
COMPUTER 52

COVER FE ATURE

Published by the IEEE Computer Society 0018-9162/09/$26.00 © 2009 IEEE

mer. In recent years, however, uniprocessor performance
has flattened out due to heat dissipation barriers. For the
foreseeable future, multicore processors promise more
cores, rather than faster cores, in successive hardware
generations. Serial application performance therefore can
no longer effortlessly piggyback on hardware performance
gains. Only parallel software can exploit multicore hard-
ware’s full potential.

The problem is that parallel programming is far harder
than serial programming. Reasoning about concurrency is
formidably difficult even in shared-memory multithreaded
programming, which partly preserves the style of sequential
programming, due to the numerous possible interleavings
of basic operations. Faulty reasoning can cause errors (data
races1) or nontermination (deadlock), and such defects can
easily survive testing with disastrous results in production—
subtle concurrency bugs in thoroughly tested software
caused the notorious Therac-25 fatalities.2 Conservative
programming practices such as coarse-grained locks lower
the risk of bugs in new software but reduce concurrency and
therefore impair performance, negating the main benefit
of parallelization. Finally, multicore hardware will expose
latent concurrency bugs in legacy multithreaded software
that ran without frequent failure on uniprocessors.

The necessity and the difficulty of parallel program-
ming together pose a serious challenge for the computer

C
omputer programming has never been easy, and
the cost of errors has always been high. Soft-
ware failures have claimed lives, and expensive
software project failures are the stuff of indus-
try legend. Over time, however, improvements

in programming languages, development tools, and edu-
cation have ameliorated the difficulties of ordinary serial
programming. Average programmers circa 2004 were as
productive and competent as their counterparts in other
engineering domains. Recent hardware trends, however,
threaten to erode software dependability, programmer pro-
ductivity, and the industry’s rate of economic value creation.

For decades, uniprocessor performance improvements
made serial software run faster at no cost to the program-

In the multicore era, concurrency bugs
threaten to reduce programmer produc-
tivity, impair software safety, and erode
end-user value. Control engineering can
eliminate concurrency bugs by constrain-
ing software behavior, preventing runtime
failures, and offloading onerous burdens
from human programmers onto automati-
cally synthesized control logic.

Terence Kelly and Yin Wang, Hewlett-Packard Laboratories

Stéphane Lafortune and Scott Mahlke, University of Michigan

ELIMINATING
CONCURRENCY
BUGS WITH
CONTROL
ENGINEERING

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 19, 2009 at 18:14 from IEEE Xplore. Restrictions apply.

53DECEMBER 2009

termed the “plant.” For example, the plant might be a boiler
whose temperature must be kept constant; this might be
difficult due to environmental perturbations such as tem-
perature fluctuations.

We then develop a formal model of the system—for
example, a set of differential equations describing the time
evolution of state variables as functions of the conditions
that influence them. Control theory supplies mathemati-
cal methods that synthesize a controller from the system
model and whatever constraints we wish to enforce (such
as “maintain a specified temperature”). Finally, when we
couple the controller to the plant with sensors (say, ther-
mometers) and actuators (say, heating elements), we obtain
a controlled “closed-loop” system.

The control engineering paradigm confers several im-
portant benefits. It yields a controller that automatically
manages a plant, a task that might be difficult or impos-
sible for a human operator. The automatic controller is
often welcome, even if manual control is possible, because
it relieves the human operator of a tiresome burden (as in
cruise control for automobiles). More importantly, con-
troller design can rely heavily on rigorous, time-tested,
standard design methodologies that place the power of
control engineering in the hands of large numbers of
practitioners rather than restricting it to highly trained
specialists.

Most importantly, modern control theory guarantees
that the closed-loop system will behave according to
specification in the field. This hard correctness guarantee
contrasts starkly with earlier unprincipled ad hoc/heuris-
tic control approaches, which “work except when they
don’t.” Decades of painful experience have taught control
engineers to insist upon safety guarantees with principled
mathematical foundations.

