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Abstract

Distributed local memories, or scratchpads, have been shown to effectively reduce cost and power

consumption of application-specific accelerators while maintaining performance. The design of the
local memory organization must take several factors into account, including the memory bandwidth

and size requirements of the program and the distribution of program data among the memories. In

addition, when register structures and function units in the accelerator are clustered, the effects of
intercluster communication should be taken into account. This work proposes a technique to synthe-

size the local memory architecture of a clustered accelerator using a phase-ordered approach. First,

the dataflow graph is pre-partitioned to define a performance-centric grouping of the operations.
Second, memory synthesis is performed by combining multiple data structures into a set of physical

memories that minimizes cost while maintaining a performance threshold. Finally, post-partitioning

is performed to determine the final assignment of operations to clusters given the memory organi-
zation. Results show that customization reduces memory cost from 2% to 59% over a näıve scheme

that utilizes one physical memory per program data structure. Further, pre-partitioning is shown to
reduce the intercluster communication required to achieve a fixed performance.

1 Introduction

Many portable devices must be capable of performing computationally demanding processing of
images, sound, video, or packet streams. The challenging performance requirements must be met
under tight power and cost constraints. Application accelerators in the form of application-specific
instruction processors (ASIPs) and application-specific integrated circuits (ASICs) have been used
with great success to meet the challenging demands of these systems. The accelerators are used to
execute critical parts of applications that would run too slowly if implemented in software on an
embedded processor. A customized accelerator is designed such that its computation capabilities
are highly specialized to meet the specific needs of an application.

The design of the data memory system is a critical issue for application accelerators. Many em-
bedded applications are characterized by large volumes of data access interleaved with computation.
High bandwidth and fast access are required to achieve the desired performance levels. However,
these objectives cannot be achieved by using large, centralized, multi-ported memory structures.
Such designs are far too costly and often ineffective due to their complex designs and large access
latencies. Distributed local memories (or scratchpads) offer the possibility of achieving the desired
data processing rates and access latencies at large cost and power savings. Data is distributed
across a set of local memories that are placed near the computation elements that require the data.
High bandwidth is achieved by accessing the memory structures in parallel. Low latency is achieved
by grouping the memory structures with the function units that require the data and restricting
communications to geographic proximities, thereby forming clusters .

The central goal of this work is to synthesize a clustered local memory organization to meet desired
bandwidth, size, and access requirements of a particular application at minimal cost. Traditional
methods cannot be used as they ignore scheduling constraints and non-uniform access latencies of
clustered architectures. Several interrelated problems must be solved to synthesize a customized
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clustered memory organization: the number, size, and porting of local memories; the location of
the local memories within the datapath clusters; and the distribution of data across local memories.
Our approach to address this complex problem is to break the problem into simpler sub-problems
that are solved in a phase-ordered manner: pre-partitioning, memory synthesis, and partitioning.
Initially, each data structure (array or scalar) is placed into its own virtual local memory that
has no cluster access restrictions. A performance-centric dataflow graph partitioning phase is done
to pre-partition operations, including the virtual memory accesses, to datapath clusters. Memory
synthesis is performed on the prebound memory accesses, combining virtual local memories to form
a set of physical memories for each cluster. Finally, a second partitioning phase assigns operations
to clusters with a fixed local memory organization to create the final specification of the architecture
for the ASIC (or assembly code for the ASIP).

There are a number of research efforts that have investigated application-specific memory syn-
thesis. Estimation techniques to calculate the storage requirements from a program with array
computations have been proposed [28, 29]. Compiler optimizations and transformation techniques
can also be used to reduce the inherent memory requirements [4, 13]. The problem of mapping arrays
to one or more memories in hardware implementations has been addressed extensively in prior work.
Some high-level synthesis systems map arrays into a single monolithic memory [6, 7, 8, 14]. Others
take the opposite approach of mapping each array to its own memory [26]. Mid-point solutions to
this problem wherein arrays are heuristically combined into multiple memories under performance
constraints have also been proposed [17, 19]. Techniques for mapping multiple arrays to memories
while reducing power consumption are described in [2, 15].

