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ABSTRACT
The register file is one of the largest and most power-hungry struc-
tures in a Graphics Processing Unit (GPU), because massive mul-
tithreading requires all the register state for every active thread
to be available. Previous approaches to making register accesses
more efficient have optimized how registers are stored, but they
must keep all values for active threads in a large, high-bandwidth
structure. If operand storage is to be reduced further, there will not
be enough capacity for every live value to be stored at the same
time. Our insight is that computation graphs can be sliced into
regions and operand storage can be allocated to these regions as
they are encountered at run time, allowing a small operand staging
unit to replace the register file. Most operand values have a short
lifetime that is contained in one region, so their value does not need
to persist in the staging unit past the end of that region. The small
number of longer-lived operands can be stored in lower-bandwidth
global memory, but the hardware must anticipate their use to fetch
them early enough to avoid stalls. In RegLess, hardware uses com-
piler annotations to anticipate warps’ operand usage at run time,
allowing the register file to be replaced with an operand staging
unit 25% of the size, saving 75% of register file energy and 11% of
total GPU energy with no average performance loss.

CCS CONCEPTS
•Computer systems organization→ Single instruction, multiple
data; • Software and its engineering→ Compilers;
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Figure 1: Comparison ofGPU register energy reduction tech-
niques that change how execution units (EUs) read operands
from the register file (RF)

1 INTRODUCTION
As Graphics Processing Units (GPUs) proliferate from gaming desk-
tops into datacenter and mobile environments, they are required
to be more energy-efficient than ever before. GPUs’ high com-
putational throughput comes from their massively multithreaded
architecture, where stalls in one thread are hidden by switching to
another thread and many threads can issue each cycle. This requires
the GPU to store the context for every active thread in a way that
makes it available at any time.

Since registers make up most of each thread’s state, GPUs have
very large register files. To store the registers for the 32 SIMD
lanes for each of the 64 hardware threads (called warps), each
core (called an SM) in NVIDIA’s Maxwell architecture has a 256KB
register file. Because of its size, on GPU architectures similar to
the GTX 980, the register file consumes up to 13% of total GPU
power, nearly as much as the arithmetic units or DRAM [33]. As
GPU designs provision more concurrency, the register file will only
grow. Therefore, reducing the size of the register file and the energy
used to access it is an important part of making GPUs more efficient.

Previous approaches have focused on optimizing register storage
space, as shown in Figure 1. The baseline (a) reads all operands
from the large register file (RF) and has a separate L1 data cache.
By adding a smaller hardware [9] or software [11] managed cache
in front of the main register file (b), most register accesses can
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be filtered by a smaller structure. By dynamically reusing register
capacity otherwise used to store dead values, a smaller register
file (c) can be provisioned or portions of the register file can be
power gated [19]. For applications that do not use the entire register
file, portions of the register file can be used as more L1 cache or
scratchpad memory (d) to increase occupancy and performance
[12, 23].

Our technique, RegLess (e), reduces the amount of storage space
by anticipating when registers will be used in time. Instead of a
full register file that contains every live value, RegLess maintains a
small operand staging unit. Code running on the GPU is divided
into regions and just in time for a region to begin execution RegLess
allocates space for it in the staging unit. Most operands’ lifetimes are
contained in one region, so when that region is finished executing,
the staging unit can reuse their storage. An operand value with a
lifetime that spans regions can be evicted into thememory hierarchy
when no active region is using it, so before a region can begin
executing, RegLess fetches any needed long-lived registers from
memory.

In order for the hardware to manage the operand staging unit
effectively, it needs visibility into future register usage, which is
provided by the compiler with annotations in the instruction stream.
A hardware resource manager uses these annotations to anticipate
which registers a warp is about to access. The resourcemanager also
controls which warps are eligible to issue instructions, ensuring
the warps allowed to execute always have their registers ready in
the staging unit. Other annotations inform the hardware when a
register dies and can be erased from the staging unit or memory
system.

Only a few registers can be transferred between the staging
unit and memory without incurring performance loss. Because the
L1 data cache in each SM can only service one request per cycle,
the bandwidth available to fill the staging unit is much smaller
than the bandwidth needed to service register reads and writes.
To address this, the RegLess compiler divides regions at the points
that maximize the number of registers interior to one region, as the
values in these registers will never be transferred to or frommemory.
By creating regions that rarely need their operands fetched from
memory and managing staging unit capacity for these regions in
hardware, RegLess can maintain performance while vastly reducing
register storage.

Our contributions in this work include:

• Replacing the GPU register file with a small operand staging
unit that only holds values about to be accessed.
• Designing compiler techniques for dividing kernels into re-
gions that maximize the number of registers interior to a
region.
• Detailing hardware components for managing operand stor-
age capacity, fetching operands from memory just before they
will be used, and minimizing the performance impact of stor-
ing register values in memory.
• Analyzing the power and area required by RegLess with a
placed-and-routed Verilog model.
• Demonstrating that the RegLess system can reduce register
capacity by 75% with no average performance loss.
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Figure 2: Average register working set in 100 cycle window
forGTO and 2-level warp schedulers in baseline 2048KB reg-
ister file for benchmarks in Rodinia [6]

2 RF REPLACEMENT CHALLENGES
Replacing the register file with an operand staging unit smaller than
needed to hold all live registers presents several difficult challenges.
Managing the staging unit must be done precisely, as exactly the
right operands need to be present in the staging unit at exactly the
right time or performance will suffer as warps stall for operands to
become available. A first challenge is determining how much of the
staging unit each warp will have access to. Another comes from the
limited memory bandwidth available for moving values in and out
of the staging unit. A final challenge is conserving memory system
capacity to allow more cross-region registers to fit in the L1 cache.

2.1 Capacity Allocation
Because of the small capacity of the staging unit (25% of the baseline
register file or less), only a subset of registers can be stored in it
at any one time. The staging unit will hold fewer registers than
might be live across all active warps, so not every warp can have
all its live registers present in it. However, because not all registers
are accessed by every warp all the time, there is an opportunity to
store only the subset of registers that will be used in an interval of
time. Figure 2 shows the register capacity accessed in a 100-cycle
window in each Rodinia [6] benchmark. For most applications, this
is 10% or less of the baseline register file’s 2048 KB capacity.