Control engineering is a remarkably successful para-
digm, and control theory makes much of the modern world
possible. Conventional control theory provides safe, ef-
ficient automation for industrial processes and consumer
applications ranging from chemical plants to refrigerators.
It is so widely deployed and trusted that it has become

industry. Users upgrade hardware and software to obtain
richer functionality and better performance. If the chal-
lenges of parallel programming prove insurmountable,
however, new software releases will be no more reliable,
no faster, and hence no more valuable than their prede-
cessors. Hardware value follows the same trend—Would
you scrap a 32-core laptop if available software performs
no better on a 64-core upgrade?—and longer replacement
cycles imply corresponding slowdowns in economic value
creation.3

To summarize the concurrency crisis: Multicore hard-
ware will make shared-memory multithreaded software
ubiquitous. Therefore, we must enable average program-
mers to do something they have never before been called
upon to do: write correct and efficient multithreaded code
in large volume and at reasonable cost in time and money.
Leading observers see peril ahead for the entire IT industry
and call for revolutionary solutions.4

We have found inspiration and useful technology to
address the challenges of parallel programming in a
seemingly unlikely quarter: control engineering. Classical
control theory makes it possible to safely and efficiently
control complex and potentially dangerous systems such
as oil refineries and aircraft avionics. This theory has en-
joyed remarkable successes in industrial applications for
more than a century, and today it is pervasive in consumer
applications that improve our everyday lives. Conventional
control theory is best suited to physical systems with con-
tinuous state spaces and coupled- differential-equation
dynamics—systems with little obvious resemblance to
concurrent software. A lesser-known and more recent
branch of control theory, however, deals with discrete state
spaces and event-driven dynamics.

Several years ago, we formed a team of control engi-
neers and systems/software and compiler specialists to
bring to concurrent software the benefits that classical
control brought to physical systems. Gadara5,6 repre-
sents our latest foray into the intersection of concurrent
software and control engineering. Gadara uses discrete
control theory (DCT)7 to analyze concurrent software and
automatically repair an important class of concurrency
bugs: deadlocks involving standard synchronization primi-
tives, including circular-mutex-wait deadlocks. Because
Gadara rests on a rigorous theoretical foundation, it can
decompose the practical goal of deadlock elimination into
well-studied formal problems, leverage a large body of
proven methods, and deliver hard safety/correctness and
performance guarantees.

CONTROL ENGINEERING
Figure 1 illustrates the basic modeling-control para-

digm of control engineering. We begin with a complex
real-world system that we wish to control, conventionally

Ac
tu

at
or

s

Controller

Plant

Controller

Modeling
Sensors

Complex
system

(“plant”)
Control

synthesisSystem
model

Provably safe
and controllable
“closed-loop” system

Figure 1. Basic modeling-control paradigm of control
engineering.

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 19, 2009 at 18:14 from IEEE Xplore. Restrictions apply.

DCT’s rigorous mathematical
foundation provides hard safety
guarantees, and its mode of operation
minimizes online intrusiveness and
overhead.

COVER FE ATURE

COMPUTER 54

production workflows to avoid arbitrary user-specified
forbidden execution states, including deadlocks.8 The
situation becomes much more difficult when we remove
the severe restrictions of workflow languages and tackle
concurrent programming in general-purpose languages.

DEADLOCK IN THE MULTICORE ERA
We focus on deadlocks in shared-memory multi-

threaded programs that employ conventional mutual
exclusion and synchronization primitives—for example,
C programs that use the Posix threading library. Although
alternatives such as transactional memory and lock-free
data structures attract increasing attention, old-fashioned
mutexes and condition variables will remain important in
practice for the foreseeable future. One reason is that they
often score higher in terms of performance, compatibility
with I/O, and maturity of implementations. Further, exist-
ing lock-based programs and the developers who write
them represent enormous investments that must be pre-
served going forward.

Conventional locks, however, are the root of a growing
deadlock menace. It is difficult for human programmers to
reason about nondeterministic, interleaved, lock-mediated
concurrency. Locks also force a nasty tradeoff between
correctness and performance: Particularly on multicore
hardware, fine-grained locking typically offers perfor-
mance advantages over coarse-grained locking, but the
former is more error-prone.

The fundamental problem is that deadlock freedom is a
global program property, so programmers cannot restrict
themselves to local reasoning about individual modules but
must consider a program in its entirety. Locks undermine
modularity—and therefore divide-and-conquer problem
solving—because they are noncomposable: Combining
correct lock-based components does not necessarily yield
correct composite software, as the “Hard-to-Diagnose
Deadlocks” sidebar shows. A good solution to the dead-
lock problem will restore composability to lock-based
software and eliminate the need for global reasoning by
programmers.

Finally, obscure corner-case deadlocks occur even
within single modules developed by individual expert pro-
grammers; such bugs are difficult to detect, and repairing
them is costly, manual, time-consuming, and error-prone.
In addition to preserving the value of legacy code, a good
solution to the deadlock problem will improve new code
by letting programmers focus on modular common-case
logic rather than fragile global properties and obscure
corner cases. Such a solution will empower programmers
to write safe and efficient parallel code as confidently and
productively as they wrote serial code.

