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ABSTRACT

As the size of Deep Neural Networks (DNNs) continues to grow to
increase accuracy and solve more complex problems, their energy
footprint also scales. Weight pruning reduces DNN model size and
the computation by removing redundant weights. However, we im-
plemented weight pruning for several popular networks on a variety
of hardware platforms and observed surprising results. For many net-
works, the network sparsity caused by weight pruning will actually
hurt the overall performance despite large reductions in the model
size and required multiply-accumulate operations. Also, encoding
the sparse format of pruned networks incurs additional storage space
overhead. To overcome these challenges, we propose Scalpel that
customizes DNN pruning to the underlying hardware by matching
the pruned network structure to the data-parallel hardware orga-
nization. Scalpel consists of two techniques: SIMD-aware weight
pruning and node pruning. For low-parallelism hardware (e.g., mi-
crocontroller), SIMD-aware weight pruning maintains weights in
aligned fixed-size groups to fully utilize the SIMD units. For high-
parallelism hardware (e.g., GPU), node pruning removes redundant
nodes, not redundant weights, thereby reducing computation without
sacrificing the dense matrix format. For hardware with moderate
parallelism (e.g., desktop CPU), SIMD-aware weight pruning and
node pruning are synergistically applied together. Across the mi-
crocontroller, CPU and GPU, Scalpel achieves mean speedups of
3.54x, 2.61x, and 1.25x while reducing the model sizes by 88%,
82%, and 53%. In comparison, traditional weight pruning achieves
mean speedups of 1.90x, 1.06x, 0.41x across the three platforms.
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1 INTRODUCTION

Deep Neural Networks (DNNs) have become ubiquitous in various
application domains including computer vision [15], natural lan-
guage processing [11] and speech recognition [4]. Recent evidence
reveals that the network depth is of crucial importance [22, 38].
Deeper models with more parameters greatly improve the accuracy
of DNNs. Pioneering networks from the 1990’s used less than 1M
parameters for classification of handwriting digits [32]. Two decades
later, AlexNet [29] and VGG [38] employ 61M and 138M parame-
ters, respectively, to do classification on 1000 image categories of
ImageNet. Large DNN models with lots of internal redundancy can
achieve high accuracy, but at the cost of immense computation and
energy requirements.

Weight pruning compresses DNN models by removing their in-
ternal redundancy. One such method, Deep Compression [19, 20],
reduces the number of weights in AlexNet and VGG-16 by 9x and
13x, respectively. The compressed networks achieve 3-4x layerwise
speedup on both CPUs and GPUs.

To investigate weight pruning more deeply, we reimplemented
Deep Compression and measured the performance of five popular
networks across three hardware platforms (ARM Cortex-M4 Micro-
controller, Intel Core i7-6700 CPU, NVIDIA GTX Titan X GPU).
We discovered surprising results. For 8/15 configurations, the per-
formance of the networks after weight pruning was actually worse
than before pruning. Pruning hurts performance despite removing
an average of 80% of the weights. As an example, the execution
time of AlexNet on the CPU increases by 25% even though 89%
of its weights are removed. For the remaining configurations, a
performance gain was observed with weight pruning, but that perfor-
mance speedup lagged far behind the actual reduction in multiply-
accumulate (MAC) operations. For instance, weight pruning can
remove 76% of the MAC operations in LeNet-5 [32], but the ex-
ecution time on the microcontroller is only reduced by 16%. For
the tested hardware, a performance loss was consistently observed
on the GPU while modest performance gains were observed on the
microcontroller. The CPU yielded mixed results with some networks
achieving a gain and others a loss.

To understand these counter-intuitive results, we need to exam-
ine weight pruning in more depth as well as the structure of the
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networks and the interplay of both with the underlying hardware.
DNNSs consists of two types of layers: fully-connected layers and
convolutional layers. They perform matrix-vector and matrix-matrix
multiplication, respectively. Weight pruning techniques [19, 21, 31]
measure the importance of each weight and remove those deemed
unimportant, resulting in both memory storage and computation
reductions. After weight pruning, redundant weights and related
MAC operations are removed. The matrix computation in the pruned
networks becomes sparse, thus the remaining weights are stored in a
sparse matrix format.

The sparsity of pruned networks often leads to a performance de-
crease in DNN computation. Sparse weight matrices lose the regular
structure of dense matrices, and sparse matrix multiplication needs
extra computation to decode the sparse format. The performance
impact of weight pruning is heavily intertwined with the under-
lying hardware. On microcontrollers, weight pruning consistently
improves DNN performance. The simple architecture of microcon-
trollers cannot hide the memory access latency. The reduction in
model size can, therefore, make up for the computation inefficiencies
of sparse matrix multiplication. However, the reduction in execu-
tion time is still much lower than the computation reduction. For
GPUs, weight pruning consistently loses performance. The sparse
matrix computation cannot make optimal usage of the supported
hardware, e.g. memory coalescing. Also, dense matrix optimizations,
like matrix tiling, are less effective.

For CPUs, the effect of weight pruning varies for different net-
works and depends on the computation breakdown between fully-
connected and convolutional layers. For fully-connected layers,
weight pruning can improve performance because the total memory
footprint is critical to matrix-vector multiplication. But for convolu-
tional layers that perform matrix-matrix multiplication, the matrix
data will be reused multiple times, and there is limited benefit from
the memory footprint reduction. Therefore, the inefficiencies in-
herent in the sparse matrix format will hurt the performance of
convolutional layers on CPUs. In addition to the performance de-
crease, another challenge for weight pruning is that a significant
amount of data is necessary to record the sparse matrix structure.
Each nonzero weight needs one extra column index to record its
position. This extra overhead reduces the impact of weight pruning
across all hardware platforms.

