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mer. In recent years, however, uniprocessor performance 
has flattened out due to heat dissipation barriers. For the 
foreseeable future, multicore processors promise more 
cores, rather than faster cores, in successive hardware 
generations. Serial application performance therefore can 
no longer effortlessly piggyback on hardware performance 
gains. Only parallel software can exploit multicore hard-
ware’s full potential. 

The problem is that parallel programming is far harder 
than serial programming. Reasoning about concurrency is 
formidably difficult even in shared-memory multithreaded 
programming, which partly preserves the style of sequential 
programming, due to the numerous possible interleavings 
of basic operations. Faulty reasoning can cause errors (data 
races1) or nontermination (deadlock), and such defects can 
easily survive testing with disastrous results in production—
subtle concurrency bugs in thoroughly tested software 
caused the notorious Therac-25 fatalities.2 Conservative 
programming practices such as coarse-grained locks lower 
the risk of bugs in new software but reduce concurrency and 
therefore impair performance, negating the main benefit 
of parallelization. Finally, multicore hardware will expose 
latent concurrency bugs in legacy multithreaded software 
that ran without frequent failure on uniprocessors. 

The necessity and the difficulty of parallel program-
ming together pose a serious challenge for the computer 

C
omputer programming has never been easy, and 
the cost of errors has always been high. Soft-
ware failures have claimed lives, and expensive 
software project failures are the stuff of indus-
try legend. Over time, however, improvements 

in programming languages, development tools, and edu-
cation have ameliorated the difficulties of ordinary serial 
programming. Average programmers circa 2004 were as 
productive and competent as their counterparts in other 
engineering domains. Recent hardware trends, however, 
threaten to erode software dependability, programmer pro-
ductivity, and the industry’s rate of economic value creation. 

For decades, uniprocessor performance improvements 
made serial software run faster at no cost to the program-

In the multicore era, concurrency bugs 
threaten to reduce programmer produc-
tivity, impair software safety, and erode 
end-user value. Control engineering can 
eliminate concurrency bugs by constrain-
ing software behavior, preventing runtime 
failures, and offloading onerous burdens 
from human programmers onto automati-
cally synthesized control logic.
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termed the “plant.” For example, the plant might be a boiler 
whose temperature must be kept constant; this might be 
difficult due to environmental perturbations such as tem-
perature fluctuations.

We then develop a formal model of the system—for 
example, a set of differential equations describing the time 
evolution of state variables as functions of the conditions 
that influence them. Control theory supplies mathemati-
cal methods that synthesize a controller from the system 
model and whatever constraints we wish to enforce (such 
as “maintain a specified temperature”). Finally, when we 
couple the controller to the plant with sensors (say, ther-
mometers) and actuators (say, heating elements), we obtain 
a controlled “closed-loop” system. 

The control engineering paradigm confers several im-
portant benefits. It yields a controller that automatically 
manages a plant, a task that might be difficult or impos-
sible for a human operator. The automatic controller is 
often welcome, even if manual control is possible, because 
it relieves the human operator of a tiresome burden (as in 
cruise control for automobiles). More importantly, con-
troller design can rely heavily on rigorous, time-tested, 
standard design methodologies that place the power of 
control engineering in the hands of large numbers of 
practitioners rather than restricting it to highly trained 
specialists. 

Most importantly, modern control theory guarantees 
that the closed-loop system will behave according to 
specification in the field. This hard correctness guarantee 
contrasts starkly with earlier unprincipled ad hoc/heuris-
tic control approaches, which “work except when they 
don’t.” Decades of painful experience have taught control 
engineers to insist upon safety guarantees with principled 
mathematical foundations. 