Decades of study have yielded several approaches to
prevent and detect deadlocks, but they collectively do
not address the challenges of the multicore era. Static

invisible despite its ubiquity. One of the last frontiers for
control theory, which until recently has resisted the con-
trol engineering paradigm’s encroachment, is software
reliability. It is this frontier that we have explored with a
relatively new branch of control theory.

DISCRETE CONTROL THEORY
Inspired by the impressive successes of conventional

control theory, starting in the 1980s researchers began
developing an analogous body of DCT for systems with
discrete state spaces and event-driven dynamics.7 At a
high level, DCT shares with conventional control theory
the basic control engineering paradigm: It begins with
a “plant” model—typically a finite automaton or Petri
net—that captures a real-world system’s dynamics. It syn-
thesizes control logic that, when connected to the plant’s
sensors and actuators, “closes the loop” to enforce speci-
fied behavioral restrictions (such as “steer clear of unsafe
states”) by postponing state transitions in the plant.

The attractions of DCT are at least as compelling as
those of classical control. DCT is arguably even more ac-
cessible to practitioners than classical control. It supports
modeling formalisms such as Petri nets that can succinctly
and conveniently model complex concurrent systems. DCT
automatically synthesizes control logic from declarative
behavioral specifications, and this control logic is provably
safe and correct by construction. Further, it is maximally
permissive in that it never intervenes in the plant unless
intervention is necessary to enforce given behavioral speci-
fications. Moreover, the online decision-making associated
with DCT need not introduce performance bottlenecks
because DCT offloads burdensome computations to offline
control logic synthesis; the online safety checks required to
enforce the given behavioral specifications are lightweight,
fine-grained, decentralized, and highly concurrent. DCT’s
rigorous mathematical foundation provides hard safety
guarantees, and its mode of operation minimizes online
intrusiveness and overhead.

When we realized that DCT allows us to control the logi-
cal behavior of concurrent software, we began to apply it
to software failure avoidance. Our early work focused on
“workflow” programs for data center automation—very-
high-level scripts in restricted languages that emphasize
concurrent control flow rather than data manipulation.
We found that DCT could synthesize control logic for real

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 19, 2009 at 18:14 from IEEE Xplore. Restrictions apply.

55DECEMBER 2009

deadlock prevention via strict
global lock-acquisition ordering
is straightforward in principle but
prohibitively difficult in practice:
Attempts to define and enforce
such an ordering in software de-
veloped by loosely coupled teams
separated by both time and geog-
raphy frequently fail.

Static deadlock detection via pro-
gram analysis has made impressive
strides in recent years, but spuri-
ous warnings are common and the
cost of manually repairing genuine
deadlock bugs remains high. Dy-
namic deadlock detection identifies
the problem too late, when recovery
is awkward or impossible; auto-
mated rollback and reexecution can
help, but irrevocable actions such as
I/O can preclude rollback.

Generalizations of the Banker’s
algorithm9 can in principle pro-
vide dynamic deadlock avoidance
but require more information than
is often available and involve ex-
pensive serial safety checks. The
multicore era’s stringent perfor-
mance requirements demand that
online deadlock-avoidance checks
be very fast, and scalability de-
mands that they be parallel.

Approaches that “learn” to
avoid recurrences of past dead-
locks10 may help with those that
recur with high probability, but
a complete solution must also
address the “long tail”: the huge
number of deadlock bugs that in-
dividually bite only rarely but that
collectively cause deadlocks with
unacceptable frequency.

GADARA: ELIMINATING
DEADLOCKS WITH DCT

Gadara is our approach to au-
tomatically enable multithreaded
programs to dynamically avoid
deadlocks. It proceeds in four
phases:

•	 compiler techniques extract a
formal model from program
source code;

H ard-to-diagnose deadlocks can arise in software developed over time by several
programmers. Consider a large single-threaded legacy program containing tables,

“container” structures that store nodes. Tables support the kinds of operations we would
expect—insert a node, delete a node, find the node with a given key, and so on. Trouble starts
when performance requirements dictate that the program be multithreaded. Because tables
must now support concurrent accesses, locks must be retrofitted onto tables and nodes to
prevent data races.

Formerly straightforward operations now require lock/unlock calls that are, for program-
mers, pesky annoyances unrelated to the objectives at hand. Maintenance programmer
Andrew has therefore hidden the lock/unlock calls needed for a common operation in a
DELETE macro, which avoids the overhead of yet another function call:

#define DELETE(n, t) \
 do { \
 lock(n->L); \
 lock(t->L); \
 table_delete(t, n); \
 unlock(t->L); \
 unlock(n->L); \
 } while (0)

His colleague Betty has written an analogous UPDATE macro:

#define UPDATE(t, key, val) \
 do { \
 node_t *n; \
 lock(t->L); \
 n = table_find(t, key); \
 if (n) { \
 lock(n->L); \
 n->value = val; \
 unlock(n->L); \
 } \
 unlock(t->L); \
 } while (0)

Unfortunately, Andrew and Betty failed to agree on lock acquisition order; the code can
deadlock with DELETE holding a node lock and UPDATE holding a table lock.