One approach to allocating capacity would be with standard
spills and fills inserted by the compiler. Each warp would have
an allocation in the staging unit that it would manage using load
and store instructions. This strategy fails to take into account that
warps are not equally likely to issue instructions – dynamically,
some warps will be stalled for long-latency operations and their
space in the staging unit would be better used by active warps.
Another approach would be modelling the staging unit after a
cache, allocating space based on which registers are most recently
accessed. Although this works when the backing store for the cache
is the main register file, this reactive strategy would cause stalls for
register fetches if the cache was backed by main memory.

To allocate staging unit capacity only to active warps, RegLess
coordinates the warps eligible to issue instructions with the warps
that are allocated space in the staging unit. Figure 2 shows that the
two-level warp scheduler from [9] reduces the amount of register
space that is used in each interval relative to the baseline GTO
by scheduling instructions from only a subset of warps at a time.
Extending this insight, RegLess only allows warps that have an
allocation in the staging unit to issue instructions. In this way, all
allocated space is useful to a running warp.
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Figure 3: Accesses to the register backing store per 100 cycles
during the steady state of hotspot for baseline, RF hierarchy
[11] with 8-entry scratchpad, and RegLess with 8 entries per
warp

In order to know how much capacity to allocate to each running
warp, the RegLess hardware receives information from the compiler.
Hardware by itself cannot know how much capacity each warp
will use, but the compiler has a global perspective of exactly which
registers will be accessed at which points in the program. The best
allocation decision is a combination of the hardware’s dynamic
perspective of how much staging unit capacity is available and the
compiler’s global perspective of warps’ future needs. The RegLess
compiler divides a kernel into atomic regions, and the beginning of
the region is annotatedwith howmuch capacity that region requires
in the staging unit in order to run. A hardware resource scheduler
activates warps when their next region is allocated capacity in the
staging unit. In this way, RegLess anticipates warps’ future resource
needs in its allocation decision.

2.2 Memory Side Bandwidth
The second problem with eliminating the register file is that the
backing store, global memory through the L1, has limited band-
width. In our model, only one access can be made to the global
memory system through the L1 cache per cycle. This is also more
constrained than previous work, which has recourse to a main
register file with full bandwidth [9, 11]. In order for this not to
limit performance, fewer than one request per cycle can be made
to transfer a register in or out of the staging unit.

To reduce the number of accesses made to L1, the RegLess com-
piler creates regions with as many interior registers as possible. In-
put and output registers hold values used to communicate between
regions, whereas the lifetime of an interior register lies entirely
inside one region. By guaranteeing each region the space it needs
in the staging unit while it executes, any interior registers whose
lifetime is contained in the region will never need to be transferred
in or out of it. The only registers that must be transferred in or
out of the staging unit to the L1 are inputs and outputs – the val-
ues communicated between regions. Therefore, when the compiler
decides where to put the boundaries between regions, it chooses
points with the fewest number of live registers.

The other part of the solution is loading each regions’ input
registers into the staging unit sufficiently early that instructions
do not stall waiting for their registers. Instead of loading registers
from L1 when they are first accessed, all the input registers for a
region are fetched before any instructions from that region can be
issued. We call this register fetching process preloading. The staging
area needs enough capacity that several warps can be issuing from

their regions while other warps preload registers for their next
region. Output registers can stay in the staging unit until evicted,
so RegLess prefers activating a region from a recently active warp
in case an input to the new region was an output of a recent one.

Together, these strategies mean there are far fewer requests made
to the backing store than in previous work. Figure 3 compares the
number of accesses made to the main register file in the baseline to
the accesses made to the large register file in [11] and the accesses
made to the L1 cache in RegLess with the same capacity. Because
so few accesses filter through RegLess to the L1, on average 0.9%, it
becomes feasible to use the low-bandwidth L1 to store cold registers.

2.3 L1 Cache Capacity
A final problem is that the staging unit and the L1 combined are
smaller than the register working set for many kernels. Because
of this, registers and data in L1 would contend for space in L1 and
registers may be evicted across the interconnect to L2 or DRAM.
It would take hundreds of cycles to fetch these registers and they
would contend for scarce L2 bandwidth. Previous work [31, 41] has
recognized that many registers hold values that have similar values
for each 4-byte contribution from each lane. This makes registers
amenable to compression. RegLess compresses registers that are
evicted from the staging unit to the memory system, matching
them against fixed patterns that are intentionally simpler than full
register file compression techniques, in order to fit more register
values in the limited L1 capacity.

3 DESIGN OVERVIEW
In these ways, RegLess’ design overcomes the challenges of elimi-
nating the register file using hardware capacity management guided
by compiler annotations. To further demonstrate how RegLess op-
erates, we will walk through each component of the system.

First, at compile time (part 1 in Figure 4), the kernel is divided
into regions of instructions. The compiler annotates the input and
output registers of each region. Since the vast majority of registers
are intermediates with short lifetimes, these regions have a small
number of input and output registers compared to the number of
registers which are both produced and consumed inside the region.

At run time, registers are stored in a operand staging unit (OSU),
with space allocated based on compiler annotations on the regions.
When a warp starts running a new region, that region’s input
registers need to be assembled in the OSU 2 . The OSUmay already
contain some of these registers, and the others will be loaded from
the L1 data cache. Not all of a warp’s registers are loaded – only
the ones that will be used in the next region. The instructions in a
region are guaranteed to have the registers they need available in
the OSU as they execute. As values are used for the last time in the
region, they are erased from the cache or marked for eviction 3 .

RegLess orchestrates this process by actively managing the OSU
capacity. A capacity manager (CM) 4 makes warps eligible to issue
instructions only when all the warp’s input registers are present
and there is space for all the warp’s interior registers in the OSU.
As warps complete regions, their registers are reclaimed and the
CM uses the free capacity to preload registers for a new region.
The register working set often fits in the OSU, and any overflow
almost always fits in the L1 data cache and does not generate traffic
at lower levels of the memory hierarchy.
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Figure 4: Walkthrough

Next, we will describe the compiler techniques and hardware
implementation of RegLess.

