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ABSTRACT

Current trends in device scaling continue to cause an in-
creasing risk of transient faults in microprocessors due to
high energy strikes from radiated particles. In this work, we
present a thorough microarchitectural analysis of the effects
of soft errors on a production-level Verilog implementation
of an ARM926EJ-S core. We examine the propagation of
faults occurring in both sequential state elements and com-
binatorial logic and note a number of critical distinctions in
the error propagation behavior of soft errors occurring at
logic gates versus state elements. Further, we exemplify the
ways in which the emerging trend of faults in combinatorial
logic will affect the scope of the soft error problem, espe-
cially in the embedded design space. Also, since this work
was conducted on a production-level core, we highlight some
of the nuances of soft error effects that arise and are specific
to production-level designs.

1. INTRODUCTION

Device scaling trends towards reducing feature size, in-
creasing integration, and lowering voltage levels increase the
soft error rate of microprocessors by both lowering the min-
imum amount of charge necessary to cause a bit flip and
increasing the number of susceptible targets for potential
particle strikes to cause errors. These trends have made
reliability an increasingly important design constraint in a
variety of different microprocessor markets.

Though strict reliability constraints have typically been
applied almost exclusively in aerospace and high-end server
markets, dramatically increasing demand for embedded mi-
croprocessors in a variety of emerging areas, such as the au-
tomotive and health care industries, have generated interest
in highly reliable embedded designs as well.

The standard mechanism for reporting device reliability is
the number of failures in time, or the FIT rate, where a rate
of 1 FIT means that the mean time before an error occurs
is one billion device hours. As an example of the increas-
ing need for reliability in embedded devices, take the case
of expanding integration in the automotive industry. Ac-
cording to the Federal Highway Administration, there were
231 million registered vehicles in the United States in 2003.
If each automobile were equipped with anti-lock brakes sys-
tems (ABS) controlled by an embedded microprocessor with
a FIT rate of 114 FITs or about one error per 1,000 de-
vice years, approximately 26.34 cars would experience errors
within their ABS systems each hour. Since not all registered
vehicles are in operation at any given time, and current ABS
systems are equipped with mechanical back ups, this prob-
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lem is not nearly so dramatic, but nevertheless provides an
example of increasing need for reliable embedded devices.

One of the key features differentiating the embedded from
the high performance design space is longer clock cycle times.
This longer cycle time in embedded designs typically leads to
larger logic depths between sequential state elements. The
effects of these larger logic depths are two-fold. First, large
logic depths increase the relative area of the chip consumed
by combinatorial logic, making combinatorial logic much
more susceptible to particle strikes. For example, combina-
torial logic consumed 58% of the total cell area (excluding
caches) of ARM926EJ-S core used in this work. Second,
larger logic depths typically imply a wider signal fanout,
thus increasing the number of potential target latches which
may store and possibly propagate an incorrect value caused
by a single soft error.

Recent studies have shown that the frequency of soft er-
rors in combinatorial logic gates is approaching that ob-
served in SRAM cells [8]. Previous work has largely focused
on the effects of soft errors occurring in state elements [3,
9]. In addition, some studies of sensitivity analysis and error
propagation paths between logic blocks have been conducted
for soft errors occurring in combinatorial logic [6]. In this
work, we focus on a thorough, low-level microarchitectural
analysis of the effects and propagation behavior of soft er-
rors occurring in both combinational logic and sequential
state elements. In particular, we expose a number of key
differences between the soft error propagation behavior of
faults occurring in sequential state elements and combinato-
rial logic at the microarchitectural level. We analyze these
effects on a production-level ARM926EJ-S embedded mi-
croprocessor. The major contributions of this work are as
follows:

A design-independent soft error injection and analysis frame-
work. We present a framework which can be used to study
the architectural and microarchitectural effects of soft errors
occurring in both sequential state elements and combinato-
rial logic gates. This framework is responsible for reporting
detailed error propagation information as errors propagate
through all microarchitectural state in the design over an
arbitrary number of cycles subsequent to fault injection.