Architectural exploration techniques for datapaths with hierarchical memory systems and pro-
cessors with local memory have been investigated [5, 10, 16]. More recently, it has been shown that
it is important to consider factors such as performance, communication costs, and the scheduling
effects during memory synthesis. In [11], a methodology is proposed to partitioning operations along
with associated data in critical loops to arrive at a jointly optimized distributed memory organi-
zation for cost and performance. In [24], joint memory allocation and scheduling (assignment) can
take advantage of non-uniform access speeds among memory ports to greatly diversify the possi-
ble memory organizations explored. Memory organizations for more complex abstract data types
and dynamically allocated memory are described in [23, 25]. Comprehensive storage exploration
methodologies that address many of the issues described in these works have been developed in the
DTSE and ATOMIUM projects [5, 12].

Our work derives its roots from [11] and [17]. This work extends these techniques to perform
synthesis for a class of clustered datapath/memory accelerator architectures.

2 Background

Throughput-directed Accelerator Synthesis. The synthesis approach used in this paper
is derived from the PICO-NPA (Program-In Chip-Out nonprogrammable accelerator) synthesis
system [20, 21]. PICO-NPA automatically synthesizes hardware accelerators for functions expressed
as loop nests written in C. An NPA consists of a special-purpose array of one or more synchronous
datapath processors along with their controller and possible local memories.

The underlying NPA datapath processor is synthesized using a throughput-directed approach.
The original loop nest is collapsed down into a single nest which is then modulo scheduled [18].
Modulo scheduling is a technique to schedule an innermost loop by overlapping successive iterations
multiple times. The throughput is specified as the constant time interval between starting successive
iterations of the loop, known as the initiation interval (II). The target II is limited by the recurrence-
constrained lower bound (RecMII), or the longest dependence cycle in the loop. The datapath
is synthesized directly from the modulo scheduled code. Function units (FUs) are allocated to
implement all of the operations in the loop body subject to the II. Operands are materialized using
synchronous register FIFOs to hold loop-varying values, static registers for the live-in values, and
hardwired literals. Registers are interconnected to FUs for each edge in the dataflow graph. Note
that when the II is larger than one, several operations can map to each of the FUs, thus several
operands are routed into and out of each FU using multiplexors.
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Figure 1. A multicluster NPA datapath processor organization.

Clustered Design. We extend the PICO datapath template from a flat design (or single
cluster) to a distributed, multicluster datapath architecture as shown in Figure 1. Multicluster
datapaths partition the design into several tightly coupled groups of FUs and register structures.
Within a cluster, direct communication between any register/FU pair is performed in a single cycle.
Intercluster communication is possible, but is performed through a low-bandwidth interconnection
network. By decentralizing the datapath, the multicluster architecture reduces design complexity
and decreases communication latency. All point-to-point communication is kept local by allowing it
to occur only between operations in the same cluster. Explicit latency and bandwidth constraints
are inserted into the schedule for intercluster communication. The resultant distributed datapath
has both non-uniform connectivity and latency that must be accounted for during synthesis.

The benefits of distributed datapaths come at the expense of increased compiler complexity. The
compiler must be cognizant of the cluster each operation is placed on, as placing producer/consumer
operations on separate clusters will require data to be transferred with explicit intercluster move
operations. Intercluster moves have a non-zero latency and can thus lengthen the schedule (e.g.,
increase II). However, if the latency of the intercluster moves can be kept off the longest recurrence
paths, the intercluster moves will not seriously affect performance. Thus, a good partitioning of
operations minimizes overall schedule length by simultaneously maximizing the number of operations
executed in parallel while minimizing the affects of intercluster moves. Many different algorithms
for effective partitioning of code into clusters have been studied in the past. The most well-known of
these is the Bottom-Up Greedy (BUG) algorithm [9], which recurses depth-first along the dataflow
graph, critical paths first. BUG uses estimates of the resource usage to greedily bind operations to
clusters that minimize the estimated overall schedule length.

3 Virtual to Physical Mapping of Local Memories

The goal of this work is to produce lowest cost memory system that sustains a desired performance
(e.g., the II) on a multicluster loop accelerator. The throughput-directed synthesis method starts
with an initial configuration in which each data structure (array or scalar) is in its own virtual local
memory. Memory synthesis consists of mapping multiple virtual memories into a set of physical
memories that minimizes cost while sustaining the target II. The trivial mapping of each virtual
memory realized as one physical memory is generally not cost effective. Cost savings can be achieved
by combining several virtual memories into one physical memory. However, intelligent combining
must be performed as many combinations are not cost effective or may violate the II constraints.
The final assignment of virtual memories to physical memories determines the physical memory
architecture of the machine, including the number and contents of each memory as well as the
connectivity between memories and the rest of the datapath.