To address these challenges, we propose Scalpel to customize
DNN pruning to the underlying data-parallel hardware structure.
Scalpel consists of two methods: SIMD-aware weight pruning and
node pruning. It creates a pruned network that can be efficiently
executed on the target hardware platform. For hardware with low
parallelism like microcontrollers, SIMD-aware weight pruning re-
moves redundant weights but forces the remaining weights to be in
groups. All groups are sized to the SIMD width, thereby, improv-
ing performance by ensuring the SIMD units are fully utilized. It
also decreases the remaining model size since weights in the same
group can share the same column index. For hardware with high
parallelism like GPUs, node pruning removes redundant nodes in
DNNs by using mask layers to dynamically find out and remove
unimportant nodes. Removing nodes maintains the dense format of
weight matrices, so the computation will not suffer from the sparsity
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caused by traditional weight pruning methods. For hardware plat-
forms with moderate parallelism like desktop CPUs, SIMD-aware
weight pruning and node pruning can be synergistically combined
and applied together to reduce both execution time and model sizes.
The pruned DNN models generated by Scalpel do not suffer a loss
in prediction accuracy compared with the original models.

This paper makes the following contributions:

e We demonstrate that DNN weight pruning is not a panacea,
but rather its impact is closely coupled to both the structure
of the network (fully-connected vs. convolutional layers)
as well as the data-parallel structure of the target hardware.
The blind application of traditional weight pruning often
results in performance loss, hence a closer examination of
this topic is warranted.

e We propose Scalpel that creates a pruned network that is
customized to the hardware platform that it will execute.
Scalpel provides a method to improve the computation
speed and reduce the model sizes of DNNs across pro-
cessors ranging from microcontrollers to GPUs with no
accuracy loss.

e SIMD-aware weight pruning is introduced as a refinement
to traditional weight pruning. It puts contiguous weights
into groups of size equal to the SIMD width. Extra data for
recording the sparse matrix format is reduced along with
providing higher utilization of SIMD units.

e A new method, node pruning, is proposed to compress the
DNN model by removing redundant nodes in each layer. It
does not break the regular structure of DNNSs, thus avoid-
ing the overheads of sparsity caused by existing pruning
techniques.

e We compare the performance of Scalpel to prior DNN
pruning techniques across three hardware platforms: micro-
controller, CPU and GPU. Across these hardware platforms,
Scalpel achieves geometric mean performance speedups
of 3.54x, 2.61x, and 1.25x while reducing the model sizes
by 88%, 82%, and 53%. In comparison, traditional weight
pruning achieves mean speedups of 1.90x, 1.06x, 0.41x
across the three platforms.

2 BACKGROUND AND MOTIVATION

Deep neural networks (DNN5s) often include a significant amount
of redundant weights. Weight pruning with retraining can safely
remove those redundant weights with no reduction in the prediction
accuracy.

2.1 DNN Weight Pruning

The fundamental building block of all DNNs is the neuron. A neu-
ron combines its weighted inputs and the bias value to determine
the output activation via the activation function. DNNs integrate
convolutional (CONV) layers and fully-connected (FC) layers into
an end-to-end multi-layer network [22]. Figure 1 shows a typical
DNN used for image classification. It consists of two CONV layers
followed by two FC layers. In FC layers, all input values are con-
nected to every neuron. For CONV layers, as shown in Figure 1,
they consist of a stack of 2D matrices named feature maps. The
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Figure 1: Deep Neural Networks (DNNs) structure. DNNs inte-
grate convolutional layers (CONV) and fully-connected layers
(FC) into an end-to-end structure.
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Figure 2: (A) Dense weight matrix; (B) Sparse weight matrix;
(C) Compressed Sparse Rows (CSR) format for sparse matri-
ces.

convolution operation is performed between the input feature maps
and the weights to generate the output.

FC layers perform matrix-vector multiplication, and CONV layers
perform matrix-matrix multiplication. Weights of each layer can be
grouped into a weight matrix. For FC layers, the input values are
stored in a 1D vector (input vector). Then, the weight matrix can
be multiplied with the input vector to generate the output which is
also a 1D vector. For each CONV layer, its input is effectively a
3D array. The image-to-column (im2col) function will rearrange the
3D array into a 2D matrix (input matrix). Then, the weight matrix
will be multiplied with the input matrix to generate an output matrix
which can be converted back to a 3D array for the next layer.

As an example, FC layers perform the computation

Y=/(W-X) M
where Y is the output activation vector, W is the weight matrix
and X is the input vector. f is the element-wise non-linear activa-
tion function. Bias values can be appended to weights matrix with
corresponding input values equal to 1 and, therefore, are neglected.

As shown in Figure 2, weight pruning removes redundant weights
and the dense weight matrix W (Figure 2(A)) is converted into a
sparse matrix W*P4¢ (Figure 2(B)). Every output element y; € Y
should be calculated as

yi = f( Yy wirx)) )
wiP 20, j€[0,n—1]
where multiply-accumulate operations with zero weight have been
removed. n is the number of columns in W.

After weight pruning, the input vector or input matrix is still dense
for each layer. The FC and CONYV layers need to perform sparse
matrix-vector and sparse matrix-matrix multiplication, respectively.

Deep Compression [19, 20] provides a typical weight pruning
technique. Weights with absolute values lower than the thresholds
are removed, and the remaining network is retrained. The steps of
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Figure 3: Relative execution time (Time Microcontroller/ CPU/
GPU), model sizes, and MAC operations of the networks
pruned with the traditional pruning technique in Deep Com-
pression. NIN and AlexNet are not tested on the microcontroller
due to its limited storage size.

removing weights and retraining are iteratively applied to generate
the pruned DNN model.

2.2 Challenges

Weight pruning can dramatically decrease DNN model sizes and the
number of MAC operations. However, several challenges exist for
traditional DNN pruning techniques.

The first challenge is that the sparse weight matrix spends too
much extra data to record the sparse matrix format. For example, as
shown in Figure 2 (C), the compressed sparse rows (CSR) format use
three 1-D arrays (A, IA, JA) to store a m x n matrix W. A holds all
the nonzero values. IA records the index into A of the first nonzero
element in each row of W. JA stores the column indexes of the
nonzero elements. Since the index array JA has the same size with
the data array A, more than half of the data in the CSR format is
used to store the sparse matrix format.

The second challenge is that weight pruning can hurt the DNN
computation performance. Figure 3 shows the relative execution
time, model sizes and MAC operations of network models pruned
by the weight pruning method in Deep Compression with respect
to the original DNN models. The first three bars show the relative
execution time on the microcontroller, CPU and GPU. As shown
in the figure, the relative execution time is much higher than the
relative model sizes and MAC operations. Weight pruning hurts the
performance of LeNet-5 (on GPU), ConvNet, NIN and AlexNet,
which causes an execution time increase for these networks.

