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ABSTRACT
In this paper, we present a methodology for designing a pipeline
of accelerators for an application. The application is modeled us-
ing sequential C language with simple stylizations. The synthesis
of the accelerator pipeline involves designing loop accelerators for
individual kernels, instantiating buffers for arrays used in the appli-
cation, and hooking up these building blocks to form a pipeline. A
compiler-based system automatically synthesizes loop accelerators
for individual kernels at varying performance levels. An integer lin-
ear program formulation which simultaneously optimizes the cost
of loop accelerators and the cost of memory buffers is proposed to
compose the loop accelerators to form an accelerator pipeline for
the whole application. Cases studies for some applications, includ-
ing FMRadio and Beamformer, are presented to illustrate our de-
sign methodology. Experiments show significant cost savings are
achieved through hardware sharing, while achieving the prescribed
throughput requirements.

Categories and Subject Descriptors
B.5.2 [Register-transfer-level Implementation]: Design Aids—
Automatic synthesis

General Terms
Algorithms, Design, Experimentation

Keywords
system-level synthesis, application-specific hardware, loop acceler-
ator

1. INTRODUCTION
As communication bandwidths are scaled or more features are

added to portable devices, such as high-definition video, embedded
computing systems are required to perform increasingly demanding
computation tasks. Programmable processors are unable to meet in-
creasing performance requirements and decreasing cost and energy
budgets. Application specific hardware in the form of loop acceler-
ators are often used to address these issues. A loop accelerator im-
plements a critical loop from an application with far greater perfor-
mance and efficiency than would be possible with a programmable
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implementation. However, a single accelerator designed and oper-
ated in isolation is insufficient. These tasks are commonly stream-
ing applications that consist of multiple compute-intensive functions
(e.g., filters) that operate in turn on streaming data. The natural re-
alization of these tasks is a hardware pipeline of accelerators, each
implementing one or more functions which process the data. These
accelerators must be designed to meet overall throughput require-
ments while minimizing the hardware cost.

Designing a highly customized system of accelerators presents
several difficult challenges. The design space is enormous because
of the large number of variables, which include the number, type,
and specific design of each accelerator, mapping of application loops
to accelerators, arrangement of accelerators in the overall pipeline,
and method of inter-accelerator communication. In the face of such
challenges, an automated accelerator pipeline design system enables
the systematic exploration of a much larger portion of the design
space than is possible with manual designs, leading to higher-quality
results. In addition, an automated system designs pipelines that are
correct by construction by using a parameterized template, greatly
reducing the verification portion of the product cycle. All of these
factors enable automated design systems to deliver high-performance,
low-cost solutions with shorter time-to-market, which is critical par-
ticularly in the embedded domain.

In this paper, we present an automated system for designing styl-
ized accelerator pipelines from streaming applications, referred to as
Streamroller. Streamroller synthesizes a highly customized pipeline
that minimizes hardware cost while meeting a user-prescribed per-
formance level. The input to the system is a behavioral description
of the application specified in C that is comprised of a system spec-
ification and a set of kernels. The system specification describes the
organization and communication in the pipeline, while the kernels
describe the functionality of each stage on a single packet of data.
Streamroller designs the complete accelerator pipeline by determin-
ing the throughput of each stage as well as the inter-stage buffer
organization. A unique aspect of the system is the utilization of
multifunction loop accelerators to enable multiple pipeline stages to
time multiplex the hardware for a single pipeline stage. This ap-
proach sacrifices performance as kernel execution is sequentialized,
but greatly increases the ability to share hardware in the design and
thus drive down the overall cost.

The contributions of this work are threefold:
• A systematic design methodology for creating rate-matched

accelerator pipelines with minumum cost at a user-specified
throughput.

• A system that can exploit high degrees of hardware reuse by
mapping multiple loops to multifunction accelerators.

• A stylized accelerator pipeline template optimized for stream-
ing applications.