Control engineering is a remarkably successful para-
digm, and control theory makes much of the modern world 
possible. Conventional control theory provides safe, ef-
ficient automation for industrial processes and consumer 
applications ranging from chemical plants to refrigerators. 
It is so widely deployed and trusted that it has become 

industry. Users upgrade hardware and software to obtain 
richer functionality and better performance. If the chal-
lenges of parallel programming prove insurmountable, 
however, new software releases will be no more reliable, 
no faster, and hence no more valuable than their prede-
cessors. Hardware value follows the same trend—Would 
you scrap a 32-core laptop if available software performs 
no better on a 64-core upgrade?—and longer replacement 
cycles imply corresponding slowdowns in economic value 
creation.3 

To summarize the concurrency crisis: Multicore hard-
ware will make shared-memory multithreaded software 
ubiquitous. Therefore, we must enable average program-
mers to do something they have never before been called 
upon to do: write correct and efficient multithreaded code 
in large volume and at reasonable cost in time and money. 
Leading observers see peril ahead for the entire IT industry 
and call for revolutionary solutions.4 

We have found inspiration and useful technology to 
address the challenges of parallel programming in a 
seemingly unlikely quarter: control engineering. Classical 
control theory makes it possible to safely and efficiently 
control complex and potentially dangerous systems such 
as oil refineries and aircraft avionics. This theory has en-
joyed remarkable successes in industrial applications for 
more than a century, and today it is pervasive in consumer 
applications that improve our everyday lives. Conventional 
control theory is best suited to physical systems with con-
tinuous state spaces and coupled- differential-equation 
dynamics—systems with little obvious resemblance to 
concurrent software. A lesser-known and more recent 
branch of control theory, however, deals with discrete state 
spaces and event-driven dynamics. 

Several years ago, we formed a team of control engi-
neers and systems/software and compiler specialists to 
bring to concurrent software the benefits that classical 
control brought to physical systems. Gadara5,6 repre-
sents our latest foray into the intersection of concurrent 
software and control engineering. Gadara uses discrete 
control theory (DCT)7 to analyze concurrent software and 
automatically repair an important class of concurrency 
bugs: deadlocks involving standard synchronization primi-
tives, including circular-mutex-wait deadlocks. Because 
Gadara rests on a rigorous theoretical foundation, it can 
decompose the practical goal of deadlock elimination into 
well-studied formal problems, leverage a large body of 
proven methods, and deliver hard safety/correctness and 
performance guarantees. 

CONTROL ENGINEERING 
Figure 1 illustrates the basic modeling-control para-

digm of control engineering. We begin with a complex 
real-world system that we wish to control, conventionally 
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Figure 1. Basic modeling-control paradigm of control 
engineering.
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production workflows to avoid arbitrary user-specified 
forbidden execution states, including deadlocks.8 The 
situation becomes much more difficult when we remove 
the severe restrictions of workflow languages and tackle 
concurrent programming in general-purpose languages. 

DEADLOCK IN THE MULTICORE ERA 
We focus on deadlocks in shared-memory multi-

threaded programs that employ conventional mutual 
exclusion and synchronization primitives—for example, 
C programs that use the Posix threading library. Although 
alternatives such as transactional memory and lock-free 
data structures attract increasing attention, old-fashioned 
mutexes and condition variables will remain important in 
practice for the foreseeable future. One reason is that they 
often score higher in terms of performance, compatibility 
with I/O, and maturity of implementations. Further, exist-
ing lock-based programs and the developers who write 
them represent enormous investments that must be pre-
served going forward. 

Conventional locks, however, are the root of a growing 
deadlock menace. It is difficult for human programmers to 
reason about nondeterministic, interleaved, lock-mediated 
concurrency. Locks also force a nasty tradeoff between 
correctness and performance: Particularly on multicore 
hardware, fine-grained locking typically offers perfor-
mance advantages over coarse-grained locking, but the 
former is more error-prone. 

The fundamental problem is that deadlock freedom is a 
global program property, so programmers cannot restrict 
themselves to local reasoning about individual modules but 
must consider a program in its entirety. Locks undermine 
modularity—and therefore divide-and-conquer problem 
solving—because they are noncomposable: Combining 
correct lock-based components does not necessarily yield 
correct composite software, as the “Hard-to-Diagnose 
Deadlocks” sidebar shows. A good solution to the dead-
lock problem will restore composability to lock-based 
software and eliminate the need for global reasoning by 
programmers. 

Finally, obscure corner-case deadlocks occur even 
within single modules developed by individual expert pro-
grammers; such bugs are difficult to detect, and repairing 
them is costly, manual, time-consuming, and error-prone. 
In addition to preserving the value of legacy code, a good 
solution to the deadlock problem will improve new code 
by letting programmers focus on modular common-case 
logic rather than fragile global properties and obscure 
corner cases. Such a solution will empower programmers 
to write safe and efficient parallel code as confidently and 
productively as they wrote serial code. 