We generate a breakdown of the execution time for the dense
and the sparse DNN models on the CPU, as shown in Figure 4. The
expected execution time of the sparse network (Expected) shows the
relative MAC operations remaining, which ignores the overheads of
the sparse storage implementation. Execution times are presented
relative to the unpruned baseline (Dense). The real execution time of
the FC layers is significantly reduced by traditional weight pruning,
which is similar to the results shown in the previous work [19]. For
both FC and CONYV layers, there is a large gap between the real
execution time of the pruned networks and the expected values. The
performance gains are lagging significantly behind the reduction in
MAC operations. Lastly, weight pruning is ineffective for CONV
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Figure 4: Execution time breakdown of the original networks
(Dense) and the pruned networks (Sparse). The expected exe-
cution time of pruned networks (Expected) shows the relative
MAC operations remaining. The second CONYV layer (conv2) in
AlexNet is tested.

layers, leading to substantial increases in execution time for ConvNet,
NIN and AlextNet.

The gap between real and expected execution times occurs be-
cause the sparse weight matrices lose the regular structure of their
dense counterparts. For example, all rows have the same size in
dense matrices, which does not hold for sparse matrices. Assume
the sparse weight matrix is stored in CSR format. To perform sparse
matrix-vector multiplication, as the dashed lines in Figure 2 show,
for each nonzero weight stored in array A, we first need to load the
corresponding column index from JA and use that to load the input
value from the input vector. This indexing of input values requires ad-
ditional computation and memory accesses. Worse yet, since sparse
matrices lose the regular structure, many optimizations applicable
to dense matrices, e.g. matrix tiling, cannot be applied. For CPU
computation, FC layers do not suffer as much from these reasons
because they have a much lower computation/memory access ratio
compared with CONV layers.

To understand the impact of pruning on memory access behavior
in more detail, we consider a representative layer from AlexNet, the
second layer (conv2). This layer performs a matrix-matrix multiplica-
tion because it is a CONV layer. Figure 5 shows the numbers of cache
accesses and cache misses for this layer broken down by loads and
stores. We measure three cases: original dense layer (Dense), sparse
layer with 80% (Sparse-0.80) and 60% (Sparse-0.60) of the weights
removed. We profile the computation with Callgrind. Sparse-0.60
represents the actual pruning rate for this layer, while Sparse-0.80
represents the pruning rate necessary to reach the break-even per-
formance point. As shown in the figure, weight pruning leads to
large increases in L1 D-Cache load misses, stores, and store misses
due to the sparse representation. With 60% pruning, these overheads
are not counter-balanced by the computation reduction, hence a net
performance loss is observed. At 80% pruning, the combination of
modestly lower memory access overheads and higher reductions
in computations results in break-even performance. Pruning rates
of more than 80% are necessary to overcome the memory access
overhead for this layer and achieve a net performance gain.

551

J. Yuet al.

[ L1 D-Cache Load I L1 D-Cache Store
[0 L1 D-Cache Load Miss I L1 D-Cache Store Miss

=
o
~
T

= = e

o o o
» w o
T T T

=
o
w
T

=
o
N

Num of Cache Access / Miss

Dense Sparse-0.80 Sparse-0.60

Figure 5: Numbers of cache access and cache miss in the com-
putation of the second CONY layer (conv2) in AlexNet on Intel
Core i7-6700 CPU. The original dense layer (Dense), the sparse
layer with 80% (Sparse-0.80) and 60% (Sparse-0.60) of weights
removed are tested. The matrices are randomly generated.
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Figure 6: Overview of Scalpel.

3 SCALPEL

To address the challenges from traditional pruning techniques, we
propose Scalpel in this paper. It consists of two methods: SIMD-
aware weight pruning and node pruning. Scalpel customizes the
DNN pruning for different hardware platforms based on their paral-
lelism.

3.1 Overview

Figure 6 shows the overview of Scalpel. The first step of Scalpel
is profiling and determining the parallelism level of the hardware
platform. All general-purpose hardware platforms are divided into
three categories based on their internal parallelism: low parallelism,
moderate parallelism, and high parallelism.

For low-parallelism hardware, SIMD-aware weight pruning is
applied. It prunes weights in groups and forces the remaining weights
to be in aligned groups. All groups have the same size as the SIMD
width and the weights in the same group share the same column
index, reducing the overhead of the sparse format.

For high-parallelism hardware, node pruning is applied. It re-
moves the DNN redundancy by removing redundant nodes instead
of redundant weights. Removing nodes does not break the regular
structure of dense weight matrices.
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Table 1: Hardware platforms with different parallelism.

Parallelism
Low Moderate High
Example | 0T | cpy GPU
controller
Memory No cache Deep cache | High bandwidth /
Hierarchy hierarchy long latency
Memory | ~100KB | ~8MB
Size SRAM | SRAM 2-12GB DRAM

For hardware with moderate parallelism, we use a combination of
SIMD-aware weight pruning and node pruning. SIMD-aware weight
pruning is employed for fully-connected layers and node pruning is
applied to convolutional layers.

By customizing pruning technique for different hardware plat-
forms, Scalpel can reduce both the DNN model size and execution
time across all the general-purpose processors without accuracy loss
for DNNs.

3.2 Hardware with Different Parallelism

We divide general-purpose processors into three main categories
based on their parallelism level. Table 1 demonstrates the basic
characteristics of these three categories.

Low Parallelism: Low-power processors like microcontrollers
usually have a low parallelism. These processors contain in-order
cores with a "shallow" pipeline and have no cache. They also have
very limited storage. SIMD units are employed to accelerate the
computation, but their width is still limited. As an example, ARM
Cortex-M4 has a 3-stage in-order pipeline and a 2-way SIMD unit.
The test board we use only has 128KB SRAM and 512KB flash.

Moderate Parallelism: Out-of-order processors, for example In-
tel Core 17-6700 CPU, can be classified as moderate-parallelism
hardware. In addition to SIMD units, the instruction-level paral-
lelism (ILP) and the memory-level parallelism (MLP) are utilized to
accelerate the computation. To fully utilize ILP and MLP, moderate-
parallelism processors require a deep cache hierarchy. They are
usually connected to a large off-chip DRAM and, therefore, the
storage size is sufficiently large to be considered unlimited.