Related Work. High level synthesis converts a high-level speci-
fication into a structural design. Most high level synthesis systems
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Figure 1: Overview of the Streamroller synthesis system.

build an operation-level data flow representation of the specifica-
tion, and derive the datapath for the hardware from the schedule of
the DFG. However, the granularity of synthesis has varied over the
years. One of the earliest systems, Chippe [1], used a PASCAL-
like language as the input specification. It synthesized hardware for
acyclic basic blocks without memory accesses. The granularity of
synthesis was a basic block for most of the earlier systems [12, 3,
2, 4]. MIMOLA [8] and Cathedral III [10] represent comprehen-
sive approaches to high level synthesis. They perform memory and
data path synthesis for a restricted domain of applications. [19, 9,
17] are also some of the earlier systems that varied widely in the
input specification language and granularity of synthesis. While the
above systems took a hardware-centric view of the high level syn-
thesis problem, our system takes a programmer centric view, simi-
lar to [14]. The input specification is sequential C which makes it
easy for the designer to develop and debug applications quickly, and
the system automatically derives the architecture at a desired perfor-
mance level.

Our approach has lot of similarities to system level design method-
ologies based on process networks. [5] and [15] map applications
expressed as Kahn process networks to multiprocessor architectures.
[5] produces standard cell implementations, whereas [15] maps to
FPGAs. Their solution reduces hardware cost, while meeting perfor-
mance constraints. While they use fixed estimates for the processing
times of individual nodes, our system actively selects the processing
rate for each node to control the overall cost. [16] and [21] are com-
pilation systems that map process networks to a fixed multiprocessor
system. Modeling of performance constraints in our system is simi-
lar to these works. Also, [21] achieves hardware sharing by mapping
mutually exclusive tasks to the same hardware. However, we map
arbitrary loops to the same hardware when there is enough slack.
The loop graph used in our system is similar to a process network.
However, the main difference between these works and ours is that
process networks have parallel semantics, which makes it harder to
develop applications. Our system derives the loop graph automati-
cally from the sequential C program.

2. SYSTEM OVERVIEW
Figure 1 shows a broad overview of our accelerator pipeline syn-

thesis system. The system takes as input the application written in C,
expressed as a set of communicating kernels. Performance and de-
sign constraints, such as overall throughput of the pipeline, clock pe-
riod and memory bandwidth, are also specified. The frontend of the
system performs data dependency analysis on the application to de-
rive the loop graph, which is a representation of the communication
structure between the kernels. The system synthesizes an accelera-
tor pipeline with minimum cost to meet the performance constraints.
The pipeline consists of a number of loop accelerators (LAs) to ex-
ecute the kernels in the application and ping-pong memory buffers
for communicating values. The following subsections describe the
input specification and the accelerator pipeline schema in more de-
tail.

2.1 Input Specification
The input to the synthesis system is the whole application writ-

ten in C. Simple stylizations are imposed on the structure of the C
program. The stylizations make the analysis of the program simpler,
but still enable a wide variety of media and network applications to
be expressed. Sequential C semantics make it easy for applications
to be developed and debugged quickly, even with the stylization re-
strictions. The input program consists of two logical parts, viz., a set
of kernel specifications and the system specification.

Kernel specification. Conceptually, kernels form one stage of
processing in the application. For example, in wireless applications,
a low pass filter can be a single kernel. In our system, a kernel
is expressed as a single C function. All inputs and outputs to the
kernel have to be provided as arguments to the function. Arguments
can be C arrays or scalars. The body of the kernel functions have to
be perfectly nested for loops. Separating kernels into independent
functions enables reuse and modularity. For example, many image
procecessing applications perform the same transform on an input
image in multiple stages. The same kernel function can be called
with appropriate arguments to accomplish this.

System specification. The system specification describes one
“packet’s” forward flow through the pipeline. The system specifica-
tion is expressed as a C function whose body contains a sequence of
calls to the kernel functions. The system function will be invoked
continuously on consecutive packets of data. What constitutes a
packet depends on the application. In image processing applica-
tions, a packet can be a sub-block of a bigger image. In wireless
applications, a packet can be a chunk of data received over the wire-
less channel. Typically, the applications in these domains process
continuous streams of such packets. However, the processing that
happens on a single packet is sequential in nature. Thus, our input
specification fits well for expressing applications in these domains.

Figure 2 shows an example input specification. The system spec-
ification function is fmradio, which is shown in Figure 2(b). It
takes the array inp as the input and outputs out. The body is made
of calls to different kernels shown in Figure 2(a). fmradio uses
local arrays to pass data between the kernels. A simple dataflow
analysis of the system specification yields the loop graph shown
in Figure 2(c). The nodes in the loop graph correspond to kernels
whereas the edges indicates dataflow through an array between ker-
nels. Note that arbitrarily complex loop graphs can be expressed by
using just straight line C code.