Decades of study have yielded several approaches to 
prevent and detect deadlocks, but they collectively do 
not address the challenges of the multicore era. Static 

invisible despite its ubiquity. One of the last frontiers for 
control theory, which until recently has resisted the con-
trol engineering paradigm’s encroachment, is software 
reliability. It is this frontier that we have explored with a 
relatively new branch of control theory. 

DISCRETE CONTROL THEORY
Inspired by the impressive successes of conventional 

control theory, starting in the 1980s researchers began 
developing an analogous body of DCT for systems with 
discrete state spaces and event-driven dynamics.7 At a 
high level, DCT shares with conventional control theory 
the basic control engineering paradigm: It begins with 
a “plant” model—typically a finite automaton or Petri 
net—that captures a real-world system’s dynamics. It syn-
thesizes control logic that, when connected to the plant’s 
sensors and actuators, “closes the loop” to enforce speci-
fied behavioral restrictions (such as “steer clear of unsafe 
states”) by postponing state transitions in the plant.

The attractions of DCT are at least as compelling as 
those of classical control. DCT is arguably even more ac-
cessible to practitioners than classical control. It supports 
modeling formalisms such as Petri nets that can succinctly 
and conveniently model complex concurrent systems. DCT 
automatically synthesizes control logic from declarative 
behavioral specifications, and this control logic is provably 
safe and correct by construction. Further, it is maximally 
permissive in that it never intervenes in the plant unless 
intervention is necessary to enforce given behavioral speci-
fications. Moreover, the online decision-making associated 
with DCT need not introduce performance bottlenecks 
because DCT offloads burdensome computations to offline 
control logic synthesis; the online safety checks required to 
enforce the given behavioral specifications are lightweight, 
fine-grained, decentralized, and highly concurrent. DCT’s 
rigorous mathematical foundation provides hard safety 
guarantees, and its mode of operation minimizes online 
intrusiveness and overhead. 

When we realized that DCT allows us to control the logi-
cal behavior of concurrent software, we began to apply it 
to software failure avoidance. Our early work focused on 
“workflow” programs for data center automation—very-
high-level scripts in restricted languages that emphasize 
concurrent control flow rather than data manipulation. 
We found that DCT could synthesize control logic for real 

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 19, 2009 at 18:14 from IEEE Xplore.  Restrictions apply. 



55DECEMBER 2009

deadlock prevention via strict 
global lock-acquisition ordering 
is straightforward in principle but 
prohibitively difficult in practice: 
Attempts to define and enforce 
such an ordering in software de-
veloped by loosely coupled teams 
separated by both time and geog-
raphy frequently fail. 

Static deadlock detection via pro-
gram analysis has made impressive 
strides in recent years, but spuri-
ous warnings are common and the 
cost of manually repairing genuine 
deadlock bugs remains high. Dy-
namic deadlock detection identifies 
the problem too late, when recovery 
is awkward or impossible; auto-
mated rollback and reexecution can 
help, but irrevocable actions such as 
I/O can preclude rollback. 

Generalizations of the Banker’s 
algorithm9 can in principle pro-
vide dynamic deadlock avoidance 
but require more information than 
is often available and involve ex-
pensive serial safety checks. The 
multicore era’s stringent perfor-
mance requirements demand that 
online deadlock-avoidance checks 
be very fast, and scalability de-
mands that they be parallel. 

Approaches that “learn” to 
avoid recurrences of past dead-
locks10 may help with those that 
recur with high probability, but 
a complete solution must also 
address the “long tail”: the huge 
number of deadlock bugs that in-
dividually bite only rarely but that 
collectively cause deadlocks with 
unacceptable frequency. 

GADARA: ELIMINATING 
DEADLOCKS WITH DCT 

Gadara is our approach to au-
tomatically enable multithreaded 
programs to dynamically avoid 
deadlocks. It proceeds in four 
phases:

•	 compiler techniques extract a 
formal model from program 
source code; 

H ard-to-diagnose deadlocks can arise in software developed over time by several 
programmers. Consider a large single-threaded legacy program containing tables, 

“container” structures that store nodes. Tables support the kinds of operations we would 
expect—insert a node, delete a node, find the node with a given key, and so on. Trouble starts 
when performance requirements dictate that the program be multithreaded. Because tables 
must now support concurrent accesses, locks must be retrofitted onto tables and nodes to 
prevent data races. 