High Parallelism: High-parallelism hardware like GPUs exploits
thread-level parallelism (TLP) to further improve the parallelism to
accelerate the computation. It focuses on high computation through-
put and, therefore, DNN model sizes are not critical. Applications
for high-parallelism hardware tend to be bandwidth sensitive, which
requires a memory hierarchy with high bandwidth. Like moderate-
parallelism hardware, the storage size can be considered unlimited.

Multiple inputs for the same DNN can be processed in a batch to
reduce the memory access. The weight matrices can be loaded once
and shared for the computation of multiple different inputs. Batch
processing will increase the computation throughput but also the
latency. On low-parallelism and moderate-parallelism hardware, we
set the batch size to 1 because real-time applications need the DNN
computation to be completed within a short latency. However, for
high-parallelism hardware, the computation is throughput-driven,
and DNN computation with a large batch size can still meet the
latency requirement. In this case, we set the batch size to 50 for
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Figure 8: (A) Weights grouping; (B) Sparse weight matrix after
pruning weight groups; (C) Modified CSR format for SIMD-
aware weight pruning.

DNN computation on high-parallelism hardware. Han et al. [19] set
batch size to 1 for GPU testing, which is actually unpractical.

3.3 SIMD-Aware Weight Pruning

For low-parallelism hardware, we apply SIMD-aware weight prun-
ing to DNNs. The main steps of SIMD-aware weight pruning are
shown in Figure 7. We use ARM Cortex-M4 microcontroller as an
example of low-parallelism hardware. It has a 2-way SIMD unit for
16-bit fixed-point numbers.

The first step is weights grouping. All the weights are divided
into aligned groups with the same size equal to the supported SIMD
width. Figure 8 (A) shows a simple example of weights grouping.
All groups have a size of 2 which is the SIMD width of Cortex-M4.

The second step is pruning weight groups. We calculate the Root-
Mean-Square (RMS) of each group and use it to measure the impor-
tance of weight groups. Groups with RMS value below a threshold
are removed. Figure 8 (B) shows an example of the weight matrix
after pruning weight groups. Then the pruned weight matrix will
be retrained. The steps of pruning weight groups and retraining
DNN are iteratively applied until the retrained DNN cannot keep the
original accuracy.

SIMD-aware weight pruning works layer by layer. The execution
time for each layer will be generated at the beginning, and the
pruning process starts with the layer of the highest execution time.
Every time after retraining the pruned DNN, the execution time of
each layer will be updated. The new slowest layer will be pruned
in the next iteration if the retrained DNN does not lose the original
accuracy. We will not prune the layers which have low redundancy
and cannot get a performance improvement through the SIMD-aware
weight pruning.
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Figure 9: Relative execution time of sparse matrix multi-
plication on ARM Cortex-M4 with respect to the original
dense matrix-vector or matrix-matrix multiplication. MV/MM-
Sparse show the results for sparse Matrix-Vector (MV) and
Matrix-Matrix (MM) multiplication, respectively. MV/MM-
SIMD Sparse shows the corresponding performance with
nonzero elements grouped and aligned as SIMD-aware weight
pruning does. All matrices have the size of 100 x 100 and are
randomly generated.

During SIMD-aware weight pruning, we need to adjust the dropout
ratio. Dropout is a widely used technique for preventing overfit-
ting [39]. During network training, dropout is implemented by keep-
ing a neuron active with some probability p, or setting it to zero
otherwise. This procedure can be regarded as sampling the neu-
ral network, and only the sampled part of the network needs to be
updated through this iteration of training. For next iteration, the
network should be re-sampled. SIMD-aware weight pruning will
remove connections and reduce the DNN model capacity. We use
the same technique with Han et al. [20] to adjust the dropout ratio.
Assuming for the layer i, C; is the number of the connections where
Cij, is for the original network and C;, is for the remaining network.
We can adjust the dropout ratio as

C.
D, =D, A/ Cizr 3)

where D, is the original dropout ratio and D, is the adjusted dropout
ratio for retraining the remaining network after pruning weight
groups.

After SIMD-aware weight pruning, we use a modified CSR format
to record the sparse weight matrices. The modified CSR format,
shown in Figure 8(C), includes three 1-D arrays: A’, IA’ and JA'.
A’ stores all the nonzero weight groups with the original order.
TA’ records the index into A’ of the first nonzero element in each
row of W. JA’ stores the column index of each group. Only the
column index of the first element in each group is recorded. In real
computation, as the dashed arrows in Figure 8 show, we can load
the nonzero weights in the array A’ in groups. Then only one index
from array JA is used to load the corresponding input values. Since
the input values are now also in contiguous addresses, they can be
loaded with a single SIMD instruction. With the input values and
weights loaded, the SIMD unit then performs the computation.

SIMD-aware weight pruning can reduce both model sizes and
execution time of DNNs on low-parallelism hardware. Using one
column index for each weight group can dramatically reduce the
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Figure 10: Relative execution time for sparse matrix-matrix
multiplication (Sparse) on NVIDIA GTX Titan X with respect
to original execution time (Dense). The matrices have the sizes
of 4096x4096 and 4096x50.

storage size of the indexes array JA’ and the entire model size.
For DNN computation, loading multiple contiguous input values
with one SIMD instruction can reduce the computation instructions.
The reduction in model size can also reduce the memory footprint.
Therefore, the DNN computation performance can be improved with
SIMD-aware weight pruning.

Figure 9 shows the peak performance benefit from SIMD-aware
weight pruning. The x-axis is the pruning rate which means how
much weights we can remove from the weight matrix. For sparse
matrix-vector (MV-Sparse) and matrix-matrix (MM-Sparse) mul-
tiplication, we need to remove more than 68% and 73% of the
weight matrix to decrease the execution time, respectively. However,
with SIMD-aware weight pruning (MV-SIMD Sparse / MM-SIMD
Sparse), we only need to remove 48% and 56% of the weights.

3.4 Node Pruning

For hardware with high parallelism, node pruning is employed to
remove the redundancy in DNNs. We use NVIDIA GTX Titan X
GPU as an example of high-parallelism hardware.

