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Abstract—Graphics processing units (GPUs) are throughput-
oriented architectures that implement massive multi-threading.
Large, power-hungry register files are required in GPUs to
support the simultaneous execution of thousands of threads on the
hardware. Prior work proposed reducing register access energy
by adding a small register cache to the GPU. The cache stores
recently referenced registers and services subsequent accesses to
these registers, reducing accesses to the main register file. Later
work obtained further energy savings by replacing this cache
with a compiler-managed scratchpad. We note that registers
are allocated to the cache dynamically and reactively whereas
registers are allocated to the scratchpad statically and proactively.
Our insight is that these allocation schemes are complimentary
because the cache leverages runtime information unavailable
to the compiler and the scratchpad leverages compile time
information unavailable to the cache. Further, there exist register
access patterns that are easily captured by one structure but for
which the other structure is ineffective. Instead of implementing
either a register cache or scratchpad alone, we propose dividing
temporary register storage capacity between a cache and a
scratchpad in order to capture a broader range of register
accesses. Given 12 KB of storage per streaming multiprocessor,
our hybrid design reduces register energy to 38.7% of the
baseline, compared to 47.9% for a register cache and 47.1%
for a register scratchpad.

Index Terms—compiler, energy efficiency, GPU, microarchitec-
ture, register file

I. INTRODUCTION

GRAPHICS processing units are specialized accelerators
that target massively multi-threaded tasks. Such tasks

are complete only when all threads are complete. Therefore,
GPU designs prioritize total throughput rather than individual
thread latency. Power- and area-hungry features such as out-
of-order execution and speculation that target thread latency
are unnecessary. Instead, GPUs maintain high throughput by
hiding stalls in one thread with the execution of other threads.
This enables them to deliver much higher energy-efficiency
than traditional CPUs.

Thousands of threads may execute on a GPU, with their
instructions interleaved on a cycle-by-cycle basis. All of the
state belonging to these threads must be kept resident in hard-
ware to support this fine-grained multi-threading. In particular,
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Fig. 1. Growth of resources over the four most recent Nvidia GPU
generations [2]

GPUs require massive register files to store the register state
of executing threads. The Nvidia GV100 [2], a member of
Nvidia’s most recent generation of GPUs, provisions 20 MB
of register file storage. By comparison, the GV100 provides
less than a third of this amount of storage (6 MB) for the L2
cache.

Because GPU register files are so large, the energy required
to access (read or write) a register is high. This is despite
the fact that modern GPU register files are heavily banked.
For instance, prior work by Leng. et al. [3] estimated that
the register file consumes an average of 13.4% of the power
drawn by an Nvidia GTX 480. Further, Figure 1 shows how
various resources have scaled over the past several generations
of Nvidia GPUs. The expansion of register file capacity has
outpaced the growth of L2 cache capacity as well as the
growth of the total GPU transistor count. Therefore, it is
probable that the share of GPU power consumed by the register
file will remain substantial in the future. Minimizing this
energy overhead will become more important as GPUs are
increasingly deployed in energy-sensitive mobile and data-
center environments.

As is the case for data loads and stores, register accesses
exhibit temporal locality. This simply means that if an execut-
ing thread accesses a register, the thread is likely to access
the same register again in the near future. Prior work by
Gebhart et al. [4] leveraged this behavior by augmenting the
GPU with a register cache (RC). An RC is a small structure
that stores recently accessed registers and services subsequent
accesses to them. Temporal locality implies that the cache will
often intercept register accesses in this way. However, in the
case that a thread accesses a register that is not stored in the
cache, the access may still be serviced by the main register file
(MRF), which is unaltered from the baseline design. The cache
is smaller than the MRF and therefore requires less energy to
write to and read from. Thus, an RC can elide MRF accesses
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and reduce the register energy consumed by a GPU.
Gebhart et al. [5] found that further energy savings are

possible with a register scratchpad (RSP). An RC snoops
the normal stream of register reads and writes, dynamically
allocating registers in hardware as they are referenced. In
contrast, it is the compiler’s responsibility to analyze a kernel
and identify the most advantageous registers to allocate to
the RSP. A distinct segment of the register name space is
mapped to the RSP. When the compiler allocates a register,
instructions that refer to this register are modified to refer
to a scratchpad-mapped register. Whereas the cache makes
allocations reactively, the compiler is able to select RSP allo-
cations proactively because it can inspect every instruction in
the kernel. In other words, RC allocations may only respond to
past behavior while RSP allocations may account for ”future”
behavior as well.