4 COMPILER CODE GENERATION
In order for the hardware to make register allocation decisions,
it needs to know which registers to move into the staging unit
and when those registers will no longer be needed. The compiler
provides this through metadata inserted in the instruction stream,
as it has whole-program visibility into when each register will
be used. In order to do this, the compiler divides the kernel into
regions of instructions and annotates each region with data about
which registers must be present to start the region, the number of
temporaries used in the region, and when the regions’ registers can
be erased or evicted from the staging unit and memory system.

4.1 Region Creation
Where the compiler chooses to create region boundaries affects
how much data movement is necessary when running a kernel.
Registers that are produced outside the region but used inside it
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Figure 5: Count of live registers for a portion of
particle_filter, with low live register points highlighted

need to be fetched from memory before the region can start run-
ning, but registers with their lifetime entirely within one region
are guaranteed to never be transferred to memory, as regions are
scheduled atomically by the RegLess hardware. Therefore, the com-
piler should draw region boundaries to minimize the number of
registers communicated between regions and maximizing registers
interior to a region.

This matches register usage patterns in kernels. The number of
live registers changes over time in a program – for example, while
a complex expression is being computed, there will be many live
registers to hold intermediate values, but these will be collapsed to
a single value at the end. These points with fewer live registers form
natural seams in the program for region boundaries. Figure 5 shows
these seams in a portion of the particle_filter application.

It is also important that a long-latency global load and its first
use are not inside the same region. If a warp were to stall on a long-
latency load in the middle of a region, it would consume space in the
OSU while not being able to issue any instructions. Instead, long-
latency operations should happen on the edges between regions to
overlap the time the register is waiting for the load with the time
it is waiting for capacity in the staging unit. To achieve this, the
compiler splits regions containing a load and its use.

Unlike the strands in [11], we do not allow regions to span ba-
sic block boundaries, which allows the register management to be
oblivious of control flow. This does not increase data movement,
since the OSU only evicts regions’ output registers when more
capacity is needed – if two regions from the same warp are sched-
uled close to each other in time, many of the input registers of the
second region are often still in the OSU and are never transferred
from memory. RegLess’ register usage annotations are more spe-
cific than those in Zorua [63] as RegLess manages exactly which
registers hold live values across region boundaries, not only how
much register capacity is needed overall.

4.2 Region Creation Algorithm
RegLess’ region creation algorithm is shown in Algorithm 1. The
CreateRegions procedure starts by creating a control flow graph
with regions equal to basic blocks. It then iterates through each
region, determines whether it meets all constraints, and if not splits
it into two regions. The first new region from the split is guaranteed
to be valid, but the second must be re-examined by the algorithm.

The IsValid function determines whether a region is valid by
checking whether the region uses few enough registers to fit in the
staging unit hardware. The maximum number of registers used in
the region is used to limit the amount of the staging unit one region
can fill, so that one region cannot take up too large a fraction of
the OSU and limit concurrency (line 18). Because the staging unit
is split into multiple banks, the registers used by a region must fit
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Algorithm 1 Region Creation
1: function CreateRegions(cfg)
2: regions ← ∅
3: worklist ← basic blocks in cfg
4: while worklist is not empty do
5: region← worklist .pop()
6: if not IsValid(region) then
7: splitPc ← FindSplitPoint(region)
8: Split region at splitPc into firstRegion and secondRegion
9: region← firstRegion
10: worklist .append (secondRegion)
11: end if
12: regions.append (region)
13: end while
14: return regions
15: end function
16:
17: function IsValid(region)
18: if region.maxLiveRegs > maximum registers per region then
19: return false
20: else if region.maxRegsPerBank > registers in each OSU bank then
21: return false
22: else if region contains a global load and its first use then
23: return false
24: end if
25: return true
26: end function
27:
28: function FindSplitPoint(region)
29: upperBound ← first PC where the first region becomes invalid
30: lowerBound ← PC <= upperBound where the number of global

loads and uses in both new regions is minimized
31: lowerBound ← min(max(region.startPC + 48, lowerBound),

upperBound)
32: return PC such that lowerBound <= PC <= upperBound and split-

ting at PC results in the fewest number of input and output
registers in both new regions combined

33: end function

inside those banks (line 20). Finally, a global load and its first use
may not be in the same region (line 22).

To determine where to split a region, the FindSplitPoint func-
tion identifies a window in which the split should happen. The last
instruction in this window (upperBound) is the first PC where the
first new region from the split would be invalid. The first instruc-
tion in this window (lowerBound) is the place that would put the
region boundary between the most global loads and their first uses.
The beginning of the window is adjusted to contain at least six
instructions if possible, to avoid degenerately small regions. Then,
the region is split at the point in this window where the split would
create the least amount of input and output registers.

The annotations in Figure 6 that come from this compiler analysis
are the bank usages of the input and interior registers, as well as
the registers to preload.

4.3 Register Lifetime
Because both the staging unit and L1 cache have very limited ca-
pacity, it is vital that no space be consumed by dead registers. In
order for the compiler to inform the hardware about when registers

bank usage: 1, 1, 1, 0, 0, 0, 0, 0

preload: r1, r2 (invalidate)

cache invalidate: r3

r0 = r1 + r2

r0 = r0 + r2
erase: r1

erase: r2, evict: r0

Figure 6: Compiler annotations added on regions and in-
structions

die, the compiler needs to take into account the two places where
registers can be stored. Both interior registers and inputs and out-
puts can be stored in the staging unit, but only inputs and outputs
can be evicted to L1. Therefore, the hardware structures in which a
dead register needs to be erased depends on whether it is interior
to a region or not.

Since registers with their entire lifetime within one region will
only be stored in the staging unit, it is sufficient to mark the last use
of the register in the region. In Figure 6, this is the erase annotation.
Input and output registers also have a lifetime in the staging unit
while a region is executing, in that there is some point in the region
where they will be used for the last time in that region. These last
uses are marked by the evict annotation in Figure 6 – note this does
not mean the register must be evicted from the staging unit, only
that it becomes eligible for eviction at that point.

The lifetimes of registers that live longer than one region need to
be tracked so they can be erased from the L1 cache when no longer
needed. These registers can either die when preloaded for the last
time or when control flow eliminates the possibility of another
preload. In the case that a preload is the last use of a register, the
preload is set as an invalidating read, like r2 in Figure 6. Registers
known to be dead due to control flow at the beginning of a region
are marked for cache invalidation, like r3 in Figure 6.