Traditional weight pruning techniques will decrease the perfor-
mance of all DNN layers on high-parallelism hardware. Figure 10
shows the relative execution time of sparse matrix-matrix multipli-
cation on GPU against the pruning rate. The two matrices have the
sizes of 4096x4096 and 4096x50. It estimates the performance of a
fully-connected layer with 4096 inputs and 4096 outputs. The com-
putation batch size is set to 50. As shown in the figure, more than
96% of the weights need to be removed to achieve a performance
speedup. However, without a loss of accuracy, it is unpractical to
remove that much weights from DNN layers. The matrix sparsity
caused by weight pruning will hurt the computation performance of
all layers.

To avoid this performance decrease, node pruning removes DNN
redundancy by removing entire nodes instead of weights. It uses
mask layers to dynamically find out unimportant nodes and block
their outputs. The blocked nodes are removed after the training of
mask layers. After removing all redundant nodes, mask layers are
removed, and the network is retrained to get the pruned DNN model.

One neuron in the fully-connected layers or one feature map in the
convolutional layers is considered as one node. Removing nodes in
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Figure 11: Main steps of node pruning.

DNNSs only shrinks the size of each layer but will not incur sparsity
into the network. The remaining DNN model after node pruning
keeps the regular dense DNN structure and will not suffer from the
overheads of network sparsity.

Figure 11 shows the main steps of node pruning. First, we will add
a mask layer for each DNN layer except the input and output layers.
Figure 12 gives an example of a mask layer for fully-connected
layers. The output values of layer A need to go through the mask layer
A’ before propagated to the next layer. Each node in the mask layer
holds two parameters o and f3. ¢ is a boolean variable (¢t € {0,1})
and f3 is a floating number between 0 and 1 (0 < 8 < 1). Let array Y
and Y’ to be the output activation array of the original layer A and
the mask layer A’. For y} € Y/ and y; € Y, we have

Vi =0 yi (C))
With ¢; set to 0, the corresponding node can be considered as re-
moved because the output y; is fixed to 0.

For convolutional layers, the activations in the feature map i will
go through the same mask node i and produce a masked feature map
keeping the same size. Therefore, convolutional layers are pruned at
a granularity of feature maps, and we are considering each feature
map as one node.

The next step is to train the mask layers. For a single node 7 in the
mask layer, o; and f3; are both initialized to 1:

alo=1, Bilo=1.0 5)
In training iteration k > 1, ¢ is calculated as
I, T+e<Bil
Gl = Gilk—1, T <PBile <T+e (©6)
0, Bilk<T

where T (0<T'<1) is a threshold shared by all the mask layers. € is
a small value to make training more stable that ¢; will not "ping
pong" between 0 and 1. f3; is updated through back-propagation and
truncated to [0, 1].

We use the L1 regularization to control the number of nodes
got removed. Regularization is used to penalize the magnitude of
parameters. For the mask layer, the penalty of each parameter f3; can
be calculated as

Ri 11 =AlBi| = AP (7
where A is the weight decay (regularization strength). It forces f3; to
be close to zero. If the corresponding node is not important, 3; will
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®2=1p A3= OA LayerA’

A
Figure 12: Mask layers. Node A-3 with 3 = 0 can be removed.
The whole mask layer A’ will be removed after pruning all re-
dundant nodes.

A-2 A-3¢ _‘,-

be decreased to be lower than threshold 7" and the node is temporarily
removed. In case some removed nodes are found important, they
will be retained through the DNN training. Since the threshold 7 is
fixed in node pruning, increasing the weight decay A will increase
the penalty for §; and decrease more parameters 3 to be lower than
T. More nodes will, therefore, be removed.

Node pruning also needs to adjust the dropout ratio. Different
from SIMD-aware weight pruning, the dropout ratio is dynamically
updated during the step of training mask layers. In iteration k, the
dropout ratio is calculated as
M ®
Nlo
where Dropout |y is the initial dropout ratio, N| is the initial number
of nodes and N|; is the number of remaining nodes in iteration .

In the step of training mask layers, the parameters of other layers
are not fixed. Weights and biases in other layers are trained to fit the
new DNN architecture with nodes removed.

After training mask layers, the weight decay of L1 regularization
on the mask layers is increased. Then more nodes will be removed in
the next iteration of training mask layers. The two steps of training
mask layers and increasing weight decay will be iteratively applied
until retraining cannot retain the DNN accuracy.

The last step of node pruning is removing masked nodes, re-
moving mask layers, and retraining the network. All the nodes and
feature maps with corresponding & value equal to zero are removed.
For example, in Figure 12, the node A-3 with a3 = 0 will be re-
moved. The mask layers are then removed, and output activations of
remaining nodes can be directly propagated to the next layer. The
remaining network is retrained to get the final pruned DNN.

Dropout|;, = Dropout|y X

3.5 Combined Pruning

For hardware with moderate parallelism, for example Intel Core i7-
6700 CPU, the SIMD-aware weight pruning and node pruning can
be combined and applied to the same DNN. To limit the computation
latency for real-time application, DNN computation usually has a
small batch size on moderate-parallelism hardware. Here the batch
size is fixed to 1, and a small batch size will give similar results.

DNNSs can be split into two parts: fully-connected layers and
convolutional layers. With a batch size of 1, fully-connected lay-
ers perform matrix-vector multiplication, and convolutional layers
perform matrix-matrix multiplication. In this case, Scalpel applies
SIMD-aware weight pruning to fully-connected layers and node
pruning to convolutional layers.
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Figure 13: Relative execution time for sparse matrix-vector mul-
tiplication (FC layers) on Intel Core i7-6700. The matrix size
is 4096 x 4096 and the vector size is 4096. MKL-Dense/Sparse
show the results of dense and sparse weight matrix with the In-
tel MKL library.

Figure 13 and Figure 14 profiles the relative execution time for
sparse matrix-vector and matrix-matrix multiplication on Intel Core
17-6700 CPU, respectively. MKL-Dense and MKL-Sparse show the
results of dense and sparse weight matrix with the Intel MKL library.
Simple-Sparse is our implementation of the sparse library. SIMD-
Sparse shows the results with nonzero elements grouped and aligned
as in SIMD-aware weight pruning.