Formerly straightforward operations now require lock/unlock calls that are, for program-
mers, pesky annoyances unrelated to the objectives at hand. Maintenance programmer 
Andrew has therefore hidden the lock/unlock calls needed for a common operation in a 
DELETE macro, which avoids the overhead of yet another function call:

#define DELETE(n, t) \ 
    do { \ 
        lock(n->L); \ 
        lock(t->L); \ 
        table_delete(t, n); \ 
        unlock(t->L); \ 
        unlock(n->L); \ 
    } while (0) 

His colleague Betty has written an analogous UPDATE macro:

#define UPDATE(t, key, val) \
    do { \
        node_t *n; \
        lock(t->L); \
        n = table_find(t, key); \
        if (n) { \
            lock(n->L); \
            n->value = val; \
            unlock(n->L); \ 
        } \ 
        unlock(t->L); \ 
    } while (0) 

Unfortunately, Andrew and Betty failed to agree on lock acquisition order; the code can 
deadlock with DELETE holding a node lock and UPDATE holding a table lock. 

Neither code fragment looks wrong—indeed, neither is wrong; the bug arises from their 
interaction. Deadlock occurs only during rare thread interleavings and therefore does not 
manifest during testing. However, when the program is released to a large user base, dead-
lock complaints pour in. Now yet another pain point becomes apparent because this single 
bug can manifest in myriad ways: The program contains numerous uses of DELETE and 
UPDATE, and every pair of uses is a potential deadlock.

The bewildering variety of manifestations—each of which yields a completely different 
“autopsy report” for the few end users diligent enough to generate core files and analyze 
per-thread stack traces—makes it impossible to unify the bug reports and link them to a 
single root cause. Most users simply complain about mysterious and unreproducible “hangs” 
under many different inputs and configurations, the difficulty of debugging stripped, highly 
optimized, function-inlined production executables having deterred them from further 
investigation. 

The mystery deepens if the program in question is a server and deadlocks ensnare pairs of 
worker threads from a fixed-size pool. Clients report sporadic timeouts, but the bug appears 
to be transient if retries succeed. Meanwhile, server administrators observe a gradual decline 
in throughput as the pool of remaining worker threads dwindles, but restarting the program 
“fixes” the problem—which looks more like a resource leak than a deadlock. 

For a real-world example of a single, fiendishly difficult-to-diagnose concurrency bug 
with at least 30 distinct manifestations, see M. Musuvathi et al., “Finding and Reproducing 
Heisenbugs in Concurrent Programs,” Proc. 8th Symp. Operating Systems Design and Imple-
mentation (OSDI 08), Usenix, 2008, pp. 267-280. 

HARD-TO-DIAGNOSE DEADLOCKS
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place C1. In general, the firing of a transition consumes 
tokens from each of its input places and produces tokens in 
each of its output places; the token count need not remain 
constant. After A1 fires, A2 becomes disabled and must wait 
for U1 (unlock by thread 1) before it becomes enabled again. 

Petri nets can model other important program features, 
including branches, forks/joins, loops, thread creation, and 
recursive function calls.6

Figure 3a illustrates Gadara’s operation on a highly 
simplified deadlock bug from the Apache webserver. This 
subtle bug arises from the interaction between condition 
synchronization and mutual exclusion: If the thread ex-
ecuting function f() reaches the condition wait call while 
holding lock L before the thread executing g() reaches its 
lock call, then both threads deadlock as indicated by the 
code comments: f() waits in vain for a signal that g() will 
never send, while g() waits eternally for the lock that f() 
will never release. (For simplicity, the mutex paired with 
the condition variable is not shown; L is an unrelated lock.) 
Figure 3b shows Gadara’s Petri net model that represents 
the lock and condition variable interdependencies between 
f() and g(). 

It is important to note that Gadara’s modeling phase is 
more automated than that of most conventional control 
engineering exercises. Gadara constructs initial Petri net 
models directly from control flow information automati-
cally extracted from program source code by standard 
compiler techniques. Gadara allows programmers to 
refine the initial models through simple local function 
annotations. 