4.4 Control Flow and Register Liveness
Finding the correct location to insert register invalidations is non-
trivial problem on a GPU, because the threads in a warp can diverge
for control flow. If not all lanes in a warp are active, a write to a
register will only write to some parts of the register. Therefore,
standard liveness analysis will produce incorrect results for GPU
code, because it assumes that writing to a register kills the entire
value. We call a definition that may not redefine an entire register’s
value a soft definition.

Tracking register liveness accurately is important for inserting
cache invalidations in the correct place. A cache invalidation anno-
tation deletes the entire register, not just the values for active lanes,
so it is only safe to insert an invalidation when the entire register is
known to be dead. Previous work [19] recognized this and described
how invalidations must be inserted in a postdominator of both the
definitions and uses in a live range. That is, the divergent control
paths that use the register must reconverge before the invalidation.
We expand on this contribution with more details about how to
compute live ranges for GPU registers while accounting for control
divergence.

To do so, liveness analysis must determine which definitions
of a register are soft definitions. Algorithm 2 decides whether an
instruction insn that defines a register reg is a soft definition, which
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Algorithm 2 Identifying Soft Definitions
1: procedure IsSoftDef(insn, reg)
2: insnBB← the BB containing insn
3: strictDoms ← dominators(insnBB)−insnBB
4: for all domBB in strictDoms do
5: strictPDoms ← postdominators(domBB) −domBB
6: if dominators(insnBB) ∩ strictPDoms , ∅ then
7: continue
8: end if
9: for all successorBB of domBB do
10: if successorBB dominates insnBB then
11: continue
12: else if reg is live on the edge from domBB to successorBB

then
13: return true
14: end if
15: end for
16: end for
17: return false
18: end procedure

r1 =

r1 = = r1

live out of other 

side of branch

dominating 

definition

candidate

Figure 7: Determiningwhether a definition is soft. A soft def-
inition of a register might not kill every thread’s values.

is shown graphically in Figure 7. For a definition to be soft, there
must be another definition that reaches a use with different control
conditions than the candidate soft definition. Therefore, first the al-
gorithm builds a list of the basic blocks that dominate the candidate
soft definition, other than its own basic block (lines 2-3). (A basic
block dominates another if control must pass through the domina-
tor before the other basic block, and a basic block postdominates
another if control must pass through the postdominator after that
basic block.) Then, for each dominator, it tests whether there is a
reconvergence point between the dominator and the candidate soft
definition, done by testing whether there are any basic blocks that
postdominate the dominator that dominate the definition (lines
6-8). This ensures that the dominating definition used is the nearest.
Finally, it tests whether there is a successor with different control
conditions than the candidate soft definition (lines 10-11) that uses
the dominating definition (lines 12-13). If so, the candidate is a soft
definition.

To compute when values die, standard dataflow analysis is used
to compute live ranges, with the change that a live range does not
end at a soft definition. Next, the death points of each live range
are determined – either a last use or a control flow edge out of a
loop. To cover the case where a register is defined but not used
along a control flow path, the invalidation annotation is places in
the postdominator of all the definitions and death points of the live
range. Registers with a soft definition in a region are annotated for
preloading, so that the values in lanes not taking the control flow
path are preserved.

warp contexts
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warp scheduler

execution 

units

reg read

reg w/b
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arbiter

per-bank 
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preload 

queue

compressor

operand 

staging unit
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D$

non-compressed 

preload queuesinstruction issue

4 warp scheduling groups

Figure 8: Block diagram of RegLess components in each SM

5 HARDWARE DESIGN
At run time, the hardware follows these compiler annotations to
manage staging unit capacity. Capacity managers (CMs) use the
register usage annotations to make allocations for warps in the
staging units. The operand staging units (OSUs) store registers
for active warps and transfers registers to and from L1 as needed
to run new regions. Compressor units compress registers trans-
ferred to L1 to conserve capacity. Figure 8 shows how these RegLess
components are integrated into an SM.

There is a separate shard of RegLess for each of the four warp
schedulers in the GTX 980. That is, each of the schedulers has its
own CM, OSU, and compressor unit. Multiple warp schedulers allow
the GPU to easily issue multiple instructions per cycle, so making
independent register scheduling decisions for each scheduler is
important to keep this concurrency. No communication between
shards is necessary because warps cannot read each others’ regis-
ters. However, only one shard can access the L1 at a time, as the L1
cache can only accept one request per cycle.

The CMs sit in front of the warp schedulers, allocating space in
its OSU for warps as they begin regions, and only allow the warp
scheduler to issue instructions from warps that have their registers
ready. The CMs read from a metadata store, not shown, which is
filled by the decode stage. Active warps read their registers from an
OSU. Before a warp can become active, it must assemble its active
registers in the OSU, either from registers already in the OSU or
by loading them from L1. Any unallocated OSU capacity is used to
cache output registers for inactive warps in case they are inputs to
another region.

Each execution unit has a corresponding register read unit that
assembles the source operands from the OSU and reserves space for
the destination registers for each instruction. After an instruction
is finished executing, its value is written back to the OSU. Since
instructions at the execution units may be from any warp in any
scheduling group, an arbiter directs register reads and writes to the
correct OSU.

In order to reduce the memory system throughput requirements
of loading and storing registers from memory, compressors identify
common patterns in register values, storing a compressed repre-
sentation of a register if possible. The compressors contain a small
amount of storage to cache compressed values.
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Figure 9: Capacity manager (CM) design. CMs track which
warps have registers allocated in the OSU and are ready to
execute instructions.

5.1 Capacity Managers (CMs)
The capacity manager is responsible for allocating OSU resources
to active and preloading warps. Figure 9 shows the components
of the capacity managers. Each CM contains state machines for
its supervised warps that tracks whether they are in an inactive,
active, or preloading state, as well as counters tracking the number
of preloads and evictions to determine when the states should
transition. They also maintain a list of inactive warps in the warp
stack. The top warp in the stack is the last one to have executed, so
its input registers are the most likely to already be in the OSU.