An empirical derivation of the logical and temporal soft error
masking rates for a commercial embedded microprocessor.
In this work we, conduct a number of experiments in order
to derive both an application-independent average logical
masking rate as well as the logical and temporal masking
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Figure 1: A high-level block diagram of the
ARM926EJ-S core

rates observed when executing a standard image processing
algorithm.

An analysis of the error fanout and propagation behaviors
of soft errors in a commercial embedded microprocessor. We
present a detailed analysis of the number of architectural
and microarchitectural errors caused by soft errors over time
and examine how they propagate throughout the design.
Further, we identify a number of critical distinctions be-
tween the propagation behavior of soft errors occurring in
combinatorial logic and state elements and describe how
these distinctions affect the scope of the soft error prob-
lem.

The remainder of this work proceeds as follows. Section 2
describes an overview of the embedded microprocessor de-
sign that was used in our experiments as well as the fault in-
jection and error propagation analysis framework. Section 3
demonstrates the results of fault injection experiments in
both combinatorial logic and in sequential state elements.
Section 4 discusses some of the implications of the results as
well as some interesting nuances of soft error effects when
analyzed on a commercial design. Section 5 presents some
of the prior work that has been done is this area and finally,
Section 6 concludes this discussion.

2. FAULT ANALYSIS FRAMEWORK

The experiments described in this work were conducted
using a Verilog model of an ARM926EJ-S microprocessor [1].
The ARM926EJ-S is a 32-bit embedded architecture and has
a standard five stage pipeline consisting of fetch, decode, ex-
ecute, memory and write-back stages. The core datapath of
this ARM core is depicted in Figure 1. The implementation
used in this work has 37 architecturally defined registers (31
32-bit general purpose and six status registers), 4 KB of in-
struction cache and 4 KB of data cache. The Verilog model
was synthesized with scan-chain insertion and design-for-
test methodologies in an Artisan library characterized for a
130 nm process using the Synopsys Physical Compiler. The
synthesized netlist and a hand-designed floorplan were pro-
cessed in Avanti Astro for clock tree synthesis and physical
placement in order to ensure that a five nanosecond clock
cycle time was met. Once fully synthesized with all design
rule constraints satisfied, timing information was extracted
in Standard Delay Format so that it could be annotated on
to the netlist and simulated using Synopsys VCS.

The testbench used for simulation of the ARM926EJ-S
instantiates a pair of the synthesized netlists: a reference
design and the unit under test. Both are annotated with
the timing information gathered from the synthesis and lay-
out tools. The testbench also includes a behavioral memory
model that is used to load benchmarks at simulation initial-
ization. An overview of the soft error test harness is shown
if Figure 2

The soft error injection and analysis framework used in
our experiments is composed of a set of Verilog Program-
ming Interface (VPI) libraries which are invoked at the start
of simulation. Upon invocation, the framework probes the
design in order to derive the set of all sequential state el-
ements and combinatorial logic gates within the unit un-
der test. Depending on the simulation parameters, once the
fault injection framework is initialized, it may schedule fault
injection experiments at arbitrary points in time for arbi-
trary durations, selecting a random design element (register
or logic gate) as a fault injection target and inverting the
value at the node’s output.

Experiments in this work are divided into application-
based analysis and random-state analysis. Each experiment
is conducted targeting both sequential state elements and
combinatorial logic gates. Application-based analysis is car-
ried out by running benchmark code loaded into the be-
havioral memory model at simulation initialization. In this
case, the framework will select a random point in time be-
tween 2,500 and 5,000 cycles after the start of simulation
to conduct its first fault injection. If the experiment being
conducted is intended to include temporal masking analysis,
the fault injection time is randomly selected in picoseconds,
and the fault duration is randomly selected on the interval
[0.25 « CLK, CLK] where CLK is the clock cycle time of 5
ns that this design was synthesized to meet. Otherwise, the
fault injection time is scheduled at some future rising edge
of the clock signal and will be held for the duration of one
clock cycle.