Performance specification. The applications targeted by our
synthesis system have real time requirements usually expressed at
the highest level in terms of, say, frames/second or Kbps. Since
the input specification corresponds to end-to-end processing of one
packet, the real time constraint can be easily translated to the num-
ber of times the system specification function has to be called per
second. Given the clock period, the performance specification re-
duces to the number of cycles between consecutive invocations of
the system specification function. For example, consider the appli-
cation in Figure 2. The fmradio function completely processes



void FirFilter (short inp[N1], 

short coeffs[N2],

short out[N1-N2])

{

int i, j;

for(i=0; i<N1-N2; i++) {

for(j=0; j<N2; j++) {

out[i] += coeffs[j] * inp[i+j];

}

}

}

void distribute (short inp[N1],

short out1[N1], 

short out2[N1])

{

....

....

}

void demod (short inp[N1-N2],

short out[M])

{

....

....

}

void fmradio (short inp[N1],

short out[M])

{

short coeffs[N2];

short firin1[N1], firin2[N1];

short temp1[N1-N2], temp2[N1-N2];

short out1[M], out2[M];

distribute (inp, firin1, firin2);

FirFilter (firin1, coeffs, temp1);

FirFilter (firin2, coeffs, temp2);

demod (temp1, out1);

demod (temp2, out2);

....

....

}

distribute

FirFilter FirFilter

demod demod

firin1 firin2

temp1 temp2

(a) Kernel Specification

(b) System Specification

(c) Loop Graph

Figure 2: Input specification

one input packet inp. Suppose N1 is 512, fmradio processes
512 × 16 = 8192 bits per call. To achieve a real time requirement
of 128 Mbps, fmradio has to be called (128×1024×1024)

8192
= 16384

times every second. If the clock frequency under consideration is
200 MHz, the fmradio function has to be invoked approximately
once every 12208 cycles to meet the real time requirement.

2.2 Accelerator Pipeline Hardware Schema
Each kernel is mapped to a loop accelerator (LA). Depending

on the performance requirements, multiple kernels can be mapped
to the same LA, which performs the functions of both the kernels.
These multifunction LAs form the building blocks for the acceler-
ator pipeline. The intermediate arrays used in the input specifica-
tion are mapped to SRAMs with ports connected to producer and
consumer LAs. This section presents the hardware schema of the
individual LAs and the accelerator pipeline.

Multifunction Loop Accelerator. The hardware schema used
in this paper is shown in the inset on the right side of Figure 1.
The innermost loops of the kernel specification function are modulo
scheduled, and the architecture for the LAs is derived directly from
the schedule. Modulo schedules [13] are characterized by initiation
interval (II), which is the number of cycles between invocations of
successive iterations of a loop. Therefore, high performance sched-
ules of a loop have lower IIs. The accelerator is designed to exploit
the high degree of parallelism available in modulo scheduled loops
with a large number of function units (FUs). Each FU writes to a
dedicated shift register file (SRF); in each cycle, the register con-
tents shift downwards by one register. Wires from the registers back
to the FU inputs allow data transfer from producers to consumers.

Multifunction LAs are designed to execute more than one loop
nest. The general hardware schema for multifunction LAs is similar
to a single function LA. The set of FUs in the multifunction LA is
the union of FUs required by the individual loops. The widths and
depths of SRFs are set such that they can support values of opera-
tions from all loops assigned to the corresponding FUs. A detailed
description of how an optimal datapath for a multifunction LA is de-
rived is beyond the scope of this paper; readers are referred to [7] for
more information. Instead, this paper focuses on how multifunction
LAs can be used as building blocks to build an accelerator for the
whole application.

Accelerator Pipeline Schema. The accelerator pipeline is de-
signed such that all processing on a single packet of data (henceforth
referred to as a task) is done sequentially to respect the program or-
der in the system specification function. However, multiple tasks
can be in progress in the pipeline at the same time. The sequential
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execution is achieved by using the two control signals START and
DONE. The LA begins execution of a loop when the START signal
goes high, and raises the DONE signal at the end. By connecting the
DONE signal of a producer LA to the START signal of a consumer
LA, sequential execution of a task is ensured. Arrays used for com-
munication are mapped to SRAMs in the accelerator. Since multiple
tasks can be in flight in the pipeline, more than one SRAM buffer
could be allocated to a program array.