Each cycle, the CM determines whether there is enough free
capacity in its OSU to activate the top warp on the stack, by com-
paring the registers needed by the warp’s next region against a
counter of free registers. If there is space in the OSU, the CM places
the registers the compiler annotated to be preloaded or evicted into
queues to send to the OSU banks and updates the warp stack and
counters. There is a queue entry for each line in the OSU banks, so
there is guaranteed to be enough queue space to insert the preloads.
The OSU notifies the CM as preloads and evictions are processed,
and once all of them are completed that region’s warp is activated
and the warp scheduler can issue instructions from that warp. The
warp scheduler does not require any changes from the baseline
GTO policy.

When a region has issued its last instruction, there still may be
registers that have yet to be written back to the OSU. For example,
if the last instruction in the region is a global load, the value may
take hundreds of cycles to be written back. While it waits, any other
registers that were allocated to that region can be freed for other
warps, but the pending register must stay allocated. The capacity
manager tracks the number of outstanding writes for a region, and
keeps its state machine in a draining state until all of its registers
are written. At that point, the final registers are reclaimed and the
warp is deactivated and pushed onto the warp stack.

5.2 Operand Staging Units (OSUs)
The operand staging units store the register values for active and
preloading warps. Each OSU is made of 8 independent banks, which
are independently tracked by the CM. Each cycle, the register read
and writeback units in the execution units arbitrate for access to
the OSU banks of the warps and registers that they need; each bank
can process either a read or a write per cycle. To read a register,
the read units request a value from a bank. To write a register, the
read units request an OSU entry for the future writeback, which
the writeback units provide once the instruction has completed.

…

tags

8 banks

…

preloads per bank

free list

dirty list
clean list

lines

tags

free list

dirty list
clean list

lines

L1
read and 

write 

requests

Figure 10: Operand staging unit (OSU) design. OSUs store reg-
ister values and service register read and writes.

Figure 10 shows the structure of the OSUs. There are 8 banks in
each OSU, with registers assigned to a bank by taking the lower 3
bits of the sum of the warp ID and register number (the compiler
selects register numbers in a manner that reduces bank conflicts).
Most instructions require 2 register reads and 1 write, so it is possi-
ble for each OSU to service two instructions per cycle, necessary
to match the dual-issue capability of the GTX 980 schedulers. The
tags in each bank store the warp ID and register ID, matching those
to a 128-byte line in the data store. Each bank can complete one tag
lookup per cycle, which is used when performing a register read or
preload. The OSU maintains three lists of lines that are not being
used by an active region: the free list tracks empty entries, the clean
list tracks registers that have not changed value since being read
from L1, and the dirty list tracks lines written since their last read
from L1. When a register is allocated, an entry is used from the
free list if possible, then from the clean list if necessary, then from
the dirty list if needed, which reduces the number of writebacks
needed to the L1.

5.2.1 Preloads and Allocations. Registers are allocated in the
OSU either through preloads or writes to interior registers. Preloads
are passed from the capacity manager for each bank in parallel.
If the tag access for a bank was not used by a register read in
a cycle, the bank can process the preload by checking to see if
the register is present in the bank. If it is present, the register is
removed from the clean and dirty lists; if it is not, the bank passes
the request on to the compressor. The compressor either replies
with the full register value or with a signal that the register was
never compressed, in which case the OSU fetches the value from L1.
Cache invalidation requests are sent through this pipeline as well,
but are routed immediately to the L1 cache. For interior registers,
space is allocated when a warp writes to the register for the first
time.

5.2.2 Evictions. The register lifetime annotations inserted by
the compiler determine when register values are no longer needed.
Registers marked for invalidation are added to the free list to be
recycled. Output registers marked for eviction are placed in the
clean or dirty list, depending on the value of a dirty bit that is set
if the register is written. When a register write is the last use of a
register in a region, the OSU passes a flag to the register read unit
that reserved an entry for the write. This flag is later passed with
the write’s value, telling the OSU to mark the register as evictable
and dirty as soon as it is written.
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5.2.3 Register to Memory Mapping. The memory space for reg-
isters is allocated by cudaMalloc(), similar to other global memory
buffers. Our CUDA API detects when the first kernel is launched in
an application, and makes this allocation automatically. The register
base pointer is passed to hardware like a kernel parameter, and the
registers are laid out in memory in order of register number, such
that all the values of R0 for every warp are sequential in memory,
then all the values of R1, and so on. Because different warps tend
to access the same register numbers close to the same time, this
minimizes cache set conflicts.

The L1 cache is by default write-through and write-evict, which
would prevent dirty register values from being stored in the L1.
We modify the L1 to be write-back for register values with the
added optimization that the old value does not need to be fetched
from memory on a write, as we guarantee the write will overwrite
the entire cache line by preloading any register that may be only
partially written.

5.3 Compressor
Register compression is able to reduce the amount of memory
traffic required to supply the OSU. The goal of compression is to
reduce both the number of accesses sent to the L1 and the space
each cold register consumes, as both L1 bandwidth and capacity
are scarce. Instead of needing to fetch or evict one cache line per
register, many compressed registers can be stored in one line. As
registers move in and out of the OSU when preloaded or evicted,
a compressor matches the register value against a set of patterns
and if possible moves only a compressed representation to and
from the L1 cache. The compressor also contains a small cache for
compressed registers.

For preloads, the compressor is on the datapath between the
CM and the OSU. The register index is first matched against a bit
vector which tracks whether a register is compressed. This way, the
compressor does not need to bring in a line of compressed registers
from the L1 only to determine whether a register is compressed.
Evictions from the OSU first pass through the compressor, where
the value is matched against common patterns by a compression
unit. Any misses or incompressible evictions return to the OSU to
be sent to the memory system.

Compression is effective due to the way kernels use registers.
Previous work [31, 41] also took advantage of this with a general-
purpose compression scheme, but RegLess uses a simpler scheme
that matches a set of common use patterns. These patterns are
constants, where all lanes of the register have the same value, stride
one values, stride four values, and half-warp versions of the stride
one and four patterns. For each compressed register, 8 bytes need
to be stored for values for the half warp cases and 4 for the others.
There are 5 compression schemes and the uncompressed state, so
3 bits per register are needed to store the state. This means that
15 compressed registers can be stored in a 128-byte cache line.
Compressed lines are mapped to a separate main memory space
adjacent to the uncompressed registers.