When random-state analysis is conducted, the framework
is used to drive the experiments by setting the micropro-
cessor to a randomly generated microarchitectural state, in-
jecting a fault, observing the effects of the fault in the sub-
sequent cycle, and repeating. The random-state based ex-
periments are meant to derive an application-independent
measure of logical masking within the microprocessor core.
In this case, the observation of soft error effects is limited to
only the subsequent cycle because the machine is not guar-
anteed to have been in a valid state at fault injection time.

At fault injection time, depending on the type of injec-
tion experiment being simulated (soft errors in combinato-
rial logic, soft errors in sequential state, or both), a random
design element is selected for fault injection from the unit
under test. If the fault is to be injected into a logic element,
a random combinatorial gate in the design is selected and
the value present on it’s output is inverted, simulating an
upset caused by a particle strike. Similarly, when faults in
registers are being simulated, a random register is selected
and its output is inverted. When a fault is injected into the
design, the framework logs the fault site, the time of injec-
tion, and the pulse duration (if the pulse occurred at a logic
element).

After a fault has been injected into the system, at each
subsequent rising clock edge every microarchitectural reg-
ister in the unit under test is compared against its dual
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Figure 2: An overview of the soft error injection and
analysis framework

in the reference design. Further, all top-level output ports
on the design (I/O buses, coprocessor interface, test equip-
ment) and inputs into the caches are checked to ensure that
no corrupt values have escaped from the core datapath. If,
in the first cycle after fault injection, no register, cache, or
top-level port mismatches occur, the injected fault did not
affect the system, and so a new random time in the future is
selected for another fault injection experiment. If any reg-
ister, cache, or port mismatches do occur, the fault analysis
framework logs the relative cycle and site of the error for
later analysis.

The fault analysis framework then continues to track the
progress of errors throughout the system for an arbitrary
number of cycles after the fault injection. If during this pe-
riod, no errors are present, and no errors have propagated
out to the caches or top-level ports, the system is clean, and
the fault was successfully masked, allowing a new random
time for fault injection to be scheduled. If top-level port
or cache errors did occur, or a latent error still lingers in
the design which has not yet affected architectural state,
then simulation halts, and error logs are written for post-
processing to analyze propagation behavior and architec-
tural state effects. Though latent errors in the design may
not have caused errors in software-visible state, they still
pose a threat and may potentially cause a data corruption.
A moderate amount of microarchitectural state in our micro-
processor core consists of mode-specific state elements that
are not always exercised by our limited benchmark simula-
tions, but given a more realistic workload could potentially
propagate errors throughout the system.

3. EXPERIMENTAL RESULTS

Though a particle strike may cause a transient pulse at
any node within a circuit, in order for the pulse to become
an error, it must be latched at some point. Transient pulses
that are not latched derate the soft error rate (SER) of the
microprocessor and must be accounted in order to under-
stand the effects of soft errors and the overall SER. The
three types of circuit-level soft error derating factors are as
follows:

Logical masking: Logical masking occurs when a transient
pulse is effectively gated from all possible destination state
elements; for example, a transient pulse at the output of
a circuit which is ANDed with 0 will always be logically
masked.

Temporal masking: Temporal masking (or latching-window
masking) occurs when a transient pulse propagates to a state
element, but does not arrive within the capture window of
the state element.

Electrical masking: Electrical masking occurs when a tran-
sient pulse is attenuated by subsequent logic gates such that
the pulse does not affect the output of the circuit.

The experiments presented in this work examine the ef-
fects of both logical and temporal masking on the overall
soft error rate, but leave electrical masking for future work.
Further, we conduct an analysis of the architectural and mi-
croarchitectural activity that occurs as a result of transient
pulses occurring at both sequential and combinatorial logic
elements. The remainder of this section describes the fol-
lowing experiments:

Average Logical Masking Rate: In this experiment, we quan-
tify the average, application-independent amount of logical
masking that takes places within the ARM926EJ-S core by
setting the microarchitectural state to a random configura-
tion and simulating a transient pulse for the duration of one
cycle.