Figure 3(b) shows the accelerator pipeline corresponding to the
loop graph in Figure 3(a). There are three loops K1, K2, and K3 in
the application, each with a trip count (TC) of 100. The accelerator
shown in Figure 3(b) is capable of executing the application with an
overall throughput of 100 cycles. Each loop is modulo scheduled
with II=1. Therefore, the approximate latency of each loop (one
stage in the accelerator pipeline) is 100 cycles. Figure 3(c) shows
the execution timeline for 3 tasks executing in the pipeline. Note
that execution of K1 in task 2 is overlapped with execution of K2
in task 1. This means that K1 will be producing new values for the
array tmp1 while K2 is still using the old values. To avoid this
and still provide overlapped execution of tasks, two SRAM buffers
are allocated to tmp1. Alternate tasks ping-pong between these 2
buffers. Similarly, two buffers are allocated for tmp2.

Figure 4(b) shows a different accelerator pipeline for the same
application. This pipeline has a lower throughput of 200 cycles,
as opposed to 100 cycles capable by Figure 3(b). In this pipeline,
K1 is modulo scheduled with II=2, which is a lower performance
implementation. Also, LA2 is a multifunction accelerator capable
of executing K2 and K3, each with an II of 1. Figure 4(c) shows
the execution timeline of 2 tasks through the pipeline. Note that
execution of K2 and K3 never overlap across tasks. Therefore, only
one buffer is allocated for tmp2.

3. DESIGN METHODOLOGY
This section presents our methodology for designing an accelera-

tor pipeline for an application. Section 3.1 describes the cost trade-
offs for various components of the accelerator pipeline. Section 3.2
describes an integer linear programming (ILP) formulation for find-
ing an optimal cost accelerator pipeline at a prescribed throughput.
Section 3.3 presents a practical end-to-end system that generates
Verilog RTL from the sequential C application.

3.1 Cost Components
The cost of individual loop accelerators forms a major component

of the cost of the accelerator pipeline. As described in Section 2.2,
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the datapath for an LA is derived from the modulo schedule of the
innermost loop of a kernel function. An LA consists of a number of
FUs connected to SRFs. Since all operations in the loop body are
packed within II cycles in a modulo schedule, the number of FUs is
determined solely by the II. The cost of FUs is also determined by
the bitwidths of operations assigned to it. Note that the bitwidth of
an FU has to be as large as the widest operation assigned to it. The
bitwidth of a SRF is same as the FU connected to it. The depth, how-
ever, depends on the schedule. The SRF has to hold all live values
produced by an FU. If the consumer of an operation is scheduled far
away from its producer, the SRF connected to the producer FU will
be deep. Also, when the loops have recurrences, the variables that
carry the dependences across the recurrence must be live for at least
II cycles. Thus, the cost of SRFs tends to increase for very large IIs.

Figure 5 shows a plot of the cost of a single LA with increas-
ing II. The loop for which this LA was built is a part of the Beam-
former [11] application. The costs are obtained by scheduling the
loop at different IIs using a cost sensitive modulo scheduler [6] and
synthesizing the resultant Verilog using the Synopsys design com-
piler. The highest cost corresponds to the lowest II of 1, which is
the highest performance implementation of the loop. As II is in-
creased, the number of FUs in the datapath and the corresponding
SRFs decrease. Therefore, we see the general trend of decreasing
overall cost with increasing IIs. However, beyond II of 10, there is
no decrease in cost. At high IIs, the depth of SRFs corresponding to
the recurrence variables grow disproportionately compared to other
SRFs. Thus, there is no further cost improvement beyond II of 10.

Apart from II, the other dimension that affects multifunction ac-
celerator cost is the different loops that the LA implements. A multi-
function LA saves cost over two single function LAs. The amount of
cost saved depends on the mix of operations in the two loop bodies.
The more similar they are, the more cost saved. However, a mul-
tifunction LA has an adverse effect on performance. Since there is
only one physical hardware to execute two loops, instances of these
two loops in different tasks cannot be overlapped. To achieve the
same overall throughput of the pipeline, the multifunction LA might
have to implement a higher performance version of the individual
loops. Thus, the tradeoff of independent LAs with low performance
versus one multifunction LA implementing high performance ver-
sions of the loops, has to be considered.