Neither code fragment looks wrong—indeed, neither is wrong; the bug arises from their
interaction. Deadlock occurs only during rare thread interleavings and therefore does not
manifest during testing. However, when the program is released to a large user base, dead-
lock complaints pour in. Now yet another pain point becomes apparent because this single
bug can manifest in myriad ways: The program contains numerous uses of DELETE and
UPDATE, and every pair of uses is a potential deadlock.

The bewildering variety of manifestations—each of which yields a completely different
“autopsy report” for the few end users diligent enough to generate core files and analyze
per-thread stack traces—makes it impossible to unify the bug reports and link them to a
single root cause. Most users simply complain about mysterious and unreproducible “hangs”
under many different inputs and configurations, the difficulty of debugging stripped, highly
optimized, function-inlined production executables having deterred them from further
investigation.

The mystery deepens if the program in question is a server and deadlocks ensnare pairs of
worker threads from a fixed-size pool. Clients report sporadic timeouts, but the bug appears
to be transient if retries succeed. Meanwhile, server administrators observe a gradual decline
in throughput as the pool of remaining worker threads dwindles, but restarting the program
“fixes” the problem—which looks more like a resource leak than a deadlock.

For a real-world example of a single, fiendishly difficult-to-diagnose concurrency bug
with at least 30 distinct manifestations, see M. Musuvathi et al., “Finding and Reproducing
Heisenbugs in Concurrent Programs,” Proc. 8th Symp. Operating Systems Design and Imple-
mentation (OSDI 08), Usenix, 2008, pp. 267-280.

HARD-TO-DIAGNOSE DEADLOCKS

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 19, 2009 at 18:14 from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER 56

place C1. In general, the firing of a transition consumes
tokens from each of its input places and produces tokens in
each of its output places; the token count need not remain
constant. After A1 fires, A2 becomes disabled and must wait
for U1 (unlock by thread 1) before it becomes enabled again.

Petri nets can model other important program features,
including branches, forks/joins, loops, thread creation, and
recursive function calls.6

Figure 3a illustrates Gadara’s operation on a highly
simplified deadlock bug from the Apache webserver. This
subtle bug arises from the interaction between condition
synchronization and mutual exclusion: If the thread ex-
ecuting function f() reaches the condition wait call while
holding lock L before the thread executing g() reaches its
lock call, then both threads deadlock as indicated by the
code comments: f() waits in vain for a signal that g() will
never send, while g() waits eternally for the lock that f()
will never release. (For simplicity, the mutex paired with
the condition variable is not shown; L is an unrelated lock.)
Figure 3b shows Gadara’s Petri net model that represents
the lock and condition variable interdependencies between
f() and g().

It is important to note that Gadara’s modeling phase is
more automated than that of most conventional control
engineering exercises. Gadara constructs initial Petri net
models directly from control flow information automati-
cally extracted from program source code by standard
compiler techniques. Gadara allows programmers to
refine the initial models through simple local function
annotations.

It has been said that “all models are wrong, but some are
useful.” Gadara’s models are necessarily imperfect because
perfect static analysis of program behavior is undecidable.
Gadara errs on the side of caution by constructing conser-
vative models that always capture deadlocks present in
the target program but that possibly also contain spurious
deadlocks. The net effect of such “false positives” can be
unnecessary performance overhead, but in practice this
overhead is tolerable.5

Control logic synthesis
After constructing a whole-program model, Gadara next

identifies potential deadlocks as structural features of the
Petri net called siphons. A siphon is a set of places that
can never regain a token once it is depleted of all tokens.
Gadara establishes a correspondence between deadlocks
in a program and empty siphons in its Petri net model and
uses standard DCT analyses to identify siphons. The places
constituting the siphon in our example are marked with
red Xs in Figure 3c. Our deadlock-elimination problem
therefore reduces to ensuring that siphons in the Petri net
model are controlled to prevent them from draining empty
of tokens and that the real-world program behaves like the
controlled Petri net model.

•	 DCT methods automatically synthesize control logic
that dynamically avoids deadlocks in the model;

•	 instrumentation embeds the control logic in the pro-
gram; and

•	 at runtime the control logic compels the program to
behave like the deadlock-free controlled model.