It has been said that “all models are wrong, but some are 
useful.” Gadara’s models are necessarily imperfect because 
perfect static analysis of program behavior is undecidable. 
Gadara errs on the side of caution by constructing conser-
vative models that always capture deadlocks present in 
the target program but that possibly also contain spurious 
deadlocks. The net effect of such “false positives” can be 
unnecessary performance overhead, but in practice this 
overhead is tolerable.5 

Control logic synthesis 
After constructing a whole-program model, Gadara next 

identifies potential deadlocks as structural features of the 
Petri net called siphons. A siphon is a set of places that 
can never regain a token once it is depleted of all tokens. 
Gadara establishes a correspondence between deadlocks 
in a program and empty siphons in its Petri net model and 
uses standard DCT analyses to identify siphons. The places 
constituting the siphon in our example are marked with 
red Xs in Figure 3c. Our deadlock-elimination problem 
therefore reduces to ensuring that siphons in the Petri net 
model are controlled to prevent them from draining empty 
of tokens and that the real-world program behaves like the 
controlled Petri net model. 

•	 DCT methods automatically synthesize control logic 
that dynamically avoids deadlocks in the model;

•	 instrumentation embeds the control logic in the pro-
gram; and

•	 at runtime the control logic compels the program to 
behave like the deadlock-free controlled model. 

The net effect is that Gadara intelligently postpones opera-
tions such as lock-acquisition attempts when necessary to 
ensure that deadlock cannot occur. 

Modeling programs 
Gadara begins by extracting per-function control flow 

graphs (CFGs) from program source code using standard 
compiler techniques. It then enhances these CFGs with 
information about lock acquisition/release and synchro-
nization function calls and translates the CFGs into Petri 
net models. Finally, Gadara merges the latter into a single 
whole-program Petri net model of control flow.  

Petri nets are bipartite directed graphs containing two 
types of nodes: places (depicted as circles) and transitions 
(bars). The number of tokens (dots) in all places is the Petri 
net’s marking (state). Transitions model events that change 
the marking. Arcs connecting places to a transition repre-
sent preconditions of the associated event. 

For instance, in Figure 2, transition A1 in the Petri net is 
enabled because its input places R1 and L each contain at 
least one token. Similarly, A2 is enabled, but all other tran-
sitions are disabled. Place L can thus represent a lock that 
is available if L contains a token; this Petri net can model 
two threads i = 1, 2 that both request L after reaching R

i
 

and must acquire the lock via transition A
i
 before entering 

a critical section represented by C
i
. The Petri net models 

the mutual exclusion property of locks because if transi-
tion A1 fires (occurs), it consumes one token from each 
input place R1 and L and deposits one token in its output 

A1 A2

C1 C2

U1 U2

F1 F2

R2R1 L

Figure 2. Petri net. Petri nets are bipartite directed graphs 
containing two types of nodes: places (depicted as circles) 
and transitions (bars). The number of tokens (dots) in all 
places is the Petri net’s marking (state). Transitions model 
events that change the marking. Arcs connecting places to a 
transition represent preconditions of the associated event. 
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program’s execution. The theoretical property of maximal 
permissiveness in Gadara’s control logic thus contributes 
directly to the practical property of maximal runtime con-
currency in the controlled program. 

The addition of control places can create new potential 
deadlocks. However, Gadara can address these “control-
induced deadlocks” by simply applying siphon detection 
and SBPI repeatedly until no uncontrolled siphons remain. 
In our experience to date, control logic synthesis for real 
software terminates after a single iteration of SBPI, which 
takes a few seconds. 

Gadara addresses the most common types of dead-
locks, including circular-mutex-wait deadlocks involving 
standard portable locking primitives; our previous publica-
tions5,6 define the scope precisely. Finally, some programs 
are uncontrollable in the sense that they cannot be pre-
vented from deadlocking. In the simplest example, a thread 
repeatedly locks a single nonrecursive mutex. Gadara  

We ensure that a siphon cannot drain by applying a 
DCT technique called supervision based on place invariants 
(SBPI).11 The inputs to SBPI are a Petri net and a weighted 
linear constraint on its marking. To request that a siphon 
never drain, we simply specify that the total number of 
tokens in the places constituting the siphon must be at 
least 1. SBPI’s control logic output is a control place to be 
added to the original Petri net; the control place alters the 
Petri net’s dynamics and guarantees that the siphon cannot 
drain. Figure 3c shows in red the control place and incident 
arcs that Gadara’s SBPI has added to address the deadlock 
bug in our example. The control place ensures that f() 
cannot acquire lock L until after g() has released it, thus 
effectively eliminating the deadlock in our Petri net model. 