Figure 13 shows the relative execution time reduction of matrix-
vector multiplication with SIMD-aware weight pruning. Intel i7-
6700 has an 8-way SIMD unit for 32-bit floating-point numbers.
Therefore, SIMD-aware weight pruning removes weights in groups
of 8. Comparing to the sparse matrix-vector multiplication with the
Intel MKL library (MKL-Sparse), the SIMD-aware weight pruning
(SIMD-Sparse) can dramatically improve the computation perfor-
mance. The percentage of weights need to be removed for perfor-
mance speedup decreases from 52% to 3%. Therefore, for fully-
connected layers which perform matrix-vector multiplication, the
SIMD-aware weight pruning can be applied to improve the perfor-
mance and reduce model sizes.

SIMD-aware weight pruning can dramatically decrease the execu-
tion time on moderate-parallelism hardware for three reasons. First,
by reducing the number of indexes, the memory footprint for the
computation decreases. Second, weights are grouped and aligned
with SIMD-aware weight pruning, which increases the spatial local-
ity of reading weights and corresponding inputs. Third, the number
of computation instructions decreases since we only need to load
one index for each group and the corresponding input values can be
loaded with SIMD instructions.

Figure 14 is the corresponding relative execution time reduction
for matrix-matrix multiplication. Compared to the sparse matrix-
matrix multiplication with the Intel MKL library (MKL-Sparse),
SIMD-aware weight pruning (SIMD-Sparse) cannot improve the
execution performance. To achieve a performance speedup with
traditional pruning technique or SIMD-aware weight pruning, at
least 79% of the weights need to be removed. However, without
accuracy loss, it is difficult to remove that much weights from convo-
lutional layers for DNNs running on moderate-parallelism hardware.
Convolutional layers have much less redundancy compared with
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Figure 14: Relative execution time for sparse matrix-matrix
multiplication (CONYV layers) on Intel Core i7-6700. The weight
matrix and input matrix have the size of 128 x 1200 and 1200 x
729, respectively.

full-connected layers since all weights need to be reused in the
convolution operations. Therefore, weight pruning will hurt the com-
putation performance and cannot be applied to convolutional layers.
In this case, Scalpel applies node pruning to convolutional layers
since it keeps the regular structure of weight matrices to avoid the
performance decrease caused by weight pruning.

To apply both SIMD-aware weight pruning and node pruning
to the same network, we will first use node pruning to remove
redundant nodes in the convolutional layers. Then the convolutional
layers are fixed, and the SIMD-aware weight pruning is employed
to prune redundant weights from the fully-connected layers.

4 EXPERIMENT METHODOLOGY

Hardware platforms We test Scalpel on three different general-
purpose processors: microcontrollers, CPU and GPU. They are rep-
resentatives of hardware with low, moderate and high parallelism,
respectively.

1) Microcontroller - low parallelism. We use ARM Cortex-M4 mi-
crocontroller which has a 3-stage in-order pipeline and 2-way SIMD
units for 16-bit fixed-point numbers. The test board has 128KB
SRAM and 512KB flash storage. To run the benchmarks, we use
libraries directly from ARM for the dense matrix-vector/matrix mul-
tiplication. Libraries for sparse matrix-vector/matrix multiplication
are written in-house.

2) CPU - moderate parallelism. We use Intel Core 17-6700 CPU,
which is a Skylake class core. It supports 8-way SIMD instruc-
tions for 32-bit floating-point numbers. To run the benchmarks, we
use MKL BLAS GEMV/ GEMM to implement the original dense
model and the convolutional layers with node pruning. MKL Sparse
BLAS CSRMV/ CSRMM is used for the sparse models generated
by existing weight pruning techniques. Libraries of sparse matrix
multiplication for SIMD-aware weight pruning are written in-house.

3) GPU - high parallelism. We use NVIDIA GTX Titan X which
is a state-of-the-art GPU for deep learning and included in the
NVIDIA Digits Deep Learning DevBox machine [1]. We use cuDNN
to implement the original dense model and the convolutional layers
with node pruning. cuBLAS GEMV/ GEMM is used for profiling the



Scalpel
Table 2: DNN benchmarks.
Num of Layers | Test Error
Networks CONV [ FC | Dataset | Rate
LeNet-300-100 0 3 1.50%
LeNet-5 2 2 MNIST 0.68%
ConvNet 3 1 18.14%
NIN 9 o | CIFAR-0 =553
19.73%
AlexNet 5 3 ImageNet (top-5)
Table 3: Results overview.
Hardware DNNs Speedup | Relative Size
Micor LeNet-300-100 | 9.17x 6.93%
°t° Loy LeNet:s 3.51x 6.72%
COMOTEr ConvNet 1.38x 40.95%
LeNet-300-100 | 6.86x 7.08%
LeNet-5 4.15x 5.20%
CPU ConvNet 1.58x 44.28%
NIN 1.22x 81.16%
AlexNet 2.20x 13.06%
LeNet-300-100 1.08x 66.83%
LeNet-5 1.59x 11.67%
GPU ConvNet 1.14x 45.40%
NIN 1.17x 81.16%
AlexNet 1.35x 76.52%

performance of the dense matrix-vector/matrix multiplication. cuS-
PARSE CSRMV/ CSRMM is used for the sparse model generated
by existing weight pruning techniques.

Benchmarks. We compare the performance and the model size
of five DNNSs: LeNet-300-100 [32], LeNet-5 [32], ConvNet [28],
Network-in-Network (NIN) [34] and AlexNet [29].

Table 2 shows the DNN benchmarks and their structures. NIN
consists of 9 convolutional layers (CONV) and no fully-connected
layers (FC). Recent DNN designs [22, 34, 40] contain no or only
small-size fully-connected layers to reduce the model size. NIN is
chosen as an example to test the performance of Scalpel on those net-
works. For NIN and AlexNet, we get the original models from Caffe
Model Zoo [26]. Also, due to their large sizes, NIN and AlexNet are
not tested on ARM Cortex-M4 microcontroller.

All pruned DNN models generated with Scalpel have no accuracy
loss compared with the original DNNs. Caffe [26] is used for DNN
training and pruning.