The net effect is that Gadara intelligently postpones opera-
tions such as lock-acquisition attempts when necessary to
ensure that deadlock cannot occur.

Modeling programs
Gadara begins by extracting per-function control flow

graphs (CFGs) from program source code using standard
compiler techniques. It then enhances these CFGs with
information about lock acquisition/release and synchro-
nization function calls and translates the CFGs into Petri
net models. Finally, Gadara merges the latter into a single
whole-program Petri net model of control flow.

Petri nets are bipartite directed graphs containing two
types of nodes: places (depicted as circles) and transitions
(bars). The number of tokens (dots) in all places is the Petri
net’s marking (state). Transitions model events that change
the marking. Arcs connecting places to a transition repre-
sent preconditions of the associated event.

For instance, in Figure 2, transition A1 in the Petri net is
enabled because its input places R1 and L each contain at
least one token. Similarly, A2 is enabled, but all other tran-
sitions are disabled. Place L can thus represent a lock that
is available if L contains a token; this Petri net can model
two threads i = 1, 2 that both request L after reaching R

i

and must acquire the lock via transition A
i
 before entering

a critical section represented by C
i
. The Petri net models

the mutual exclusion property of locks because if transi-
tion A1 fires (occurs), it consumes one token from each
input place R1 and L and deposits one token in its output

A1 A2

C1 C2

U1 U2

F1 F2

R2R1 L

Figure 2. Petri net. Petri nets are bipartite directed graphs
containing two types of nodes: places (depicted as circles)
and transitions (bars). The number of tokens (dots) in all
places is the Petri net’s marking (state). Transitions model
events that change the marking. Arcs connecting places to a
transition represent preconditions of the associated event.

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 19, 2009 at 18:14 from IEEE Xplore. Restrictions apply.

57DECEMBER 2009

program’s execution. The theoretical property of maximal
permissiveness in Gadara’s control logic thus contributes
directly to the practical property of maximal runtime con-
currency in the controlled program.

The addition of control places can create new potential
deadlocks. However, Gadara can address these “control-
induced deadlocks” by simply applying siphon detection
and SBPI repeatedly until no uncontrolled siphons remain.
In our experience to date, control logic synthesis for real
software terminates after a single iteration of SBPI, which
takes a few seconds.

Gadara addresses the most common types of dead-
locks, including circular-mutex-wait deadlocks involving
standard portable locking primitives; our previous publica-
tions5,6 define the scope precisely. Finally, some programs
are uncontrollable in the sense that they cannot be pre-
vented from deadlocking. In the simplest example, a thread
repeatedly locks a single nonrecursive mutex. Gadara

We ensure that a siphon cannot drain by applying a
DCT technique called supervision based on place invariants
(SBPI).11 The inputs to SBPI are a Petri net and a weighted
linear constraint on its marking. To request that a siphon
never drain, we simply specify that the total number of
tokens in the places constituting the siphon must be at
least 1. SBPI’s control logic output is a control place to be
added to the original Petri net; the control place alters the
Petri net’s dynamics and guarantees that the siphon cannot
drain. Figure 3c shows in red the control place and incident
arcs that Gadara’s SBPI has added to address the deadlock
bug in our example. The control place ensures that f()
cannot acquire lock L until after g() has released it, thus
effectively eliminating the deadlock in our Petri net model.

An important benefit of SBPI is that it generates maxi-
mally permissive control logic that provably postpones
the progress of threads only when necessary to ensure
that deadlock cannot occur in a worst-case future of the

Function f()

(b)

Function g()

unlock(L)

wait(CV)

lock(L)

L

CV

lock(L)

signal(CV)

unlock(L)

Figure 3. Example program based on Apache bug #42031. (a) Simplified original code; (b) Petri net model of original code; (c)
controlled model resulting from siphon analysis and SBPI; (d) “Gadarized” code, with the Gadara instrumentation shown in red.

f(...) {
 ...
 GADARA_LOCK_DEPLETE(L, ctrl_place);
 ...
 wait(CV);
 ...
 unlock(L);
 ...
}
g(...) {
 ...
 lock(L);
 ...
 unlock(L);
 GADARA_REPLENISH(ctrl_place);
 ...
 signal(CV);
 ...
}

f(...) {
 ...
 lock(L);
 ...
 wait(CV); /* deadlock */
 ...
 unlock(L);
 ...
}
g(...) {
 ...
 lock(L); /* deadlock */
 ...
 unlock(L);
 ...
 signal(CV);
 ...
}

(c)

unlock(L)

wait(CV)

lock(L)

L

CV

Control
place

lock(L)

signal(CV)

unlock(L)

Function f() Function g()

(a)

(d)

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 19, 2009 at 18:14 from IEEE Xplore. Restrictions apply.