The compressor adds one extra cycle of latency for non-compressed
preloads, to match against the bit vector. Compressed registers re-
quire two more cycles to match against the compressor’s tags then

SMs 16, 64 warps each, 4 schedulers
Warp scheduler GTO
L1 cache 48KB, 32MSHRs, data accesses bypassed [46]
L1 bandwidth one request per cycle
Memory system 2MB L2, 4 memory partitions, 224 GB/s B/W
Compressor one read or write per cycle, 16 lines internal

storage (48 per SM)

Table 1: GPGPU-sim simulation parameters

uncompress and return the value. This added delay is small com-
pared to the benefit of using less of the limited throughput to the
L1, and preloading registers ahead of time allows this latency to be
hidden. The compressor also adds similar delay when compressing
registers evicted to L1, but this latency does not affect the rate
warps become active.

5.4 Metadata Encoding
Metadata is inserted into the instruction stream by the compiler.
With 10 bits of each 64-bit instruction used for the opcode [19], 54
bits of metadata can be passed per instruction. A region starts with a
flag instruction which includes the bank usage and up to 3 preloads
and cache evictions; more metadata instructions for preloads and
cache evictions are emitted as necessary. For every 9 instructions
in a region, a metadata instruction is emitted to mark when the
last uses of registers: 1 bit to determine whether an operand is a
last use, and a second for whether it is an erase or invalidate flag.
Some regions, especially in control-flow intensive code, have few
instructions but correspondingly few preloads and invalidations,
so a single-instruction encoding is used for these that can encode
up to 2 preloads or invalidations and flags for up to 4 instructions.

6 EVALUATION
6.1 Methodology
RegLess was implemented in GPGPU-sim 3.2.2 [5], with the parame-
ters in Table 1 based on the GTX 980. Register assignment was done
by ptxas and loaded into GPGPU-sim as PtxPlus, and the compiler
infrastructure used a custom framework built upon GPGPU-sim’s
IR. Every benchmark in the Rodinia [6] benchmark suite was used,
to evaluate against many different types of GPU workloads. The
simulation accounts for the performance and energy impact of the
metadata inserted into the instruction stream.

We implemented RegLess and the baseline register file design
(including register banks, arbitration logic for register read and
write back units, and operand collectors) in Verilog and synthesized
it to a 28 nm technology netlist using Synopsys’ Design Compiler.
Clock gating was implemented in RegLess and the baseline to re-
duce power consumption during periods of inactivity. Interconnect
overhead was estimated by using Cadence’s Encounter tool to place-
and-route the designs and extract the resistance and capacitance
values of the circuits. Traces from the GPGPU-sim simulations were
used to stimulate the netlist running at 1GHz in order to produce
power metrics. Power information for added L1, L2, and DRAM
accesses came from GPUWattch [33].

We compared the register file and overall GPU energy savings
against two other register file energy saving schemes. The first is
Jeon et. al [19] (RFV), which reduces the size of the register file
by renaming short-lived registers. Our implementation assumes a
half-size register file and a negligible cost for the rename table and
metadata instructions. The other technique, in Gebhart et. al [11]
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Figure 12: Combined static and average dynamic power for
RegLess configurations, normalized to baseline RF

(RFH) uses a compiler technique to place registers in one of two
smaller structures instead of the main register file when possible;
we implemented the compiler technique and modelled the register
file and added component energy in the same process technology as
RegLess. We do not compare against works that repurpose unused
register file space for other memory spaces, such as [12, 23], because
their benefit comes through increasing occupancy or L1 capacity.

6.2 Area and Power
We evaluated multiple capacities of RegLess to find the most energy-
efficient design. The area and average power of each capacity is
shown in Figures 11 and 12. Both logic and storage area scales with
the capacity, as more logic is needed for tags and decoding. The
average power also scaled with the capacity, since more energy
was required to access the larger hardware structures. Because of
the added tag and compressor logic, the RegLess designs require
slightly more energy and power than the baseline register file scaled
to their capacity.

Although smaller capacities use less area and power, they can
also affect performance if too many registers must be transferred
to L1. Figure 13 shows the geometric mean total GPU energy and
running time for different RegLess capacities across all Rodinia
benchmarks. Small capacities like 128 registers are Pareto-optimal
in terms of energy, but our goal in RegLess was no average perfor-
mance loss, so we use the 512-register version in the remainder of
our results as one optimal tradeoff point between performance and
energy; this capacity has better worst-case performance than the
384-register version. Larger RegLess capacities see a slight speedup,
which we discuss in Section 6.4.
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Figure 13: Run time vs. GPU energy for RegLess configu-
rations, normalized to baseline. The line marks the Pareto
frontier.

6.3 Energy Savings
RegLess significantly reduces the energy consumed both by the
register structures and by the entire GPU, as shown in Figures 14
and 15. Focusing first on register structure energy, RegLess provided
a 75.3% reduction, as compared to 45.2% for RFV and 62.0% for
RFH; this added benefit came from reducing the amount of register
storage below what was possible with the previous techniques.
Because the register structures make up a significant amount of
overall GPU energy, this led to a 11% overall GPU energy savings
for RegLess, compared to 3.7% for RFV and 2.9% for RFH. When
computing the overall GPU energy for RegLess, the cost of added
L1, L2, and DRAM traffic was included. Figure 15 also shows how
RegLess approaches the upper bound for GPU energy savings from
reducing register file energy, 16.7%, which comes from maintaining
the performance of the baseline while incurring no register file
energy cost.

Compared to RFV, RegLess can maintain a register structure
of half the size of even the reduced register file because of the
synergy between the compiler and hardware manager. As well,
some register-intensive benchmarks like dwt2d and hotspot saw
performance degradation with RFV due to register pressure, as
noted in their paper [19]. Compared to RFH, RegLess is able to
eliminate the register file backing the compiler-managed buffer.
Although RFH can save energy by accessing the large main register
file significantly fewer times than the baseline, each access to that
register file is more expensive than to RegLess’ staging units. A
two-level warp scheduler is integral to the RFH technique, which
can cause performance loss relative to the baseline GTO scheduler,
causing RFH to consume more energy.