The other major component of cost of the accelerator pipeline is
that of the memory buffers. Note that there has to be at least one
buffer for every array in the application. To allow for task over-
lap, more than one buffer might have to allocated to an array. The
size and bitwidth of an array is application dependent and the mod-
ulo schedule for a loop has no control over the cost of a memory
buffer. However, depending on the amount of task overlap required,
which is dictated by the overall throughput requirement, the number
of buffers for an array vary.

3.2 ILP Formulation
The accelerator pipeline design system has to judiciously choose

the IIs for each kernel in the loop, and the number of buffers al-

Minimize:
Pp

i=1 Ci + BUFCOST
Subject to:

IIMINi ≤ IIi ≤ IIMAXi ∀i (1)
Li = TCi × IIi (2)
Li ≤ τ ∀i (3)
P

k∈path i→j
Lk ≤ da,i,j × τ ∀paths i → j (4)

Pp

j=1 bi,j = 1 ∀i (5)
Pp

i=1 bi,j × Li ≤ τ 1 ≤ j ≤ p (6)
TLi,j ≥ 0
TLi,j ≤ P × bi,j

TLi,j ≤ Li

TLi,j ≥ Li − (1 − bi,j) × P
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i=1 TLi,j ≤ τ
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>

>

>
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>

>

>

;

(7)

IIi =

IIMAXi
X

k=IIMINi

k × iii,k iii,k ∈ {0, 1} (8)

IIMAXi
X

k=IIMINi

iii,k = 1 (9)

CLi =

IIMAXi
X

k=IIMINi

Cost(i, k) × iii,k (10)

SUMCj =

p
X

i=1

bi,j × CLi (11)

MAXCj ≥ bi,j × CLi 1 ≤ i ≤ p (12)
Cj = MAXCj + 0.5 × (SUMCj − MAXCj) (13)
BUFCOST =

P

a
da,i,j × Memcost(a) (14)

Figure 6: ILP formulation for system level synthesis

located for each program array such that the overall throughput is
achieved, and at the same time, cost is minimized. The system also
has to consider combining many loops into one multifunction LA
whenever cost savings are possible. In this section, we develop an in-
teger linear programming (ILP) formulation that optimizes the over-
all cost of the accelerator pipeline by choosing IIs and the number
of buffers for the arrays. Figure 6 shows the integer linear program
for the optimization problem.

Consider the loop graph constructed from the system specifica-
tion function. For every kernel instance i in the system specification
function, the loop graph has a vertex vi. If a kernel i writes to an
array a, and kernel j reads from the array, and edge ea,i,j is added
between vertices vi and vj . Note that the array name a is also a part
of the edge label. This is because more than one array could be used
for communication between a pair of loops. An integer variable IIi

is introduced for every kernel i, and equation 1 bounds it between
IIMINi and IIMAXi. Section 3.3 describes how IIMINi and
IIMAXi are determined. If the trip count of loop i is TCi, then
the latency Li of the LA implementing loop i can be approximated
by equation 2.

For every edge ea,i,j , an integer variable da,i,j is introduced to
denote the number of buffers that are synthesized for the array a. Let
the overall throughput for the entire pipeline be denoted by τ . The
latency of any loop i should be no more than the throughput τ , as
shown in equation 3. Note that, if there is only one buffer for an array
a, then the producer i cannot begin execution in the next task before
the consumer j in the previous task is done executing. Effectively,
the buffer is occupied for Li + Lj cycles. However, i and j can
be overlapped across consecutive tasks if more than one buffer is
allocated for array a. Given that da,i,j denotes the number of buffers
allocated for array a, equation 4 formalizes the above constraint.
Equation 4 simplifies to Li + Lj ≤ da,i,j × τ when there is a direct
edge from i to j. In this case, da,i,j can have a maximum value of
2, i.e., two buffers for the array a is sufficient to support maximal
task overlap. However, i and j may not be directly connected, and
there could be many paths (possibly of length longer than 2) from i



to j in the loop graph. In the general case, more than 2 buffers may
be required for array a, and consecutive tasks use the buffers in a
round-robin fashion.

Multiple loops can be combined into one multifunction LA. The
assignment of IIs to the loops is independent of whether or not it
becomes part of a multifunction LA. Suppose the number of kernel
instances in the system specification function is p. There can be a
maximum of p accelerators in the pipeline. This extreme case cor-
responds to the design where there are no multifunction LAs in the
system. Binary variables bi,j are introduced to denote the assign-
ment of loop i to the accelerator j. Equation 5 ensures that every
loop is assigned to at most one LA. The latency of a multifunction
accelerator now becomes the sum of the latencies of individual loops
assigned to it, which should be no more than the overall throughput
τ , as shown in equation 6. Equation 6 involves the product of a bi-
nary variable and an integer variable, and is non-linear. However, it
can be linearized using auxiliary variables TLi,j as shown in equa-
tion 7. P is a suitable large constant in equation 7.