Workload-Specific Logical Masking Rate: Here, we derive the
logical masking rate within the microprocessor when run-
ning a standard image processing algorithm.

Workload-Specific Logical and Temporal Masking Rate: Here,
we analyze the effect that temporal masking has on the
overall microarchitectural and architectural masking rates
within the design by injecting transient pulses for random
durations at random points in simulation time.

Microarchitectural Error Propagation Behavior: In this ex-
periment, we examine the propagation of errors through ar-
chitectural and microarchitectural state over time and ex-
amine some of the key differences between faults occurring
in logic and in registers.

3.1 Average Logical Masking Rate

In this experiment, we derive the application-independent
average logical masking rate for the ARM926EJ-S. At the
start of simulation, the microarchitectural state of the core
is set to a random configuration. Next, at the rising edge
of the clock, a transient pulse is injected at a random node
for the duration one clock cycle. Finally, the fault’s effect
over the course of the subsequent cycle is observed. In this
work, we ran 100,000 fault injection experiments for soft
errors simulated in both logic and registers. Since the ran-
domly generated machine state may be undefined or illegal,
the effects of fault injection are only tracked for one cycle
because subsequent cycles will likely lead to a reset state or
potentially undefined behavior.

The average masking rates for microarchitectural state,



Error Location

H Masking Rate | Incorrect Bits ‘

‘ Error Location

H Masking Rate | Incorrect Bits

Microarchitectural state 30.04% 3.76 Microarchitectural state 6.47% 1.26
Architectural state 92.88% 1.03 Architectural state 88.35% 1.0
Top-level port 97.49% 1.46 Top-level port 89.32% 1.15

Table 1: Average logical masking rates and number
of bits corrupted for soft errors occurring in regis-
ters for random machine state

Table 3: Average logical masking rates and number
of bits corrupted for soft errors occurring in regis-
ters when running the rgb2yuv benchmark

Error Location H Masking Rate | Incorrect Bits

‘ Error Location H Masking Rate | Incorrect Bits

Microarchitectural state 77.94% 14.80 Microarchitectural state 78.44% 20.92
Architectural state 96.37% 10.4 Architectural state 94.74% 5.53
Top-level port 97.9% 4.625 Top-level port 95.12% 5.78

Table 2: Average logical masking rates and number
of bits corrupted for soft errors occurring in logic
for random machine state

architectural state and the top-level output ports of the mi-
croprocessor are shown in Tables 1 and 2 for faults injected
into registers and logic gates respectively. Along with the
average masking rates, we note the average number of in-
correct bits for each error class. It is interesting to note
here that even though we only observe the effects of a fault
for the cycle directly subsequent to fault injection, a signif-
icant number of errors are still found in architectural state
elements.

As demonstrated in Tables 1 and 2, the logical masking
rate for microarchitectural state is much higher for faults
injected into logic gates than it is for faults in sequential
state elements. This trend holds across all experiments in
which we analyze the effects of soft errors on microarchi-
tectural state. This result is intuitive because on average,
the size of the logic cone from an arbitrary logic gate to its
target register(s) is typically about half the average size of
the logic cone from a register to its potential targets, thus
increasing the number of opportunities for soft errors that
occur in registers to be stored.

Another trend exhibited in Tables 1 and 2 that holds
throughout each of our experiments is that the average num-
ber of microarchitectural and architectural bits that are in-
correct within the design when a soft error manifests is sub-
stantially larger for soft errors occurring in logic elements.
Soft errors occurring in logic are exhibited as multi-bit errors
and typically occur when soft errors corrupt control logic.
These types of errors can be particularly disastrous when
decoders for large state arrays such as the register file are
subject to transient pulses.

