicts on random values of array becomes (1− B!
BN ),

where B is the number of banks and N is the number of cores.

This means almost 100% probability of conflicts in the shared

memory banks causes serialization, making GPU execution

unfavorable. Moreover, histogram is highly memory bounded

kernel, so significant amount of time will be consumed for

data transfer if it is executed on external GPU device. For

this reason, most of work are assigned to CPU device on both

linear and proposed partitioning strategies.

MatrixMultiplication, QuasiRandomSequence, AESEn-

crypt/Decrypt: These benchmarks are compute-intensive ker-

nels where significant amount of time is spent in computation,

not memory accesses. For these benchmarks, the portions of

work amount assigned to GPUs are higher than CPU because

of its massively data-parallel structure. As it is mentioned

earlier, because of GTX 560 high performance GPU executes

more work-groups than Quadro 600.

MatrixTranspose: MatrixTranspose is a memory-bound

kernel but SKMD assigns all works to GPUs despite expensive

cost of data transfer. This is due to very low performance of the

CPUs. Since the OpenCL implementation targets GPU device,

each work-group has local memory for storing input in order to

avoid un-coalesced global memory access among work-items.

However, for CPU execution, having local memory does not

have benefits from coalesced memory access, but produces

unnecessary the overhead of copying data to additional space.

This overhead may not be significant, but in MatrixTranspose,

copying input to the scratchpad is another equal amount of

work compared to naively transposing data. Since this is a

memory-bound kernel, SKMD does not assign any work-

groups to Quadro 600 neither in order to avoid another

expensive data transfer.

B. Execution Time Break Down

In this section, we show how SKMD transfers data between

CPU and GPU and assigns work-groups to different proces-

sors. Figure 10 shows the execution time break down of three

sample applications: Vector Add, Matrix Multiplication, and

Histogram.

For VectorAdd kernel, CPU-only is the baseline for the

reason discussed in Section IV-A. As shown in Figure 10(a),

SKMD starts the execution on the CPU while transferring huge

data to GTX 560 in background. As soon as data transfer is

finished, SKMD launches the kernel on GTX 560, and at the

same time, it transfers data needed for remaining work-groups

to the Quadro 600 and then launches the kernel. Transfer time

for Quadro is smaller because it is a less powerful GPU so

the size of data the SKMD assigns to it is smaller. Since

VectorAdd has contiguous memory accesses, there is no need

to merge the data. After both kernels are done, the buffer

manager transfers the data from GPUs and simply puts them
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Fig. 10: Break down Execution Time on Each Device

in the final result. As shown in the figure, CPU finishes its

execution almost at the same time GPU devices finish their

data transfer as a result of accurate partitioning.

The baseline of MatrixMultiplication is GTX 560-only as

shown in Figure 10(b). Since Matrix Multiplication takes much

more time in computation than VectorAdd, the impact of

transferring time is less for this benchmark. However, SKMD

transfers the entire input and output back and forth between

the host and GPU devices as it is analyzed as a discontiguous

kernel. Similar to VectorAdd benchmark, GTX 560 starts

execution first followed by Quadro 600 but finishes later than

Quadro 600 because it has more work-groups to execute due

to its higher performance. At the end, the CPU device merges

all partial results to generate the final output by launching the

merge kernel.

Histogram shows different behavior from the other cases.

The baseline is CPU-only for this benchmark because it has

large input size. However, output size is extremely smaller

than input size as shown in Table II. In addition, Histogram is

categorized as a discontiguous kernel, so SKMD still need to

transfer the entire input to external GPU devices. As shown

in Figure 10(c), SKMD does not assign any work-groups to

Quadro 600 after assigning some work-groups to GTX 560.

Since serialized input data transfer to Quadro 600 would break

balanced execution among three devices. As output-size is

small, the overhead of merging kernel is negligible for this

benchmark.

V. RELATED WORK

A significant focus has been on the execution of data-

parallel applications on CPUs. Lee et al. [18] examined

several data parallel applications to show that CPUs can have

comparable performance to GPUs, if it takes full advantage

of multi-cores with single instruction multiple data (SIMD)

units. There has also been some work on efficient execu-

tion of OpenCL/CUDA applications on CPUs. Stratton et

al. [26] proposed a source-to-source compiler that translates a

CUDA program into a standard C program using loop-fission

technique to eliminate synchronization. Similarly, Diamos et

al. [3] developed the Ocelot, a runtime system that dynami-

cally transforms OpenCL/CUDA kernels for CPU execution.

Gummaraju et al. [7] also performed a similar study, but

approached in a light-weight thread (LWT) execution model.

In a similar fashion, Karrenberg et al. [10] has focused on

more efficient execution of OpenCL applications using whole-

function vectorization. All of these prior works are focusing on

performance improvement on CPUs to show CPU can perform

as good as GPUs for some applications but none of them deals

with collaborative execution with GPUs.

NVIDIA recently offered Unified Virtual Address to provide

abstract view of unified memory system in separate physical

memory [24]. Main purpose of this idea is removing the

burden of managing multiple memory spaces [11], but still

leaves work distribution between devices as programmer’s

responsibility.

Dynamic decision of execution on heterogeneous systems

with CPUs and GPUs has been studied in the past [4], [19],

[21], [12]. Harmony from Diamos et al. [4] reasons about the

whole program by building a data dependency graph and then

scheduling independent kernels to run in parallel. However

our approach is different from prior works in that our system

is working on finer granularity (work-groups) rather than

function or task level. Merge [19] is a predicate dispatch-based

library system for managing map-reduction applications on

heterogeneous systems. Luk et al. [21] proposed the Qilin that

automatically partitions threads to one CPUs and one GPUs

by providing new APIs that abstract away two different pro-

gramming models, Intel Thread Building Block and CUDA.

Kim et al. [14] also proposed a framework that distributes

workload of an OpenCL kernel to multiple equivalent GPUs

for specific types of data-parallel kernels. The PEPPHER

proposed by Kessler et al. [12] improved the performance

by tuning the execution strategy on a heterogeneous system

based on their performance prediction model. Our approach

differs from from prior work in that our system supports more

than two different type of devices and considers data transfer

cost and performance variance during partitioning. Also, our

approach does not rely on specific programming model and

type of data-parallel kernels.

VI. CONCLUSION

In this paper, we presented SKMD, a framework that

transparently manages collaborative executions on CPUs and

GPUs of a single kernel. SKMD leverages assigning subset of



data-parallel workload over multiple CPUs and GPUs so as to

increase overall performance. As a part of the exploration, this

paper introduced several techniques that transparently enable

a kernel to work on partial workload, and efficiently merge

results from separate devices. In order to distribute balanced

workload, this paper also presented an efficient methodology

for balancing workload between CPUs and GPUs being aware

of data transfer cost and performance variance depending on

the type of devices. By experimenting OpenCL applications

on a real hardware, we showed that SKMD has speedup of

29% on a machine with one CPUs and two different GPUs as

compared to the fastest device-only execution.
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