COVER FE ATURE

COMPUTER 58

that performs centralized safety checks upon every lock
acquisition request.9 In addition to being computationally
expensive, such checks must be performed serially be-
cause they require exclusive access to the banker’s central
“account ledger.” Yesterday’s uniprocessors did not allow
threads to execute in parallel, so the resulting serializa-
tion might have been acceptable on such hardware (if the
safety checks were fast). On multicore hardware, how-
ever, globally serializing lock acquisitions creates a global
performance bottleneck that prevents parallel software
from fully exploiting the parallel hardware. Gadara and
other scalable approaches do not globally serialize lock
acquisitions.10

EXPERIMENTAL EVALUATION
We have applied our Gadara prototype to several

C/Pthreads programs, including the Apache webserver,
the OpenLDAP directory server, the BIND name server, a
client-server transaction processing benchmark applica-
tion, and several other programs. “Gadarizing” software
roughly doubles the time required to build a program
from scratch: Model construction takes about as long as
running make, and control logic synthesis takes a few
additional seconds. For some programs, we locally an-
notated a small fraction of the program’s functions to
help Gadara perform siphon analysis more efficiently; this
required a few minutes per function for a programmer
unfamiliar with the software.

Gadara correctly identified and eliminated both pre-
viously reported and unknown deadlocks in the real
software and similarly eliminated injected deadlock faults
in the benchmark. Not surprisingly, deadlocks in mature,
widely used open source software tend to occur in in-
frequently executed corner-case code rather than “hot”
code paths. Gadara’s deadlock-avoidance instrumentation
therefore also executes infrequently, and its runtime over-
head is typically negligible. For example, when Gadara
eliminated a known deadlock in OpenLDAP’s applica-
tion-level cache insertion/deletion functions, the overhead
was negligible under normal configuration because these
functions are infrequently exercised.

We had to configure OpenLDAP in a highly unconven-
tional way—with a very small cache size and database
disk synchronization disabled—to trigger measurable
Gadara overheads; even under these adverse condi-
tions, the negative impact on throughput and response
time never exceeded 10 percent. We also injected a
deadlock fault into a common-case code path in our
client-server benchmark application to ensure that every
transaction triggered Gadara overhead. The impact on
response times was negligible under normal workload.
We observed substantial performance degradation (18
percent reduction in throughput) only under extreme
oversaturation.5

detects uncontrollability during control logic synthesis and
issues appropriate warnings.

Instrumentation and dynamic control
The only remaining problem is to ensure that the

original program’s runtime behavior conforms to that of
the deadlock-free controlled model that we obtained via
siphon analysis and SBPI. Gadara solves this problem by in-
strumenting the original program: Our prototype performs
a source-to-source transformation, which maximizes por-
tability and requires no changes to threading libraries or
other infrastructure.

Figure 3d illustrates how Gadara implements the con-
trol logic of the Petri net in Figure 3c. Gadara replaces
the original lock(L) call in function f() with a wrapper,
GADARA_LOCK_DEPLETE(), that atomically obtains the orig-
inal lock L and also decrements a variable representing the
token count in the control place of Figure 3c. If no token

is present in the control place, the wrapper function waits
for one to be deposited there; the wait is implemented with
an ordinary condition variable (not shown in the figure).
Gadara modifies function g() by adding a GADARA_RE-
PLENISH() call that deposits a token in the control place
and signals its condition variable, allowing GADARA_LOCK_
DEPLETE() in f() to return.

Note that Gadara does not in any way meddle with three
of the original four lock/unlock operations in Figure 3a. In
real software, Gadara leaves the vast majority of all lock/
unlock operations completely unaffected and therefore
adds zero overhead to them. Further, the control logic that
Gadara does add is

•	 lightweight—it adds only a simple condition variable
wait/signal implementing the control place;

•	 decentralized—it affects only threads executing func-
tions f() and g() and has no effect on other threads
executing unrelated code; and

•	 fine-grained—it addresses a specific deadlock fault
with a dedicated control place.

The net result is that Gadara’s control logic is highly
concurrent; it introduces no global serialization into soft-
ware. This important property sets Gadara apart from
deadlock-avoidance schemes involving a central “banker”

Gadara correctly identified and
eliminated both previously reported
and unknown deadlocks in the real
software and similarly eliminated
injected deadlock faults in the
benchmark.

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 19, 2009 at 18:14 from IEEE Xplore. Restrictions apply.

59DECEMBER 2009

that allows maximal runtime concurrency. The relatively
few online checks required to avoid deadlocks are light-
weight, decentralized, fine-grained, and highly concurrent.