3.2 Workload-Specific Logical Masking Rate

Many of the configurations loaded onto the design in the
previous experiment from Section 3.1 are either not valid
or not reachable under normal operating conditions. In or-
der to better understand the effects of soft errors on our
processor core under typical operating conditions, we con-
ducted another series of fault injection experiments while
running an image processing application on the design. The
application executed is a commonly used image processing
kernel rgb2yuv, which converts an image from the RGB to
the YUV color-space. The application is run for at least

Table 4: Average logical masking rates and number
of bits corrupted for soft errors occurring in logic
when running the rgb2yuv benchmark

2,500 cycles to ensure that the microprocessor structures
are warmed before any fault injection experiments are con-
ducted. The results demonstrating the logical masking rates
for this experiment are shown in Tables 3 and 4 for soft er-
rors occurring in registers and combinatorial logic, respec-
tively. As a further analysis of the average number of bits
corrupted, errors in this experiment are tracked through-
out the processor core for twenty cycles after fault injection.
The results for the average number of bits corrupted per
error class are shown in Figure 3

The most significant trend to be observed in Tables 3
and 4 is the sharp decrease in logical masking at the mi-
croarchitectural level for faults occurring in registers. This
seems to occur simply because valid machine states tend
to offer less logical masking potential, that is, the paths be-
tween pairs of registers is more often sensitized for valid ma-
chine states. Despite the surprisingly low microarchitectural
masking rate, the architectural masking rates presented in
Tables 3 and 4 tend to be consistent, though slightly greater
than those demonstrated in previous work [9, 6]. In gen-
eral, these high masking rates can be attributed to the fact
that the design used in our experiments is a production core
which contains a number of test and debug structures which
typically remain dormant during normal operation. How-
ever, as we demonstrate later, these structures are respon-
sible for increasing the overall soft error masking rate, but
they are also a point of severe weakness, where faults at
particular nodes can have catastrophic results (for instance
a pulse occurring at the scan-enable node at the base of a
scan chain).

In Figure 3, we demonstrate the average number of man-
ifested errors per fault per cycle for each error class. This
figure further exemplifies the trend noted in Section 3.1,
showing that the average number of manifested errors per
fault for both microarchitectural and architectural state is
significantly larger for soft errors occurring in logic elements
rather than sequential state. This trend is examined in more
detail in Section 3.4.

3.3 Workload-Specific Logical and Temporal
Masking Rate

In order to analyze the effect of temporal masking on soft
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Error Location H Masking Rate | Incorrect Bits

Microarchitectural state 83.76% 41.49
Architectural state 96.59% 13.29
Top-level port 96.33% 9.74

Table 5: Average logical and temporal masking rates
combined and the number of bits corrupted for soft
errors occurring in logic when running the rgb2yuv
benchmark

errors occurring in combinatorial logic, we repeat the pre-
vious experiment from Section 3.2 using the rgb2yuv algo-
rithm, injecting faults randomly in time across clock cycle
boundaries and maintaining the faults for random durations
on the interval [0.25 * CLK, CLK]. The combined logical
and temporal masking rates are shown in Table 5.

Table 5 demonstrates that temporal masking has a some-
what marginal effect on the overall soft error masking rate.
The masking rate for microarchitectural errors is only in-
creased by about 5% and even less for architectural errors
and top-level ports when timing information is taken into
account. Also, it is important to note that as clock cycle
times continue to decrease, the latching window time will
become more significant with each technology generation,
thus further reducing the effects of temporal fault masking.

When comparing the masking rates of faults occurring in
state elements against those occurring in logic as seen in Ta-
bles 3 and 5, the difference in the microarchitectural masking
rate is dramatic. While this may appear to imply that faults
in logic are not nearly as significant a problem as faults in
sequential state, the difference in error rates between faults
occurring in logic and faults occurring in sequential state for
architectural registers is only about 8%. This means that
even though soft errors occurring in logic are much more
likely to be masked at the microarchitectural level, at the
software interface, the masking rates are not substantially
different. Further, as can be seen by the average number of
bits of architectural state affected, faults occurring in logic
may have a much more dramatic effect on program execu-
tion.