3.1 Issues

There are several issues which must be considered when allocating virtual memories to physical
memories. For simplicity, the rest of this section considers arrays as the only data structures accessed
by a loop nest.

Local memory cost. A primary objective is to minimize the cost of the physical memories
required to realize a given set of arrays. Placing multiple program arrays into one memory can be



cost-effective as it saves on the overhead of the memory access hardware required for each memory.
Examples of this hardware include the row decoders required to access a given memory address as
well as the sense amps required to read out data. However, combining multiple program arrays
into a single physical memory can also have negative effects on the memory cost. The size of the
memory is larger; the width of the memory may increase as well, since it must be the maximum of
the bitwidths of the contained arrays. In addition, the number of memory ports must be increased
to maintain the desired II if the total number of accesses to program arrays in a given loop exceeds
some threshold. Specifically, if there are acc accesses in a loop to arrays in a single physical local
memory, dacc/IIe ports are required on that memory in order to sustain a throughput of II cycles.

Multicluster effects. In a multicluster datapath design, the placement of program arrays also
has an effect on intercluster communication. It is desirable to spread operations across clusters in
a balanced manner in order to distribute the computation. However, if array data is stored on a
memory in cluster C1, and any operations which produce or consume that data are scheduled on
cluster C2, explicit move instructions must be inserted to transfer values between the clusters. If
these move operations occur on a recurrence path in the loop’s dataflow graph, it may no longer be
possible to achieve the desired II for the loop. Furthermore, even if move instructions do not occur
on a critical recurrence path, there is a limited number of move instructions that can be executed
by the machine in each cycle (known as the MAXICM ). Thus no more than (II ×MAXICM ) total
intercluster moves can be scheduled in the loop.

Phase ordering. In determining the best allocation of local memories within a distributed data-
path, a major concern is the proper phase ordering for making design decisions. Both the allocation
of local memories as well as the partitioning of operations to clusters need to occur; however, they
are highly intertwined decisions. By first deciding on the local memories that should exist in the
datapath, limitations are made on the operation partitioning, as all loads for certain arrays must
occur in specific clusters. Such limitations could have large ramifications on performance. Con-
versely, partitioning the operations first could limit the amount of cost savings that can occur from
combining only arrays within the same cluster into local memories. Thus, it is difficult to separate
the partitioning and synthesis phases.

3.2 Approach

The intertwined nature of synthesis and partitioning has many of the same characteristics of
compiler scheduling and register allocation. While performing them jointly may make sense, the
software complexity of the joint solution is too large. Thus, we adopt a strategy to enable each
to consider the effects of the other, but still perform them separately by performing both pre- and
post-partitioning. Each of the steps is described below:

1. Pre-partition. As mentioned in the previous section, local memory allocation decisions can
affect performance on architectures with distributed datapaths. To take this into account, all
operations in the loop body, including load/store operations are initially pre-partitioned into
clusters assuming a single unified memory with infinite ports and uniform access latency on all
clusters. This gives an optimistic measure of performance without memory constraints which
the synthesis phase can use to determine performance degradation when mapping the virtual
memories to physical memories.

2. Synthesize memories. Using the method described in Section 4, multiple virtual memories
are intelligently combined into physical memories, and the physical memory organizations for
each cluster are defined. Note that this may change the cluster assignments of load/store
operations.

3. Partition. Finally, with the memory system fixed and the corresponding load and store
operations bound to clusters, the remaining computation operations are partitioned and all
operations are finally modulo scheduled.
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char C[64], E[64];         /* 8 bits  */

int A[64], B[64], D[64];   /* 32 bits */

}

for (i=0; i<64; i++) {
  j = ...;
  D[j] = (A[i] * B[i] + C[i]) + D[i] * E[i];

Figure 2. Synthesizing local memories for an example loop: (a) pre-partitioned dataflow graph, (b)

synthesized local memory organization, (c) final partitioned dataflow graph.