Our approach relieves programmers of the burden of
global reasoning about deadlock freedom, restoring the
composability that locks destroy. It is compatible with
legacy programs, programming practices (such as I/O in
critical sections), and infrastructure (such as threading
libraries), and requires no retraining or conceptual reori-
entation. Our ongoing work is developing a more robust
and usable Gadara prototype, which we plan to eventually
release to the public.

Looking beyond deadlocks, we believe that DCT might
provide a unified framework for eliminating other concur-
rency bugs. By constructing Petri net models of programs,
we hope to address other classes of bugs using different
control specifications. For example, if static or dynamic
analysis identifies data races, we might use SBPI to
eliminate them by specifying that the number of tokens
(threads) in the places (basic blocks) affected by the race
should not exceed one. Given code containing program-
mer-specified atomic{} sections, we believe it is possible
to use DCT to automatically assign locks to protect them.
Thanks to the maximal permissiveness that DCT offers,
the net result might be a more concurrent enforcement
of the atomicity requirements than prior approaches to
lock-based atomic{} sections.

Finally, we believe that the broader prospects for DCT
in computing systems are not confined to concurrency
control in multithreaded software. We expect that for a
wide range of problems, including access control and com-
munication protocols, the benefits of control engineering
will outweigh the additional effort required to exploit this
paradigm. Because it is a model-based method, DCT re-
quires model building to bridge the gap between theory and
practice, and modeling is usually the most difficult part of
the overall exercise. However, our experience with Gadara,
which leverages existing compiler techniques to construct
models, leads us to suspect that many other problems may
be amenable to DCT. After investing effort in modeling a
system that we wish to control, DCT offers handsome re-
turns by exploiting a wide range of mature and powerful
control techniques to constrain its behavior.

Acknowledgments
The ongoing Gadara project at the University of Michigan is
supported by National Science Foundation grant CCF-0819882
and by an Innovation Research Program award from Hewlett-
Packard Laboratories.

References
 1. J.W. Voung, R. Jhala, and S. Lerner, “RELAY: Static Race

Detection on Millions of Lines of Code,” Proc. 6th Joint

HOW TO ERR?
Perfect static program analysis is impossible: Static

deadlock detection cannot both guarantee to find only
genuine deadlock bugs and also guarantee to find all dead-
lock bugs. Gadara errs on the side of caution: It detects and
remedies all deadlocks actually present in a program, and
possibly also spurious deadlocks. The control logic that it
adds to address the latter may impair performance, but in
practice this overhead is typically very small.

DCT methods could be used in very different ways
to achieve different tradeoffs. For example, DCT could
provide an alternate implementation for a deadlock “exhib-
iting/healing” system.10 First, we would observe or trigger a
runtime deadlock in an unmodified program; recent tech-
niques make it easier to trigger deadlocks by perturbing
thread interleavings10 or exploring them systematically.12

Next, siphon analysis would yield siphons representing
every potential deadlock in the program. The remaining
problem would then be to identify the one siphon re-
sponsible for the observed runtime deadlock. A siphon
corresponds to a set of basic blocks, and standard debug-
ging tools could reveal the basic blocks where threads are
deadlocked. Finally, SBPI would generate control logic to
address the guilty siphon alone, ignoring all other siphons.
The result would be to eliminate only genuine deadlock
bugs that have actually occurred but not those that have
not yet been observed.

Intuitively, the strategy of addressing only previously
observed deadlocks is appealing for relatively stable soft-
ware whose deadlock bugs would otherwise recur often,
especially when the bugs facilitate remediation by mani-
festing consistently: An investment in eliminating such
bugs, automatically or manually, yields frequent dividends.
The situation is more complicated if we face large numbers
of deadlock bugs that individually manifest rarely but col-
lectively strike with unacceptable frequency, or deadlock
bugs that thwart root-cause diagnosis and remediation
by manifesting in numerous different guises, or a steady
stream of new deadlock bugs introduced by rapid software
development. Gadara’s comprehensive approach of elimi-
nating all deadlocks attacks the long tail of low-probability
deadlock bugs and those that manifest inconsistently, and
can keep pace with newly written deadlock bugs.

O
ur experience with Gadara convinces us that
discrete control theory offers attractive ben-
efits for solving concurrency problems. DCT
enables Gadara to provably eliminate all
instances of a broad class of deadlocks from

a program without introducing new deadlocks, silently
disabling functionality, or affecting program correctness.
It also shifts expensive deadlock-avoidance computations
offline and computes maximally permissive control logic

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 19, 2009 at 18:14 from IEEE Xplore. Restrictions apply.