In order to further understand the effects of pulse dura-
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Figure 4: Relative frequency of transient pulse du-
rations leading to error(s), durations shown here are
in picoseconds

tion on the overall soft error masking rate, we analyze faults
occurring at worst-case nodes in the design. That is, we
restrict fault injection to the output of sequential state ele-
ments and vary the pulse duration randomly across the clock
cycle time, thus ensuring worse than average delay between
fault injection site and potential target latches. The results
of this experiment are shown in Figure 4. Figure 4 shows
that there is a definite correlation between the fault dura-
tion and the frequency with which errors are expressed in
the microprocessor. However, even very small pulses were
still able to cause a significant number of errors, and given
that particle strikes are likely to be random throughout the
depth of the circuit, it is clear that even very short pulses
may prove problematic in future technology generations.

3.4 Soft Error Propagation Behavior

In this section, we analyze how soft errors tend to prop-
agate through the system over time in both architectural
and microarchitectrual state. We define the architectural
state as the set of 37 software-visible physical registers de-
fined in the ARM ISA [7] and the microarchitectural state
as the set of all state elements within the design, excluding
the architectural registers. We again perform fault injection
experiments while executing the rgb2yuv application as our
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workload. Figures 5 and 6 show the relative frequencies for
which a given number of microarchitectural state errors oc-
cur for the ten cycles subsequent to fault injection.

Figure 5 demonstrates that if a soft error occurring in a
register is manifested, it leads to a single bit error at the
microarchitectural level more than 80% of the time. Fur-
ther, it is shown to be extremely likely that this error will
remain a single bit error over the course of its lifetime. Al-
ternatively, Figure 6 shows that soft errors occurring in logic
may have a dramatic effect on microarchitectural state when
they are manifested. For example, multi-bit errors occur in
more than 30% of the fault injection experiments when the
simulated soft errors are not masked. Further, nearly 5% of
the faults which manifest errors corrupt over 6,500 microar-
chitectural registers, or more than 30% of the microarchitec-
tural state elements in the microprocessor. These types of
catastrophic effects are typically the result of faults within
test equipment such as JTAG or design for test related logic.
These cases are discussed further in Section 4.

In order to better understand the propagation of errors
within the system and how they may potentially effect soft-
ware running on the design, we also demonstrate the prop-
agation behavior of soft errors into architectural state. Fig-
ures 7 and 8 demonstrate the relative frequency of architec-
tural state bit errors manifested for the ten cycles after fault
injection.

Figure 7 shows that multi-bit architectural state errors
tend to occur very rarely when soft errors affecting registers
are not masked. However, as shown in Figure 8, when soft
errors occurring in logic manifest as errors in architectural
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state, multi-bit errors of four bits or more account for more
than 45% of the occurrences. Further, as shown by the spike
at the end of Figure 8, more than 15% of the faults originat-
ing in logic that affect architectural state cause more than
90% of the architectural state bits (~ 1000 state elements)
to hold incorrect values. This is typically the result of faults
occurring in the decode stage of the pipeline or in decode
logic for the register file.

To elucidate the architectural effects presented in Fig-
ures 7 and 8, we also study the number of incorrect bits per
architectural register and the number of architectural reg-
isters within the register file that contain errors. Figures 9
and 10 demonstrate the frequencies of incorrect bits per ar-
chitectural register when soft errors occur in registers and
logic respectively and Figures 11 and 12 show the number
of architectural registers containing errors for each fault.

Figure 9 shows that the manifestation of soft errors as
multi-bit architectural register errors tends to be very rare
for soft errors occurring in state elements. This data cor-
roborates the results presented in [9] and the thesis that
a potential low-overhead protection mechanism against soft
errors occurring in state elements would be to provide ECC
or parity bits on the register file.