An important benefit of SBPI is that it generates maxi-
mally permissive control logic that provably postpones 
the progress of threads only when necessary to ensure 
that deadlock cannot occur in a worst-case future of the 

Function f()

(b)

Function g()

unlock(L)

wait(CV)

lock(L)

L

CV

lock(L)

signal(CV)

unlock(L)

Figure 3. Example program based on Apache bug #42031. (a) Simplified original code; (b) Petri net model of original code; (c) 
controlled model resulting from siphon analysis and SBPI; (d) “Gadarized” code, with the Gadara instrumentation shown in red. 

f(...) { 
    ...
    GADARA_LOCK_DEPLETE(L, ctrl_place);
    ...
    wait(CV);
    ...
    unlock(L);
    ... 
} 
g(...) {
    ...
    lock(L);
    ...
    unlock(L);
    GADARA_REPLENISH(ctrl_place);
    ...
    signal(CV);
    ... 
}

f(...) { 
    ...
    lock(L);
    ...
    wait(CV); /* deadlock */
    ...
    unlock(L);
    ... 
} 
g(...) {
    ...
    lock(L); /* deadlock */
    ...
    unlock(L);
    ...
    signal(CV);
    ... 
}

(c)

unlock(L)

wait(CV)

lock(L)

L

CV

Control
place

lock(L)

signal(CV)

unlock(L)

Function f() Function g()

(a)

(d)
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that performs centralized safety checks upon every lock 
acquisition request.9 In addition to being computationally 
expensive, such checks must be performed serially be-
cause they require exclusive access to the banker’s central 
“account ledger.” Yesterday’s uniprocessors did not allow 
threads to execute in parallel, so the resulting serializa-
tion might have been acceptable on such hardware (if the 
safety checks were fast). On multicore hardware, how-
ever, globally serializing lock acquisitions creates a global 
performance bottleneck that prevents parallel software 
from fully exploiting the parallel hardware. Gadara and 
other scalable approaches do not globally serialize lock 
acquisitions.10 

EXPERIMENTAL EVALUATION
We have applied our Gadara prototype to several  

C/Pthreads programs, including the Apache webserver, 
the OpenLDAP directory server, the BIND name server, a 
client-server transaction processing benchmark applica-
tion, and several other programs. “Gadarizing” software 
roughly doubles the time required to build a program 
from scratch: Model construction takes about as long as 
running make, and control logic synthesis takes a few 
additional seconds. For some programs, we locally an-
notated a small fraction of the program’s functions to 
help Gadara perform siphon analysis more efficiently; this 
required a few minutes per function for a programmer 
unfamiliar with the software. 

Gadara correctly identified and eliminated both pre-
viously reported and unknown deadlocks in the real 
software and similarly eliminated injected deadlock faults 
in the benchmark. Not surprisingly, deadlocks in mature, 
widely used open source software tend to occur in in-
frequently executed corner-case code rather than “hot” 
code paths. Gadara’s deadlock-avoidance instrumentation 
therefore also executes infrequently, and its runtime over-
head is typically negligible. For example, when Gadara 
eliminated a known deadlock in OpenLDAP’s applica-
tion-level cache insertion/deletion functions, the overhead 
was negligible under normal configuration because these 
functions are infrequently exercised. 

We had to configure OpenLDAP in a highly unconven-
tional way—with a very small cache size and database 
disk synchronization disabled—to trigger measurable 
Gadara overheads; even under these adverse condi-
tions, the negative impact on throughput and response 
time never exceeded 10 percent. We also injected a 
deadlock fault into a common-case code path in our 
client-server benchmark application to ensure that every 
transaction triggered Gadara overhead. The impact on 
response times was negligible under normal workload. 
We observed substantial performance degradation (18 
percent reduction in throughput) only under extreme 
oversaturation.5 

detects uncontrollability during control logic synthesis and 
issues appropriate warnings. 