For more information on any topic

presented in Computer,

visit the IEEE Computer Society

Digital Library at

www.computer.org/csdl

COVER FE ATURE

COMPUTER 60

nation in computing systems. Kelly received a PhD in
computer science from the University of Michigan. He is
a senior member of the IEEE and the ACM. Contact him at
terence.p.kelly@hp.com.

Yin Wang is a researcher at Hewlett-Packard Laborato-
ries. His research interests include control and diagnosis
of discrete event systems, modeled by automata or Petri
nets, and their applications to computer systems. Wang
received a PhD in electrical engineering from the Univer-
sity of Michigan. He is a member of the IEEE and the ACM.
Contact him at yin.wang@hp.com.

Stéphane Lafortune is a professor in the Electrical En-
gineering and Computer Science Department at the
University of Michigan where he leads the Discrete Event
Systems Group (UMDES: www.eecs.umich.edu/umdes/) in
the Systems Laboratory. His research interests are primar-
ily in discrete event systems, including modeling, analysis,
supervisory control, optimal control, and diagnosis. La-
fortune received a PhD in electrical engineering from the
University of California, Berkeley. He is a Fellow of the IEEE.
Contact him at stephane@eecs.umich.edu.

Scott Mahlke is an associate professor in the Electrical
Engineering and Computer Science Department at the Uni-
versity of Michigan, where he leads the Compilers Creating
Custom Processors group (http://cccp.eecs.umich.edu). The
CCCP group delivers technologies in the areas of compilers
for multicore processors, application-specific processors
for mobile computing, and reliable system design. Mahlke
received a PhD in electrical engineering from the Univer-
sity of Illinois at Urbana-Champaign. He is a member of
the IEEE Computer Society and the ACM. Contact him at
mahlke@umich.edu.

Meeting of the European Software Eng. Conf. and the ACM
SIGSOFT Symp. Foundations of Software Eng. (ESEC/FSE
07), ACM Press, 2007, pp. 205-214.

 2. N.G. Leveson and C.S. Turner, “An Investigation of the
Therac-25 Accidents,” Computer, July 1993, pp. 18-41.

 3. M. Herlihy and V. Luchangco, “Distributed Computing and
the Multicore Revolution,” ACM SIGACT News, Mar. 2008,
pp. 62-72.

 4. K. Asanovic et al., “A View of the Parallel Computing Land-
scape,” Comm. ACM, Oct. 2009, pp. 56-67.

 5. Y. Wang et al., “Gadara: Dynamic Deadlock Avoidance for
Multithreaded Programs,” Proc. 8th Symp. Operating Sys-
tems Design and Implementation (OSDI 08), Usenix, 2008,
pp. 281-294.

 6. Y. Wang et al., “The Theory of Deadlock Avoidance via
Discrete Control,” Proc. 36th Ann. ACM SIGPLAN-SIGACT
Symp. Principles of Programming Languages (POPL 09),
ACM Press, 2009, pp. 252-263.

 7. C.G. Cassandras and S. Lafortune, Introduction to Discrete
Event Systems, 2nd ed., Springer, 2007.

 8. Y. Wang, T. Kelly, and S. Lafortune, “Discrete Control for
Safe Execution of IT Automation Workflows,” Proc. 2nd
ACM SIGOPS/European Conf. Computer Systems (EuroSys
07), ACM Press, 2007, pp. 305-314.

 9. R.C. Holt, “Some Deadlock Properties of Computer Sys-
tems,” ACM Computing Surveys, Sept. 1972, pp. 179-196.

 10. Y. Nir-Buchbinder, R. Tzoref, and S. Ur, “Deadlocks: From
Exhibiting to Healing,” Runtime Verification, LNCS 5289,
Springer, 2008, pp. 104-118.

 11. M.V. Iordache and P.J. Antsaklis, Supervisory Control of
Concurrent Systems: A Petri Net Structural Approach,
Birkhäuser, 2006.

 12. M. Musuvathi et al., “Finding and Reproducing Heisenbugs
in Concurrent Programs,” Proc. 8th Symp. Operating Sys-
tems Design and Implementation (OSDI 08), Usenix, 2008,
pp. 267-280.

Terence Kelly is a senior researcher in the Exascale Com-
puting Lab at Hewlett-Packard Laboratories. His research
applies discrete control theory to failure avoidance/elimi-

 Selected CS articles and columns are available for free at
 http://ComputingNow.computer.org.

Authorized licensed use limited to: University of Michigan Library. Downloaded on December 19, 2009 at 18:14 from IEEE Xplore. Restrictions apply.