Experiment baselines. We use the original dense DNN models
as the baseline. Performance speedups and model sizes shown in sec-
tion 5 are relative values with respect to the corresponding original
DNN models.

We compare Scalpel to two weight pruning techniques:

1) Traditional pruning. The pruning technique proposed by Han
et al. [20] is implemented as the traditional pruning.

2) Optimized pruning. After traditional pruning, for layers with
more than 50% of the weights remaining, we revert them back to the
original dense format. We keep the nonzero weights and add zeros
to the sparse weight matrix to convert it back into a dense matrix.
This technique combined with traditional pruning is considered as
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Figure 15: Relative performance speedups of the original
models (original), traditional pruning, optimized pruning and
Scalpel on ARM Cortex-M4 microcontroller. NIN and AlexNet
are not tested due to the limited storage size of the microcon-
troller.

the optimized pruning. Recording the layers with more 50% weights
remaining into a sparse format will increase the model size. Also, not
enough weights are removed to achieve a performance improvement
for these layers. Therefore, optimized pruning can reduce both the
model size and the execution time compared with the traditional
pruning.

S EVALUATION RESULTS

Table 3 is the overview of the results. Scalpel achieves mean speedups
of 3.54x, 2.61x, and 1.25x on the microcontroller, CPU and GPU,
respectively. It also reduces the model sizes by 88%, 82%, and 53%
on average.

5.1

Scalpel is first tested on ARM Cortex-M4 microcontroller which is
considered as the low-parallelism hardware. SIMD-aware weight
pruning is applied to LeNet-300-100, LeNet-5, and ConvNet. Since
Cortex-M4 has a 2-way SIMD unit, the size of weight groups is set
to 2.

Figure 15 and Figure 16 show the relative performance speedups
and relative model sizes of the original models, traditional pruning,
optimized pruning and Scalpel.

For all tested networks, Scalpel achieves better performance and
lower model sizes than traditional pruning and optimized pruning.
The performance speedup can be up to 9.17x, and the model size is
reduced by up to 93.28%.

Traditional pruning and optimized pruning have the same perfor-
mance speedups and model sizes on LeNet-300-100. This is because
LeNet-300-100 is a fully-connected network and all layers can have
more than 50% of weights removed. But for ConvNet, the first con-
volutional layer has a relatively small size of 2400 weights. There is
little redundancy inside this layer, and few weights can be removed.
Therefore, it is not pruned in the optimized pruning, which helps
improve the performance and reduce the model size.

How to measure the importance of each group is important for
SIMD-aware weight pruning since weight groups with low impor-
tance will be removed in the step of pruning weight groups. We

Microcontroller - Low Parallelism
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Figure 16: Relative model sizes of the original models, tradi-
tional pruning, optimized pruning and Scalpel for ARM Cortex-
M4 microcontroller.
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Figure 17: Relative accuracy against pruning rate with different
metrics for importance measurement: maximum absolute value
(MAX), mean absolute value (MEAN) and root-mean-square
(RMS).

test three different types of metrics for importance measurement:
maximum absolute value (MAX), mean absolute value (MEAN) and
root-mean-square (RMS).

In these metrics, MAX only takes the weight with highest absolute
value into consideration, but all weights in the group should be
considered to determine the group importance. For MEAN, large
weight values and small weight values have the same impact on the
group importance. However, in real DNN, larger weight tend to be
more important and should have a larger impact. RMS considers
all the weight values, and larger weight value will have a larger
impact on the group importance. Therefore, compared to the other
two metrics, RMS is expected to help SIMD-aware weight pruning
remove more redundant weights.

We apply SIMD-aware weight pruning on the first layer of LeNet-
300-100 (fc1) with these three different metrics to test the real effect.
The group size is chosen to be 2. Figure 17 shows the curves of
relative accuracy against pruning rate for the three metrics. For
each line, every dot is the result of one iteration for the SIMD-aware
weight pruning since we are applying the two steps of pruning weight
group and increasing weight decay iteratively. As expected, without
accuracy loss, using RMS for the SIMD-aware weight pruning has
the highest pruning rate of 98.0%.
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Figure 18: Relative performance speedups of the original mod-
els, traditional pruning, optimized pruning and Scalpel on Intel
Core i7-6700 CPU.
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Figure 19: Relative model sizes of the original models, tradi-
tional pruning, optimized pruning and Scalpel for Intel Core
i7-6700 CPU.

5.2 CPU - Moderate Parallelism

For Intel Core i7-6700 CPU, SIMD-aware weight pruning and node
pruning are combined and applied to LeNet-300-100, LeNet-5, Con-
vNet, NIN and AlexNet. The processor has an 8-way SIMD unit and,
therefore, the size of weight groups in SIMD-aware weight pruning
is set to 8.

Figure 18 and Figure 19 are the relative performance speedups and
relative model sizes of the original models, traditional pruning and
Scalpel. For all tested networks, Scalpel achieves better performance
and lower model size than traditional pruning and optimized pruning.
The performance speedup can be up to 6.86x, and the relative size is
reduced by up to 94.8%.

Notice that NIN pruned with optimized pruning holds the same
performance and the same model size with the original model. This
is because none of the layers in NIN can have more than 50% of
weights removed through traditional pruning. Converting to sparse
is expected to yield performance loss. Therefore, all the layers are
not pruned for NIN with the optimized pruning. For the same reason,
traditional pruning hurts the computation performance and increases
the model size of NIN.
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Figure 20: Relative performance speedups of the original mod-
els, traditional pruning, optimized pruning and Scalpel on
NVIDIA GTX Titan X GPU.
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Figure 21: Relative model sizes of the original models, tra-
ditional pruning, optimized pruning and Scalpel for NVIDIA
GTX Titan X GPU.