Instrumentation and dynamic control 
The only remaining problem is to ensure that the 

original program’s runtime behavior conforms to that of 
the deadlock-free controlled model that we obtained via 
siphon analysis and SBPI. Gadara solves this problem by in-
strumenting the original program: Our prototype performs 
a source-to-source transformation, which maximizes por-
tability and requires no changes to threading libraries or 
other infrastructure. 

Figure 3d illustrates how Gadara implements the con-
trol logic of the Petri net in Figure 3c. Gadara replaces 
the original lock(L) call in function f() with a wrapper, 
GADARA_LOCK_DEPLETE(), that atomically obtains the orig-
inal lock L and also decrements a variable representing the 
token count in the control place of Figure 3c. If no token 

is present in the control place, the wrapper function waits 
for one to be deposited there; the wait is implemented with 
an ordinary condition variable (not shown in the figure). 
Gadara modifies function g() by adding a GADARA_RE-
PLENISH() call that deposits a token in the control place 
and signals its condition variable, allowing GADARA_LOCK_
DEPLETE() in f() to return. 

Note that Gadara does not in any way meddle with three 
of the original four lock/unlock operations in Figure 3a. In 
real software, Gadara leaves the vast majority of all lock/
unlock operations completely unaffected and therefore 
adds zero overhead to them. Further, the control logic that 
Gadara does add is 

•	 lightweight—it adds only a simple condition variable 
wait/signal implementing the control place; 

•	 decentralized—it affects only threads executing func-
tions f() and g() and has no effect on other threads 
executing unrelated code; and 

•	 fine-grained—it addresses a specific deadlock fault 
with a dedicated control place. 

The net result is that Gadara’s control logic is highly 
concurrent; it introduces no global serialization into soft-
ware. This important property sets Gadara apart from 
deadlock-avoidance schemes involving a central “banker” 

Gadara correctly identified and 
eliminated both previously reported 
and unknown deadlocks in the real 
software and similarly eliminated 
injected deadlock faults in the 
benchmark.

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 19, 2009 at 18:14 from IEEE Xplore.  Restrictions apply. 



59DECEMBER 2009

that allows maximal runtime concurrency. The relatively 
few online checks required to avoid deadlocks are light-
weight, decentralized, fine-grained, and highly concurrent. 

Our approach relieves programmers of the burden of 
global reasoning about deadlock freedom, restoring the 
composability that locks destroy. It is compatible with 
legacy programs, programming practices (such as I/O in 
critical sections), and infrastructure (such as threading 
libraries), and requires no retraining or conceptual reori-
entation. Our ongoing work is developing a more robust 
and usable Gadara prototype, which we plan to eventually 
release to the public. 

Looking beyond deadlocks, we believe that DCT might 
provide a unified framework for eliminating other concur-
rency bugs. By constructing Petri net models of programs, 
we hope to address other classes of bugs using different 
control specifications. For example, if static or dynamic 
analysis identifies data races, we might use SBPI to 
eliminate them by specifying that the number of tokens 
(threads) in the places (basic blocks) affected by the race 
should not exceed one. Given code containing program-
mer-specified atomic{} sections, we believe it is possible 
to use DCT to automatically assign locks to protect them. 
Thanks to the maximal permissiveness that DCT offers, 
the net result might be a more concurrent enforcement 
of the atomicity requirements than prior approaches to 
lock-based atomic{} sections. 

Finally, we believe that the broader prospects for DCT 
in computing systems are not confined to concurrency 
control in multithreaded software. We expect that for a 
wide range of problems, including access control and com-
munication protocols, the benefits of control engineering 
will outweigh the additional effort required to exploit this 
paradigm. Because it is a model-based method, DCT re-
quires model building to bridge the gap between theory and 
practice, and modeling is usually the most difficult part of 
the overall exercise. However, our experience with Gadara, 
which leverages existing compiler techniques to construct 
models, leads us to suspect that many other problems may 
be amenable to DCT. After investing effort in modeling a 
system that we wish to control, DCT offers handsome re-
turns by exploiting a wide range of mature and powerful 
control techniques to constrain its behavior. 
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