While the proactive allocation strategy of the scratchpad
approach gives it an advantage over the reactive cache as
shown in prior work, the cache also has unique strengths
that the scratchpad lacks, which we describe in this work.
Scratchpad allocation decisions can only incorporate static in-
formation because these allocations are made at compile time,
whereas the cache naturally responds to dynamic behavior. As
a result, each technique is better able to capture some types of
register behavior than the other. We observe that a scratchpad
generally captures more register accesses than a cache for code
consisting largely of sequential arithmetic operations whereas
a cache generally captures more accesses than a scratchpad for
code featuring many dependencies on long latency operations
or complex control flow.

Our insight is that the dynamic, reactive approach of the
RC and the static, proactive approach of the RSP are com-
plementary. Rather than incorporating only one structure or
the other into a GPU, we propose adding a hybrid register
cache / scratchpad. In this hybrid design, a register hierarchy
is formed in which the RSP is backed by the RC, which in turn
is backed by the MRF. The first-level RSP leverages compile-
time information to proactively allocate registers. In cases
where the compiler fails to allocate a register to the scratchpad
because of compiler limitations or lack of information about
runtime behavior, the RC’s dynamic allocation strategy is often
able to capture accesses to the register instead. This allows the
hybrid design to elide a broader range of register writes and
reads than a cache-only or scratchpad-only design. Further,
a single kernel or segment of code often includes register
accesses that one structure can capture but that the other
cannot. Our hybrid design benefits from a synergy between
the RC and RSP components in these cases that allows it to
capture more register accesses than either by itself.

Our contributions in this work include:
• Evaluating the relative strengths and weaknesses of RCs

and RSPs.
• Identifying an opportunity to improve register energy

efficiency with a hybrid register cache / scratchpad.
• Analyzing the characteristics that make a kernel amenable

to energy savings with an RC, RSP, or hybrid design.
• Proposing a hierarchical organization for the RSP, RC,

and MRF within the hybrid design and investigating the
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Fig. 2. Diagram of a GPU streaming multiprocessor

relationship between the RC and RSP subcomponents.
• Demonstrating that our hybrid design reduces register

energy to 38.7% of the baseline and total GPU energy
to 92.8% of the baseline, saving more energy than either
a cache-only or scratchpad-only design.

II. BACKGROUND AND MOTIVATION

A. GPU Architecture and SIMT Execution

In this work, we consider a GPU model based on the Nvidia
GTX 980 [6]. This GPU contains 16 streaming multiprocessors
(SMs), partitions that have dedicated resources such as shared
memory and an L1 cache. Further, each SM includes 4
warp schedulers, each of which issues instructions to private
functional units. A diagram of an SM is shown in Figure 2.

Threads in a GPU kernel execute the same code and often
follow the same control flow path. To leverage this redundancy,
threads are collected into groups of 32 called warps. A warp is
assigned to one scheduler for its entire lifetime and serves as
the basic unit of scheduling and execution in the pipeline. In
order to amortize control logic overheads, a warp fetches and
decodes scalar instructions but executes these instructions for
multiple threads simultaneously with vector functional units.
This is similar to the single instruction, multiple data (SIMD)
model, but threads still maintain independent execution state.
In the uncommon case that threads in a warp take different
control flow paths, each path is executed sequentially until a
reconvergence point is reached. This execution model is called
single instruction, multiple thread (SIMT) and we refer to this
ordering of basic block execution as SIMT execution order.

A warp scheduler is responsible for orchestrating the ex-
ecution of multiple, simultaneously running warps. In the
case of the GTX 980, up to 16 warps may be assigned to a
scheduler concurrently. Each cycle, the scheduler determines
which warps are ready to issue instructions and arbitrates
among them for access to the pipeline. This mechanism allows
many warps to share the same execution hardware. Further,
when a warp stalls, the scheduler can maintain high throughput
and hardware utilization by issuing instructions from other
warps instead of waiting for this stall to resolve. A two-level
scheduler, as proposed in [4], divides warps into a small set
of active warps that may issue instructions and a larger set
of pending warps that may not until moved into the active
set. In prior register management techniques [4], [5], [7], [8],
a two-level scheduler has been effective at reducing the size
of the short-term working set of warp registers seen by the
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Fig. 3. Percent of register accesses elided by an RSP with 12 KB / SM
capacity versus dynamic instructions per strand for all Rodinia benchmarks.
Frequent strand boundaries reduce the number of register accesses the RSP
captures.

hardware. We therefore employ a two-level scheduler with our
hybrid design.