6.4 Performance
Despite the much smaller register structure, RegLess is able to main-
tain application performance. Figure 16 shows the performance
impact of RegLess on the Rodinia benchmarks relative to the base-
line with a full register file, demonstrating that RegLess can match
the baseline run time. Most benchmarks, such as b+tree, myocyte,
and streamcluster saw no performance change; many of these
have a small register working set that RegLess is able to easily man-
age. Three benchmarks (gaussian, heartwall, and hybridsort)
saw over 5% slowdown with RegLess. hybridsort and heartwall
have kernels with complex control flow structures; since registers
can often not be invalidated until their last use along all paths,
there are a large amount of potentially live registers that RegLess
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Figure 16: Run time (lower is better) for 512-register RegLess
design normalized to baseline with full RF. The geomean is
compared with RegLess with no compressor, RFV, and RFH.

must manage. gaussian has many registers live across global loads,
which means that there are fewer opportunities for scheduling
consecutive regions from the same warp. Other benchmarks, like
kmeans, leukocyte, and nn saw speedup, because RegLess acti-
vates fewer warps at a time than the baseline, increasing temporal
locality between memory accesses. Other register file work has
seen the same effect.

Figure 16 also compares the RegLess geometric mean perfor-
mance with other configurations. The first is the same size RegLess
but without the compressor, which degrades performance by 10.2%.
We also compare against the geometric mean performance of RFV
and RFH, which are slower than RegLess due to their use of a 2-
level warp scheduler. RegLess is independent of the choice of warp
scheduler, allowing it to use the baseline GTO which is known
to perform better than 2-level schedulers due to better memory
locality [56].

6.5 Register Preload Location, L1 Bandwidth
Although the memory system is the backing store for the OSUs,
Figure 17 shows that preloads very rarely need to access it. Some
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Figure 17: Location from which registers were preloaded.
0.9% of registers were preloaded from L1 and 0.013% were
preloaded from L2 or DRAM.

benchmarks, like bfs and nw never miss in the OSUs, because their
register working set is small. Others, like b+tree, hotspot, and
pathfinder use the extra capacity the compressors provide. Only
an average of 0.9% of requests miss to the L1 cache and 0.013% miss
to lower levels of the memory system. The only benchmarks that
had a non-negligible number of added L2 accesses were kmeans
(0.5% added requests), hybridsort (1.0%), and dwt2d (2.6%). For
dwt2d and others, this is due to a large number of simultaneously
live registers, few of which are compressible.

Figure 18 shows the average amount of L1 bandwidth consumed
by transfers to the compressor andOSU per SMduring the execution
of each benchmark, out of the total L1 cache bandwidth of 1 request
per cycle. On average, fewer than 0.02 requests per cycle were used
for RegLess transfers. The benchmarks that do not miss in the OSU
in Figure 17 do not consume any L1 bandwidth. Both hybridsort
and srad_v2 issue more stores to L1 than loads; this occurs when
there are redefinitions of a register on a control path before the
register is read. For hybridsort, conservative liveness analysis
again meant that more register values had to be stored than were
later read.
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6.6 Region Sizes
Figure 19 shows the average number of input registers, average
concurrent live registers, and standard deviation of concurrent live
registers for each benchmark. The number of registers reserved
for a region in an OSU is equal to the number of concurrent live
registers in that region. Non-overlapping short-lived registers can
share the same allocation, and once an input is read for the last
time, its allocation can be reused by a short-lived register. Therefore,
across the benchmarks, not only is the number of concurrent live
registers is consistently larger than the number of input registers,
but each entry made in the OSU can be reused for several registers,
showing that most register lifetimes are inside a region.

The standard deviations show that the region size varies substan-
tially within each benchmark. Since the registers in each region
cannot be negative, the standard deviations show a larger variation
than if that were possible. The heterogeneity in region sizes allows
warps to have different-sized register allocations at different points
in execution. The region creation algorithm tends to creates smaller
regions in memory-intensive or control-intensive phases and larger
regions when the workload is compute-intensive, leading naturally
to a mixture of different region sizes. Several of the benchmarks
like dwt2d, hotspot, and myocyte had regions with 20 or more
concurrent live registers.

Table 2 shows the average number of instructions per region
and the average number of cycles each region was active for each
benchmark. Larger regions allow there to be more interior registers,
and longer-running regions reduce the rate at which L1 transfers
are made. The main factors that limit region size are control flow
and the restriction that global loads and uses cannot be in the same
region. Therefore, compute-intensive benchmarks like dwt2d, lud,
and nw have the largest region sizes, whereas memory-intensive

Insns.

Cycles

Insns.

Cycles

Insns.

Cycles

b+tree 3.7 150 hybridsort 6.5 379 nn 6.3 940
backprop 6.7 323 kmeans 3.9 993 nw 10.8 78
bfs 3.3 60 lavaMD 7.5 1601 particle_filter 10.0 20
dwt2d 9.5 457 leukocyte 7.7 297 pathfinder 4.9 72
gaussian 8.1 1207 lud 16.0 816 srad_v1 9.1 350
heartwall 4.6 32 mummergpu 6.4 240 srad_v2 6.9 323
hotspot 6.4 75 myocyte 9.3 120 streamcluster 4.3 16

Table 2: Average number of static instructions per region
and average dynamic cycles per region

benchmarks like bfs have smaller region sizes. There is large vari-
ation in how long regions execute, influenced by the number of
instructions in a region and how many registers active regions use.
When each warp has a large OSU allocation, fewer warps will be
active, so active warps will make more progress than if more warps
with smaller allocations were active. Therefore, memory-intensive
bfs, with small regions with few registers each, has a smaller exe-
cution time per region, whereas lavaMD with larger regions with
many registers switches regions less frequently.

7 RELATEDWORK
CPU virtual register files and instruction clustering: Oehmke
et al. [47] created a virtual context architecture for CPUs that ser-
viced registers from cache of a register space in memory. Because
the amount of data in a GPU’s register working set is much larger
because many threads are active at the same time, our technique
requires more active management of the register cache. Roth [57]
describes techniques for releasing virtual registers when they are
no longer needed. Architectures such as TRIPS [13, 58] and others
using block-structured ISAs, described by Melvin et al. [43], have
executed blocks of code similar to our regions. Work such as by
Ponomarev et al. [53] have diverted short-lived values from han-
dling like other registers. Yan et al. [68] allow short-lived values to
be communicated through a CPU’s forwarding network. We use
regions as an overlay of a traditional ISA.