3.3 Example

To demonstrate the local memory architecture design process, the source code of an example
loop is shown at the top of Figure 2. Each array that is referenced by the loop occupies a virtual
local memory whose bitwidth, size, and number of ports are determined by the contents of the array
and the number of accesses to the array in the loop body. Note that breaking up of big arrays
into sub-arrays and allocating arrays whose lifetimes do not overlap to the same memory are not
addressed in this work [12].

First the code in the loop is pre-partitioned into a given number of clusters (two in this case)
using a performance-centric method such as BUG. No restrictions on memory accessess are enforced.
This results in the dataflow graph (DFG) with the partition shown by the dotted line in Figure 2(a).
This initial partition places the accesses to the virtual memories containing arrays A, B, and C onto
one cluster, while accesses to arrays D and E have been placed onto the other cluster.

Next, the memory synthesis phase considers combining the virtual memories into physical mem-
ories and assigning those memories to clusters. The best combination of virtual memories into
physical memories is determined using the method detailed in Section 4. Combining two virtual
memories into a physical memory on a particular cluster, may result in the insertion of one or more
intercluster moves. For example, if arrays C and E were combined into a single physical memory on
cluster 2, a move would be required to transfer the result of LD(C[i]) to the consumer as shown in
Figure 2(a). The synthesis phase makes sure that the number of such extra intercluster moves do
not exceed the global limit on intercluster move bandwidth.

After the memory synthesis phase, each local memory has been allocated to a physical memory
on some cluster, as shown in Figure 2(b). In the figure, physical memory C2 LM1 refers to the
first local memory on the second cluster. Arrays C and E have been combined because both
are of narrow bitwidth, and they have been allocated to the second cluster along with array D.
The remaining arrays have been combined on the first cluster. Cluster assignment of the memories
implies all load/stores to those arrays must be assigned to the home clusters. With this information,
a final partitioning of the code is performed, taking into account the now-fixed load and store
operations. This gives the partition shown in the DFG in Figure 2(c). Memory cost was minimized
when combining virtual memories into physical memories, while performance was unaffected as the
additional intercluster move was not on a critical path.

4 Local Memory Synthesis

As described in Section 3, physical memories are realized by combining one or more virtual
memories together. Each virtual memory corresponds a single data structure in the application. In
general, the data structures could be arrays, sub-arrays (an array partitioned into multiple virtual



memories), or linked data structures like hash tables, trees, etc. Although the method can be
applied in the general scenario, the current implementation is limited to arrays. Specifically, we
assume that one complete array comprises each virtual memory. The objective of the process is
to find the set of combinations that yields the minimum cost subject to achieving the desired loop
execution throughput specified by II.

Consider virtual memories v1, v2, ...vn. We are concerned with combining some of these virtual
memories into a single physical memory. Combining two virtual memories has both cost and perfor-
mance implications. If vi and vj are combined into a single physical memory P , then the size of P
will be the sum of the sizes of vi and vj , and the width of P will be the maximum of the bitwidths
of vi and vj . Suppose II is the initiation interval required for the loop nest under consideration
and ai static loads in the loop body access the data structure corresponding to virtual memory vi.
When vi and vj are combined into P , there will be ai + aj accesses to P per II cycles. Therefore

P should have at least d
ai+aj

II
e ports to sustain II.

Formally, we define the assignment of a set of virtual memories {vi1 , vi2 , ...vim
} to a physical

memory by Si. Thus,

Size(Si) =

m
∑

k=1

Size(vik
), W idth(Si) = max

1≤k≤m
Bitwidth(vik

), P orts(Si) =
⌈

m
∑

k=1

ak

II

⌉

As described in Section 3, combining virtual memories also has an effect on the number of
intercluster moves. Suppose virtual memories vi and vj are combined together into a single physical
memory. The clustering algorithm is now forced to assign the static loads/stores corresponding
to vi and vj to the same cluster. However, it could assign the uses of these static loads and the
address computations feeding these loads/stores to a different cluster resulting in intercluster moves
to transfer values. We denote the number of such intercluster moves required by ICM(S,j), when
virtual memories S = {vi1 , vi2 , ...vim

} are combined into a single physical memory, which resides in
cluster j. Given II, combining virtual memories in S into a single physical memory on cluster j will

cause d
ICM(S,j)

II
e intercluster moves in the steady state. Suppose MAXICM is the global limit on

the number of intercluster moves allowed per cycle (referred to as move bandwidth). Then, we have
the following constraint on combining virtual memories:

max
j

(
⌈ICM(S,j)

II

⌉

) ≤ MAXICM

Also, there is a constraint imposed by the added latency of the intercluster moves: the length
of any recurrence cycle may not exceed the target II. This is enforced by first enumerating all
the recurrence cycles in the loop. The lengths of the recurrence cycles for each physical memory
realization are calculated taking into account the cluster assignments and path length increases due
to required intercluster moves. Now, when some recurrence cycle length exceeds II, we forbid those
combinations of virtual memories.