Equations 1–7 can provide a valid selection of IIs for the loops and
number of buffers for the arrays, and a valid combination of loops
into multifunction LAs. An objective function is designed such that
the cost of the overall pipeline is minimized. First, variables CLi

are introduced to denote the cost of a single function LA that just
implements loop i. Note that this cost depends solely on IIi. How-
ever, CLi is not a linear function of IIi as shown in Figure 5. To
overcome this, a one-hot encoding of IIi is used to express CLi

in terms of IIi as shown in equations 8–10. Note that Cost(i, k)
denotes the cost of a single function LA implementing loop i with
II=k, and is a constant. The cost Cj of a multifunction LA j is
a function of the loops assigned to it. It cannot be expressed as a
simple linear function, and can be obtained only by actually synthe-
sizing the multifunction LA. To approximate Cj , we introduce two
variables, SUMCj and MAXCj in equations 11 and 12 which rep-
resent the sum of costs of single function LAs that implement loops
assigned to j, and the maximum of costs of those LAs, respectively.
Equation 11 is not linear. However it can be linearized using the
same technique shown in equation 7. The cost Cj of a multifunc-
tion LA j is bounded by MAXCj and SUMCj . As an approx-
imation, we use equation 13 to represent Cj . The actual cost of a
multifunction might vary widely between MAXCj and SUMCj .
If the loops that are combined are exactly identical, the cost will
be same as MAXCj . If they have less overlap in terms of kinds
of operations in the loop body, then the cost of combined LA will
be close to SUMCj . Empirically, we found setting Cj at the mid-
point between MAXCj and SUMCj worked satisfactorily for a
wide range of applications. Getting a better estimate for Cj with-
out actually synthesizing the multifunction LAs will strengthen the
objective function, and is a subject of future research.

The other component of cost, the array buffers, does not depend
on assignment of loops to a multifunction LA, and can be easily
calculated from da,i,j’s. Since da,i,j denotes the number of buffers
allocated for the array a, the overall cost of memory buffers in the
system is given by equation 14. Memcost(a) is a constant depend-
ing on the size and bitwidth of the array a. The objective of the ILP
solver is to minimize the sum, sum

p
i=1Cj + BUFCOST , subject

to the constraints given by equations 1–14.

3.3 Implementation
We use the SUIF compiler infrastructure [20] to process the input

specification and build the loop graph. High level information like
trip counts of the kernels, the sizes and bitwidths of arrays used for
communication, and the communication structure between kernels
is gathered in a SUIF pass. The application is converted to assem-
bly format, which is the input to the Trimaran [18] compiler tool
chain. Operation level data flow analysis is performed to determine
IIMINi’s for each kernel. Note that the minimum achievable II is
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a function of recurrence cycles in the loop body. A cost sensitive
modulo scheduler is used to schedule the loop bodies at increasing
IIs, beginning with IIMINi. The datapath for the LA is derived
from the schedule and synthesized using Synopsys design compiler.
Thus, Cost(i, k)’s, the gate count estimates for the LA implement-
ing loop i at II=k, are obtained. As II is increased, Cost(i, k) de-
creases up to a point. As described in Section 3.1, the cost of LAs
begins to increase at higher IIs. The value of IIMAXi is set to the
point where this happens. Memcost(a)’s are computed using the
Artisan memory compiler which synthesizes SRAMs for the com-
munication arrays. Using the constants obtained as above and the
throughput specification, the ILP program is formed and solved us-
ing the CPLEX solver. Thus, the IIi’s for all loops and da,i,j’s, the
number of buffers allocated for the arrays, are obtained.

4. CASE STUDIES
This section presents accelerator pipelines for different applica-

tions designed using our system. Simple is a synthetic applica-
tion included to illustrate how different components of cost are op-
timized. Beamformer and FMRadio are streaming applications
from the VersaBench [11] suite. For each application, accelerator
pipelines were designed with varying throughputs, and the system
area results are presented.
Simple. This applications consists of a sequence of eight loops,
each with a trip count of 256 and containing a mix of add and multi-
ply operations. The loop iterations are completely parallel, allowing
modulo schedules with IIs of 1. The highest performance pipeline
for this application can have a throughput of 256 cycles. Figure 7(a)
shows the cost of accelerator pipelines designed for Simple for
throughputs varying from 256 cycles to 2816 cycles.