Figure 10 shows that multi-bit errors where the entire 32
bits of the architectural register are corrupted, tends to be
the norm when soft errors occurring in logic are manifested
in the register file. This demonstrates that the ECC protec-
tion used to combat soft errors occurring in state elements
would tend to fail in protecting against soft errors in logic.
Further, Figure 12 shows that not only are multi-bit ar-
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chitectural register errors likely, but multiple architectural
register corruptions also occur with a moderate frequency.

4. DISCUSSION OF RESULTS

The results demonstrated in the previous section corrobo-
rate those shown in previous work characterizing the effects
of soft errors in state elements [3, 9]. Further, the results
provide some insight into why faults in combinatorial logic
typically are responsible for a greater percentage of mani-
fested errors as shown in [6]. A key characteristic of faults
occurring in combinatorial logic is the likelihood of fault
fanout and manifestation as multi-bit errors throughout the
system at the microarchitectural and architectural levels.
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chitectural registers contain errors when faults are
injected into registers

In [8], Shivakumar et al. has shown that soft errors occur-
ring in combinatorial logic are expected to increase in fre-
quency, matching the rates observed in unprotected SRAM
cells, and Mitra et al. [4] report that 18% of the overall soft
error rate of a state-of-the art design is already consumed
by soft errors occurring in combinatorial logic. These re-
sults demonstrate an increasing need for understanding of
the behavior of soft errors in combinatorial logic and the
development of new techniques to protect against them.

Figures 9 and 10 from the previous section demonstrate
that not only are multi-bit architectural register errors the
common consequence of soft errors manifested in logic, but
multi-architectural register corruptions also occur with mod-
erate frequency. Occurrences such as these defy commonly
accepted state element protection mechanisms such as ECC
and parity, and demonstrate a dramatically different land-
scape of the soft error problem at the microarchitectural
level than previously reported.

While multi-bit errors pose problems for some accepted
circuit-level soft error detection and correction mechanisms,
at the microarchitectural level, the phenomenon of soft error
fan-out also opens the door for a new class of low overhead
detection mechanisms. By conducting statistical analysis of
average fan-out rates within logic blocks, it becomes possible
to achieve high coverage transient pulse detection without
protecting all state in the design. For example, using sta-
tistical analysis to strategically place clock-delayed shadow
latches, similar to those used in RAZOR [2] to detect timing
errors, could be used to provide high-coverage protection for
soft errors in combinatorial logic.

The problems of fault fanout and multi-bit errors may
not be unique to the embedded design space, however, they
are accentuated by it. High-performance microprocessor de-
signs are typically limited in the logic depth allowed between
sequential elements in order to keep the clock frequency
as high as possible. Not only does this decrease the level
of fanout, but it also decreases the relative area of combi-
natorial logic as more pipeline registers become necessary.
However, with increasing integration and higher complexity
within designs, it is expected that high performance designs
will tend towards results similar to those as demonstrated
here in future generations.

Also important to a thorough understanding of the soft
error problem is the implication of the increasing need for
components included in the design for test purposes. An in-
teresting occurrence, demonstrated by the tail in Figure 6,
is that of massively multi-bit errors, typically caused by soft



errors in test equipment. As designs become increasingly
complex, the need for higher observability and controllabil-
ity for testing at manufacture time becomes critical. How-
ever, it seems that the mechanisms that are included for
test purposes are some of the most sensitive areas within
the design. Microprocessors are manufactured and shipped
with dormant test equipment, such as JTAG, logically tied
to 0. However, faults within this test equipment logic tend
to manifest with moderate frequency and when they do,
the effects are dramatic. For example, each register within
the ARM926EJ-S is a scan register meaning that when pre-
sented with a scan enable signal, it captures its input from
its predecessor along the scan chain rather than its standard
input. Each register in the design includes logic dedicated
to propagating scan enable signals and scan data, and faults
at these nodes tend to cause substantial state errors within
the system.