The aim now is to get an assignment of virtual memories to physical memories, so that the
total cost is minimized while the intercluster bandwidth constraints are satisfied. Consider 2S =
{S1, S2, ...S2n−1}, the set of all subsets of S (except the null set φ). Each subset Si represents a
virtual memory combination possibility, i.e., Si = {vi1 , vi2 , ...vim

} indicates that virtual memories
vi1 , vi2 , ...vim

are assigned to the same physical memory on a particular cluster. The problem now
reduces to choosing a set of subsets from 2S and a cluster assignment for each subset, such that
each of vi ∈ S appears in exactly one of the chosen subsets, and the overall cost is minimized. This
is the same as the well known set partitioning problem [1], and we solve it with an integer linear
programming [22] formulation.

4.1 ILP Formulation

The model we assume for this formulation is that, each cluster has P × n local memories in it,
where n is the number of virtual memories, and P is the maximum number of ports per memory
that we want to consider. In each cluster, first n of the local memories have one port, next n



have 2 ports, next n have 3 ports, and so on, while the last n local memories have P ports. Now
we consider assignment of the virtual memories v1, v2, ...vn to one of these local memories in some
cluster. Therefore, the cost of a local memory can be calculated by knowing which virtual memories
got assigned to it. If no virtual memories are assigned to a local memory, the local memory’s cost
automatically becomes zero.

We introduce a set of 0-1 variables xi,j,k,l for denoting the assignment of a virtual memory to
some local memory. xi,j,k,l = 1 implies that virtual memory vi gets assigned to jth local memory
with k ports, on cluster l, and xi,j,k,l = 0 means, vi was not assigned to that local memory. Every
virtual memory should get assigned to exactly one local memory, which leads us to the following
constraint.

n
∑

j=1

P
∑

k=1

c
∑

l=1

xi,j,k,l = 1, 1 ≤ i ≤ n

where c is the number of clusters in the machine. As described in Section 3.2, a performance centric
clustering algorithm partitions the DFG corresponding to the innermost loop. This partition results
in a certain number of intercluster moves for the entire loop, referred to as ICMtotal. Now, assigning
a virtual memory to a local memory on a particular cluster could cause a change in the total number
of intercluster moves. This is because, the static loads and stores corresponding the virtual memory
could have been initially assigned to different clusters. Assigning it to a local memory on a cluster
now forces the static loads and stores to be assigned to that cluster, which may necessitate additional
intercluster moves. The change in number of intercluster moves corresponding to assigning virtual
memory vi on cluster l is called ∆ICMl. The modulo scheduled loop can sustain only dMAXICM

II
e

intercluster moves per cycle in the steady state. In other words, the total number of intercluster
moves in the entire loop body should be less than MAXICM × II . We model this constraint as
below.



ICMtotal +

n
∑

i=1

c
∑

l=1



∆ICMi,l ×

n
∑

j=1

P
∑

k=1

xi,j,k,l







 ≤ MAXICM × II

To calculate the cost of a local memory j with k ports, located on cluster l, we introduce variables
to denote the size and bitwidth of those local memories. The size of a local memory j with k ports,
located on cluster l is given by

sj,k,l =
n

∑

i=1

xi,j,k,l × Size(vi), 1 ≤ j ≤ n, 1 ≤ k ≤ P, 1 ≤ l ≤ c

Since the bitwidth of a local memory is the maximum bitwidth of all virtual memories assigned to
it, we model the bitwidth using following constraints.