5.3 GPU - High Parallelism

For NVIDIA GTX Titan X GPU which is considered as high-
parallelism hardware, node pruning is applied to keep the regu-
lar structure of DNNs. Figure 20 shows the relative performance
speedups of the original models, traditional pruning, optimized prun-
ing and Scalpel. Batch size is set to 50. For LeNet-5, ConvNet, NIN
and AlexNet, Scalpel has much higher speedups compared to tradi-
tional pruning and optimized pruning. However, for LeNet-300-100,
the speedup from Scalpel is lower. The reason is that LeNet-300-100
has very tiny size and it is difficult to map the computation efficiently
onto the GTX Titan X GPU. Another possible reason is the matrix
tiling strategy in cuBLAS. A small change in the matrix size may
lead to a large difference in the detailed matrix tiling strategy. As
a result, although we can remove 31% and 32% of the nodes from
the first and the second layers in LeNet-300-100, respectively, the
computation performance is improved by only 8.50%.

The corresponding relative model sizes are shown in Figure 21.
Models generated by Scalpel, except ConvNet and NIN, have higher
model sizes than those generated by traditional and optimized prun-
ing. It is because node pruning is applied now and we need to
remove DNN redundancy at a granularity of nodes to keep the regu-
lar structure. But traditional and optimized pruning can prune DNN
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Table 4: Percentage of nodes removed by node pruning in each
layer. Output layers are not included.

DNNs Percentage of Nodes Removed in Each Layer
LeNet-
300-100 31% (fcl)- 32% (fc2)
LeNet-5 | 50% (conv1)- 68% (conv2)- 65% (fc3)
ConvNet | 28% (conv1)- 25% (conv2)- 49% (conv3)
28% (conv1)- 20% (cccpl)- 5% (ccep2)-
NIN 2% (conv2)- 14% (cccp3)- 8% (cccpd)-
22% (conv3)- 48% (cccpS)
AlexNet 3% (convl)- 20% (conv2)- 24% (conv3)-
18%(conv4)-0%(conv5)-17%(fc6)-23%(fc7)

redundancy at a finer granularity of weights. Therefore, node prun-
ing cannot reduce the model size as much as traditional pruning and
optimized pruning do. However, the high-parallelism hardware is
designed for high-throughput, and the DNN model size is not critical.
Scalpel is more beneficial than traditional and optimized pruning
on high-parallelism hardware since it can dramatically increase the
computation throughput.

Table 4 gives the percentage of nodes we can remove from each
layer in DNNs. As an example, NIN consists of 9 convolutional
layers, and each feature map is considered as one node in the con-
volutional layers. Layers close to the input or output have more
redundancy and tend to be less important than the layers in the mid-
dle of NIN. 28% and 48% of the nodes can be removed from the
first layer (conv1l) and the eighth layer (cccp5), respectively.

6 RELATED WORK

Network compression. Deep Neural Network models have signif-
icant redundancy [13] which leads to redundant computation and
storage. Various techniques have been proposed to remove the re-
dundancy inside the network models.

Weight pruning has been used to remove redundant connections
inside a network. LeCun et al. [31] calculates the saliencies for each
weight based on the Hessian matrix of the loss function and remove
low-saliency weights. Hassibi et al. [21] employ Lagrange Multiplier
to find the weight with low saliencies. However, the calculation of the
Hessian matrix of the loss function needs unacceptable computation.
Han et al. [20] directly remove low-value weights and retrain the
network to keep the original network performance. Guo et al. [16]
uses mask matrices to incorporate connection splicing into the entire
pruning process, which can help avoid incorrect pruning.

For node pruning, He et al. [23] introduce a DNN reshape method
which measures the importance of each node with a certain im-
portance function. It works for fully-connected networks without
convolutional layers. Miconi et al. [35] propose a method to make
network structure differentiable. It imposes a penalty on the outgo-
ing weights from each neuron to determine the importance of each
neuron. However, it only works for simple recurrent networks.

Another typical method is to reduce the numerical precision.
Gupta et al. [17] demonstrates that DNN can be trained with the 16-
bit fixed-point representation using stochastic rounding. Vanhoucke
et al. [42] use 8-bit quantization for activations and weights to ac-
celerate computation. Binary Neural Networks [12] introduces the
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method to train neural networks with both binary weights and binary
activations constrained to +1 or -1.

Multiple papers propose to train a small network (student model)
to mimic the function of a large network. Ba et al. [3] train shallow
networks on regressing logits which are logarithms of predicted prob-
abilities produced by the large network. Hinton et al. [24] introduces
the temperature of the softmax loss function to produce a softer
probability distribution over classes for training student models.

DNN acceleration. Many hardware-based and software-based
approaches have been proposed to accelerate DNN computation.
For hardware-based methods, different ASIC designs [2, 5, 7, 8,
10, 14, 18, 25, 27, 33, 36, 37] and tools for accelerating DNN on
existing platform have been proposed. Minerva [36] reduces the
overall power consumption by aggressive data types optimization,
selective operations pruning, and SRAM voltages reduction. Han
et al. [18] propose EIE, a dedicated hardware accelerator which
utilizes the sparsity in compressed DNNs. Caffe [26], MXNet [6] and
cuDNN [9] are designed to accelerate DNN's on existing computation
platform especially GPUs.

In addition, software-based methods accelerate DNN computa-
tion by introducing efficient computation strategies and algorithms.
Batched lazy computation [42] is introduced to utilize the temporal
locality and exploit the trade-off between execution latency and com-
putation efficiency. Frame skipping [41] computes the DNN once
and use the same output for consecutive multiple inputs. Vasilache
et al. [43] accelerate DNN by faster convolutional computation into
FFT computation, which suffers from extra memory cost. Lavin et
al. [30] introduce a fast algorithm for only 3x3 filters using Wino-
grad’s minimal filtering algorithms.

7 CONCLUSION

In this paper, we propose Scalpel to customize DNN pruning for
different hardware platforms based on their parallelism. It includes
two techniques: SIMD-aware weight pruning and node pruning. For
low-parallelism hardware, SIMD-aware weight pruning is applied to
keep remaining weights in aligned groups to fully utilize the SIMD
units. All groups have the same size equal to the SIMD width. For
high-parallelism hardware, node pruning removes redundant nodes.
It avoids the sparsity in weights matrices caused by traditional prun-
ing techniques. SIMD-aware weight pruning and node pruning can
be combined and applied to DNN models for moderate-parallelism
hardware. On the microcontroller, CPU and GPU, Scalpel achieves
mean speedups of 3.54x, 2.61x, and 1.25x while reducing the model
sizes by 88%, 82%, and 53%.
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