5. RELATED WORK

Kim and Somani [3] conduct software-simulated fault in-
jection campaigns on an RTL model of the PicoJava-II mi-
croprocessor to determine the soft error sensitivity of logic
blocks within the design. The soft error sensitivity (SES)
metric used in this work is defined as the probability that a
soft error within a given logic block will cause the processor
to enter an incorrect architectural state. The fault model
used in this work is similar to our own, though the authors
of this paper conduct analysis strictly at the architectural
level.

In [5] Mukherjee et al. define the term architectural vul-
nerability factor (AVF) to be the probability that a fault
in a microarchitectural structure will cause an error in pro-
gram output. The authors use a performance simulator of
the Itanium IT microarchitecture to determine the AVF's for
structures within their simulated microarchitecture. Our
work presents similar results at the architectural level, but
focuses rather on the microarchitectural effects of soft errors.

Wang, et al. [9] characterize the effects of soft errors on
an out-of-order, superscalar Alpha-like processor core. The
fault model used in this work simulates single bit flips in
sequential state elements within the design, and an analysis
of the failure modes exhibited in simulation is described. In
this work the authors explore the effects of soft errors on
a substantially different microarchitectural model and limit
their studies to fault occurring in state elements.

Saggese, et al. [6] present a similar analysis of the effects
of soft errors occurring in both sequential state elements and
combinatorial logic on a DLX microprocessor model. The
error manifestation rates demonstrated in their work are cor-
roborated by our own, however, in our work we have chosen
to focus on the error propagation behavior exhibited at the
microarchitectural level rather than a sensitivity analysis of
different blocks within the design.

6. CONCLUSION

In this work, we present a design-independent framework
for injecting and analyzing the effects of soft errors at the mi-
croarchitectural level. We use this framework to empirically
derive the logical and temporal soft error masking rates for
a production-level ARM926EJ-S microprocessor core. Fur-
ther, we provide an analysis of the propagation behavior of
soft errors and their microarchitectural effects over time on

this design and identify a number of critical distinctions in
the propagation behavior of soft errors that occur in sequen-
tial state elements as opposed to combinatorial logic.

Our results corroborate previous results studying the ar-
chitectural error rates of soft errors occurring in state ele-
ments [9, 3], but also identify potential problems with using
traditionally accepted state protection mechanisms, such as
ECC or parity, as soft errors affecting combinatorial logic
become more frequent. Lastly, we identify some potential
problems that may arise due to the effects of increasing
testability on system reliability.

7. REFERENCES

[1] ARM Ltd. ARMY26EJ-S Technical Reference Manual,
Jan. 2004.
http://www.arm.com/pdfs/DDI0198D_926_TRM.pdf.

[2] T. Austin, D. Blaauw, T. Mudge, and K. Flautner.
Making typical silicon matter with razor. IEEE
Computer, 37(3):57-65, Mar. 2004.

[3] S. Kim and A. Somani. Soft error sensitivity
characterization for microprocessor dependability
enhancement strategy. In International Conference on
Dependable Systems and Networks, pages 416—428,
June 2002.

[4] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim.
Robust system design with built-in soft-error resilience.
IEEE Computer, 38(2):43-52, Feb. 2005.

[5] S. S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and
T. Austin. A systematic methodology to compute the
architectural vulnerability factors for a high
performance microprocessor. In International
Symposium on Microarchitecture, pages 29-42, Dec.
2003.

[6] G. P. Saggese, A. Vetteth, Z. Kalbarczyk, and R. Iyer.
Microprocessor sensitivity to failures: Control vs.
execution and combinatorial vs. sequential logic. In
International Conference on Dependable Systems and
Networks, pages 760-769, June 2005.

[7] D. Seal. ARM Architecture Reference Manual.
Addison-Wesley, London, UK, 2000.

[8] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and
L. Alvisi. Modeling the effect of technology trends on
the soft error rate of combinational logic. In
International Conference on Dependable Systems and
Networks, pages 389-398, June 2002.

[9] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel.
Characterizing the effects of transient faults on a
high-performance processor pipeline. In International
Conference on Dependable Systems and Networks,
page 61, June 2004.