bj,k,l >= xi,j,k,l × Bitwidth(vi), 1 ≤ i, j ≤ n, 1 ≤ j ≤ P, 1 ≤ l ≤ c

Suppose Access(vi) is the number of static accesses to virtual memory vi in the loop body. The
total number of accesses to a local memory with j ports should be less than j. This is modeled as

n
∑

i=1

xi,j,k,l × Access(vi) ≤ j × II, 1 ≤ j ≤ n, 1 ≤ k ≤ P, 1 ≤ l ≤ c

The cost of a local memory with k ports can be expressed as a linear function of its size and bitwidth
as follows.

costj,k,l = Xk × sj,k,l + Yk × bj,k,l + Zk, 1 ≤ j ≤ n, 1 ≤ l ≤ c

where Xk, Yk, and Zk are constants for all memories with k ports synthesized in a particular
technology. These constants are obtained prior to solving the ILP by running the SRAM generator
scripts from Artisan Inc. Thus, the integer linear program can be stated as, “Minimize the overall
cost of local memories, given by

n
∑

j=1

P
∑

k=1

c
∑

l=1

costj,k,l

subject to constraints above”.



Subset Size Wsize # acc ∆icm Ports Cost

A 64 32 1 0 1 0.040
B 64 32 1 0 1 0.040
C 64 8 1 0 1 0.013
D 64 32 2 0 1 0.040
E 64 8 1 0 1 0.013
A,B 128 32 2 0 1 0.047
A,C 128 32 2 0 1 0.047
A,D 128 32 3 +2 2 0.070
A,E 128 32 2 +1 1 0.047
B,C 128 32 2 0 1 0.047
B,D 128 32 3 +2 2 0.070
B,E 128 32 2 +1 1 0.047
C,D 128 32 3 +2 2 0.070
C,E 128 8 2 +1 1 0.016
D,E 128 32 3 0 2 0.070

Subset Size Wsize # acc ∆icm Ports Cost

A,B,C 192 32 3 0 2 0.070
A,B,D 192 32 4 +2 2 0.070
A,B,E 192 32 3 +1 2 0.070
A,C,D 192 32 4 +2 2 0.070
A,C,E 192 32 3 +1 2 0.070
A,D,E 192 32 4 +3 2 0.070
B,C,D 192 32 4 +2 2 0.070
B,C,E 192 32 3 +1 2 0.070
B,D,E 192 32 4 +3 2 0.070
C,D,E 192 32 4 +3 2 0.070
A,B,C,D 256 32 5 +2 3 ∞

A,B,C,E 256 32 4 +1 2 1.104
A,B,D,E 256 32 5 +3 3 ∞

A,C,D,E 256 32 5 +3 3 ∞

B,C,D,E 256 32 5 +3 3 ∞

A,B,C,D,E 320 32 6 +3 3 ∞

Table 1. Cost estimates of possible groupings of arrays into physical memories for the example loop.

4.2 Example

The example in Figure 2 is examined in more detail to illustrate the memory synthesis process.
Assume the II is two. The loop in the example has five arrays, therefore 31 groupings of the arrays
into physical local memories are possible.

Table 1 shows the cost of each combination of the arrays into a physical memory. Note that
array D is accessed twice in the loop and the rest of the arrays are accessed once. Combining two
arrays into a single physical memory causes the total number of accesses to that memory to be
the sum of accesses to the arrays assigned to it. For example, combining arrays A and B causes
the number of accesses to be 2. The number of accesses to the physical memory determines its
port requirements. As described before, the number of ports required on the physical memory is
equal to d#accesses

II
e. Also, as shown in Figure 2, the number of intercluster moves incurred in the

initial clustering phase is one, because the pre-partitioning (dotted line in Figure 2(a)) cuts one
data flow edge. Combining two arrays together changes the number of intercluster moves, since
the load/store operations corresponding to all arrays assigned to the same physical memory have
to be assigned to the same cluster. Table 1 shows sizes, wordsizes, the number of ports required,
the change in intercluster moves, and the actual cost of the physical memories corresponding to
different combinations of arrays. Note that, when the port requirement is more than 2, we assume
that the cost of the memory is ∞.

If each of the arrays were assigned to individual physical memories, then the overall area would
be 0.040 + 0.040 + 0.013 + 0.040 + 0.013 = 0.146mm2. However, the ILP solver comes up with a
better grouping of arrays. Arrays A and B are assigned to the same physical memory, which has
an area of 0.047mm2, arrays C and E are assigned to the same physical memory which has an area
of 0.016mm2, and array D is assigned to a single physical memory which has an area of 0.040mm2.
Thus the overall area of the synthesized memory system is 0.047 + 0.016 + 0.040 = 0.103mm2.