GPU register caching and RF size reduction: Vijaykumar et
al. [63] oversubscribe resources, including registers, by annotating
kernel phases. Our work focuses on reducing the size of hardware
structures, and uses a more precise set of registers that need to be
present. RegLess would be able to oversubscribe the register file
without any design changes. Gebhart et al. [9] proposed a register
cache in front of the main register file and a 2-level scheduling
scheme to control access to the cache, to save the dynamic power
of accessing the main register file. Other work by Gebhart et al. [10,
11] sorted registers at compile time into a 3-level register storage
hierarchy, also to save dynamic power. The novel contribution
of our work is eliminating the main register file as a level in the
register hierarchy. Gebhart et al. [12] also propose sharing the
same SRAM structures between registers, shared memory, and L1
cache. Jeon et al. [19] allow new values to replace other warps’ dead
values in the register file, allowing the size of the register file to be
reduced. By removing the main register file and caching the active
set, our technique reduces the register size to the minimum needed
to maintain performance.

Compiler-assisted GPU scheduling: Park et al. [49] use com-
piler annotations so the warp scheduler can prioritize warps with
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that will soon issue a load. Wu et al. [66] expose hardware schedul-
ing decisions on GPUs to programmers. Xie et al. [67] use a compiler
to make optimal register allocation and thread throttling decisions.
We add a layer of scheduling that makes dynamic decisions based
on static analysis. Hsieh et al. [17] use compiler analysis to de-
termine offload candidates for near-data processing. Li et al. [36]
use compiler analysis to place data in different on-chip memory
resources.

Resource-awareGPU scheduling: Jog et al. [26] classifywarps
into short and long latency to determine memory scheduling pol-
icy. Jog et al. coordinate warp scheduling with DRAM bank-level
parallelism [24] and prefetching [25]. Li et al. [37] allocate cache
space to a set of prioritized warps. Narasiman et al. [45] describe
two-level scheduling to allow for larger warp sizes. Pichai et al. [52]
show the need to coordinate warp scheduling and MMU designs.
Pai et al. [48] use elastic kernels in order to better utilize registers.
Gregg et al. [16] merge kernels to increase register utilization. Lee
et al. [32] coordinate warp priority and access to cache resources,
Liu et al. [40] prioritize warps to reduce time waiting for barriers.
Kayiran et al. [27] adjust TLP for highest performance. Rogers et
al. [55] use variable warp sizing and warp ganging to decrease the
impact of memory divergence. Ausavarungnirun et al. [4] change
cache and memory controller policies based on warp divergence.

Divergence-aware compiler techniques: ElTantawy et al. [8]
track register dependencies for control divergent threads separately
in hardware, and use compiler analysis [7] to analyze control di-
vergence to eliminate deadlocks. Rhu et al. [54] analyze divergence
patterns to allow for better SIMD lane permutation. Anantpur et al.
[3] transforms control divergence using linearization. Jablin et al.
[18] use traces for instruction scheduling on GPUs.

Value compression and scalarization: Lee et al. [31] com-
press register values using base-delta-immediate encoding intro-
duced by Pekhimenko et al. [51], which reduces the number of
register file banks needed to load and store registers. Gilani et al.
[14] propose a GPU architecture with scalar units and 16-bit regis-
ter reads. Abdel-Majeed et al. [2] use the redundant computations
done between lanes for error detection. Kim et al. [30] exploit value
structure using an affine functional unit. Stephenson et al. [59] show
that a large fraction of register writes are constant across warps and
threads. Pekhimenko et al. [50] compress data over the GPU inter-
connect while minimizing the number of toggles. Vijaykumar et al.
[64] propose using excess GPU computation resources for memory
compression. Keckler et al. [29] propose temporal SIMT, where
scalar computations do not need to be computed by all threads.

Register file implementation: Abdel-Majeed et al. [1] reduce
register file dynamic and leakage power by adding a drowsy state
to the storage circuits and only reading register values for active
lanes in a warp. Jing et al. [20] propose register file bank scheduling
techniques that reduce bank conflicts. Namaki-Shoushtari et al.
[44] power gate unused register file banks. Other work by Jing
et al. [22] implemented the register file using eDRAM instead of
SRAM and proposed refreshing the DRAM during bank bubbles
[21]. Mao et al. [42] and Wang et al. [65] implement a register file
using racetrack memory, and Goswami et al. [15] implement it
using resistive memory. Tan et al. [61] implement the GPU register
file using STT-RAM for energy savings, and Yu et al. [69] implement
it with an SRAM-DRAM hybrid memory. Tan et al. [60] develop

a method for classifying registers as fast or slow due to process
variation, and Liang et al. [39] introduce a variable-latency register
file to mitigate process variation. Li et al. [38] implement register
files using a hybrid CMOS-TFET process. Our design because of its
small size can be implemented using conventional techniques.

Register file voltage: Kayiran et al. [28] tune down perfor-
mance of GPU register file and operand collector components to
save energy. Tan et al. [62] reduce GPU register file energy with
aggressive voltage reduction. Leng et al. [34, 35] throttle the reg-
ister file when it causes voltage droop to reduce the GPU voltage
guardband.

8 CONCLUSION
The register file is one of the structures on a GPU that consumes
the most power. Our technique, RegLess, can replace the register
file with a smaller staging unit by actively managing the contents
at run time with the help of compiler annotations. The compiler
divides the kernel into regions and annotates input register and the
points where register values are used for the last time. At run time,
the hardware allocates capacity in the staging unit just in time for
a region to begin execution. Short-lived registers spend their entire
lifetime inside one region’s allocation. Longer-lived registers can
be evicted to memory, so the capacity manager must anticipate
they will be used in order to load them before a region becomes
eligible to execute. When transferred to the L1, a compressor can
reduce the amount of storage needed for a register. Using RegLess
instead of a full register file reduced register access energy by 75%
and total GPU energy by 11%.
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