The costs shown are gate counts, and are relative to the cost of
the pipeline with a throughput of 256 cycles. The set of points la-
beled “Without Hardware Sharing” correspond to the designs with
no multifunction LAs. The ILP formulation was modified to get the
lowest cost design without combining any loops. We see that mul-
tifunction LAs are able to achieve significant cost savings through
sharing hardware across multiple loops. On an average, 40% cost
savings are achieved by hardware sharing.

Figure 8 illustrates the use of multifunction LAs in the accel-
erator pipeline. The loop graph is shown with the IIs next to the
nodes. Boxes indicate which loops were combined into multifunc-
tion LAs. When the required throughput is 512 cycles (Figure 8(a)),
adjacent loops are combined into multifunction LAs, resulting in
only 4 stages in the pipeline. Each multifunction LA now has a
latency of 512 cycles, as it implements two loops at II of 1. Fig-
ure 8(b) illustrates the complexity of designing a pipeline for a large
application. When the required throughput is 1792, the number of
possibilities are too many for a designer to manually explore. Our
automated method systematically derives the pipeline configuration
with minimum cost as shown.
FMRadio. FMRadio is a software implementation of an FM Ra-
dio receiver. Figure 7 shows the costs of the accelerator pipeline
for FMRadio capable of receiving varying maximum frequencies.
The frequencies were derived assuming a clock rate of 200 MHz.
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Figure 7: Cost vs. throughput

Our implementation has 27 loops in the loop graph. On an aver-
age, multifunction LAs cause 20% cost savings by sharing resources
across multiple loops. Even though the general trend is lower cost
for lower throughput configurations, the “With hardware sharing”
curve is not smooth. For example, the cost for 112.5 MHz configu-
ration is about 10% higher than the 117.5 MHz configuration. The
approximation adopted using Equation 13 causes this sub-optimality
in some cases. However, the cost of the pipeline with multifunction
LAs is still much lower than without hardware sharing. The mem-
ory component of the cost was 45% of the overall cost for low II
designs, indicating that more FUs are required in the data path in
high performance implementations. The memory component of the
cost was up to 70% of the overall cost for high II, low performance
designs.
Beamformer. Beamformer is a spatial filter operating on data from
an array of sensors. Again, the data rates shown in Figure 7(c) are
derived assuming a 200 MHz clock. Our implementation has 10
loops in the loop graph. 15% cost savings are achieved due to hard-
ware sharing on an average. The memory component of the overall
cost ranged from 60% for low II designs to 70% for high II designs.
Discussion. Some of the salient points about the designs generated
in our case studies are as follows:

• Multifunction LAs reduce cost over having two independent
low performance accelerators. As Figure 5 shows, the reduc-
tion in cost of a single accelerator is not linear with respect
to decrease in performance. However, combining two similar
loops can halve the cost. Thus, the system combines as many
loops as possible to save cost.

• Pipelines with a low prescribed throughput often contain over-
designed LAs. Increasing the IIs beyond a certain point only
increases the cost. Therefore, the system just picks a higher
performance LA to save cost.

• Memory buffers are a significant portion of overall cost. In
some cases, reducing the number of buffers to 1 while re-
taining the producer and consumer loops at high performance
saved more cost than synthesizing low performance LAs for
the loops with two buffers for the array.

5. CONCLUSION
This paper presents Streamroller, an automated system for de-

signing accelerator pipelines for compute-intensive streaming appli-
cations at a user-prescribed performance level. Synthesis consists
of designing a set of communicating loop accelerators and buffers
for storing intermediate results, and orchestrating the pipeline exe-
cution. Multifunction accelerators are used to reduce cost through
hardware sharing between pipeline stages.

Three case studies are presented to highlight the capabilities and
effectiveness of the design system. The studies reveal three im-
portant findings about accelerator pipelines: multifunction LAs are
found to be more cost efficient than having multiple independent,
lower performance accelerators; reducing the performance of a sin-
gle LA below a certain point only serves to increase cost; and the

memory buffers are significant and the configuration must be opti-
mized to minimize overall system cost.
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