5 Experimental Evaluation

Methodology. Our system was implemented using the Trimaran toolset [27], a retargetable
compiler framework for VLIW/EPIC processors. We ran our experiments on a set of DSP kernels
which are loop oriented and access many arrays in their inner loop. The inner loop bodies were
pre-partitioned using the BUG algorithm [9] to compute the number of intercluster moves. Then,
we determine the configuration of the local memories and assignment of arrays to them, by forming
an integer linear program and solving it using lp solve [3]. The area estimates for different memory
configurations were obtained by running the SRAM generator scripts from ARTISAN Inc. We use
the BUG algorithm to cluster the loop body again, and finally modulo schedule [18] the code. Note



Benchmarks

Achieved II
BW=2 BW=3 BW=4 BW=5

PRE NONE PRE NONE PRE NONE PRE NONE
channel 14 20 10 13 7 10 6 8
huffman 20 28 14 19 10 14 8 12

LU 3 5 2 3 2 3 1 2
lyapunov 5 10 3 7 3 5 2 4

Avg reduction 37% 35% 33% 40%

Table 2. Achieved II for several DSP kernels.

that the entire process takes the target II as input. We repeat the process for different IIs.
Results. Figure 3 shows the plots of area versus target IIs for four DSP kernels. There are

two sets of plots for each benchmark, one where pre-partitioning was performed, and another where
no pre-partitioning was performed. Each plot has four curves (black lines) corresponding to the
synthesized memory configurations with intercluster move bandwidth limitations of 2, 3, 4, and 5
respectively. The corresponding max values (gray lines) show the combined areas where every array
is in a single physical memory. Intelligent combining of memories reduces the overall area by up
to 59% for LU. The intercluster move bandwidth does not affect the overall trend of the curve for
most benchmarks. This is due to the fact that lower bandwidths do not constrain combination of
arrays for these applications.

For all benchmarks, the cost savings achieved with intelligent combining over the näıve scheme
is larger at higher IIs. This is because at lower IIs, the cost of additional memory ports constrains
the number of combinations of virtual memories and thus the potential cost savings. Conversely, at
higher IIs, many combinations are possible, which leads to large cost savings. Comparing the plots
with and without pre-partitioning for each benchmark reveals little difference. This shows that the
pre-partitioning did not impose significant restrictions on cost savings achieved through aggressive
combining.

Even though the cost savings are similar, the pre-partitioning phase has a significant effect on the
achieved II. Table 2 shows the minimum achieved II for each application at varying intercluster move
bandwidths (BW). For each BW, the table shows the minimum achieved II in two cases: one where
pre-partitioning was performed (PRE), and one where no pre-partitioning was performed (NONE).
Clearly, the II in the PRE case is always better than the II in the NONE case. This is because
without the pre-partitioning phase, the memory synthesis phase performs aggressive combining of
arrays into memory. This causes the later partitioning phase to assign all the static loads and stores
corresponding to those arrays to the same cluster. This, in turn, causes more intercluster moves to
be inserted into the body of the loop, thereby increasing the II. The pre-partitioning phase improves
the achieved II by 37%, 35%, 33%, and 40% for intercluster move bandwidths of 2, 3, 4, and 5,
respectively.

6 Conclusion

In this paper, an approach for synthesizing custom local memory architectures for clustered loop
accelerators is proposed. Given a target performance constraint and intercluster communication
bandwidth, the objective is to create an organization that is minimal in cost. Each program data
structure is initially placed in its own virtual local memory. Memory synthesis consists of an integer
linear program solver that finds the best combination of virtual memories for each physical memory.
At higher target IIs, the memory synthesis is able to achieve up to 59% cost savings by intelligently
combining arrays with compatible cost and access characteristics into a single memory. An initial
pre-partitioning phase ensures that memory synthesis is cognizant of the preferred assignment of
operations to clusters. The best achievable II for a fixed intercluster move bandwidth is reduced
between 23% and 57% when pre-partitioning is used. By carefully considering the intercluster
communication effects, more intelligent combining decisions can be made with pre-partitioning.
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Figure 3. Local memory area vs. target II for several DSP kernels.
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