B. Advantages of a Register Scratchpad

A cache allocates registers as they are accessed. When
there is contention for RC capacity, the least recently used
(LRU) strategy dictates which registers to evict. As a result,
the contents of an RC reflect the recent history of register
accesses. This approach leverages temporal locality, which
suggests that future register accesses will be similar to past
accesses. However, temporal locality only offers a description
of typical behavior, not a precise forecast of future behavior in
a particular instance. The cache’s strategy therefore constitutes
a heuristic approach. This leads to suboptimal allocation and
eviction decisions in some cases, reducing RC effectiveness
in two ways. First, because an RC has finite storage space,
allocating a register that will not be frequently accessed in the
future may require evicting a register that will be frequently
accessed. Second, the cache may incur extra energy overhead
by unnecessarily moving data between the RC and MRF.

An ideal RC would have precise knowledge of future regis-
ter accesses. With this foresight, the energy savings achieved
by each possible allocation could be perfectly predicted. The
cache could then optimally ration its finite storage, selecting
the set of cache allocations such that total register energy is
minimized.

Unfortunately, an ideal cache with perfect future knowledge
cannot be implemented. However, an RSP offers much of the
same benefit because allocations are selected by the compiler,
which has substantial insight into future accesses. This insight
is possible because the entire kernel is visible to the compiler
and there is no aliasing for register accesses as there is for
memory accesses. The compiler is therefore able to anticipate
future accesses and proactively select scratchpad allocations
whereas the cache performs allocations reactively based on
past accesses. An RSP also does not require tag stores and
comparisons like a cache, so RSP accesses consume less
energy than RC accesses. Prior work has demonstrated that
these advantages allow an RSP to achieve greater energy
savings than an RC [5].

C. Advantages of a Register Cache
Although the compiler has insight into future register ac-

cesses, this insight is neither perfect nor complete. The com-
piler’s knowledge is incomplete because scratchpad analysis
divides the kernel into regions and only allocates registers
within these regions. The compiler’s knowledge is imperfect
because it does not include knowledge of dynamic behavior.
As a result, opportunities exist for an RC to capture accesses
that an RSP does not because RC allocations are made in
response to continuously observed dynamic behavior.

1) Boundaries Between Strands: While the compiler can
inspect all instructions in a kernel, it can only map registers
to the scratchpad within limited regions of code. Splitting the
code into regions for compiler analysis of register usage is
a common feature of prior work. For instance, two regions
may be divided for all types of control flow [9], for instances
of control flow divergence [10], at backwards branches and
their targets [5], or at function calls and returns [8]. Further
restrictions may be imposed on regions, such as requiring that
a region have only one entry point [8], disallowing regions
within which execution may stall due to unpredictable memory
latencies [5], [9], or disallowing regions that require more than
a certain amount of a hardware resource [8], [9]. While the
details differ in each of these cases, dividing the code into
regions is generally done because the dynamic behavior of
executing code is not known at compile time or to simplify
compilation.

In this work, we adopt the term ”strand” from [5] to refer to
the regions of code that the compiler inspects. The complete
procedure for identifying strands is described in Section III-B,
but for now we note that, among other restrictions, strands
cannot contain dependencies on long-latency operations except
for the first instruction in the strand and cannot span backwards
branches or their targets. Allocations can only be made within
a single strand and register values cannot be communicated
directly through the scratchpad from producers in one strand
to consumers in another. Strand boundaries therefore limit
the ability of the scratchpad to reduce register energy. Figure
3 plots the percent of register writes and reads elided by
a scratchpad versus the average number of instructions dy-
namically executed per strand for each benchmark in Rodinia
[11]. These results show that shorter intervals between strand
boundaries diminish the scratchpad’s effectiveness. In contrast,
the compiler limitations that necessitate strand boundaries are
irrelevant to the cache because the cache does not depend on
the compiler to make allocations.

2) Dynamic Control Flow: The ability of the compiler to
effectively allocate registers to the scratchpad is also inhibited
because the compiler makes RSP allocations statically. As
described previously, a distinct segment of the register name
space is mapped to the RSP. When the compiler allocates a
register to the RSP, the instructions that reference this regis-
ter are modified to reference the scratchpad-mapped register
instead. Therefore, RSP allocations are fixed at compile time
and cannot adapt to dynamic behavior.

The compiler is not always certain about which instruc-
tions will be executed dynamically due to control flow that
cannot be predicted statically. In such cases, it is not known
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Fig. 4. Register energy for a cache that evenly divides capacity between active
warps and for a cache where warps dynamically share capacity. Dynamically
sharing capacity allows the storage to be used more effectively, saving energy.

which register writes and reads will occur at runtime. This
limits the compiler’s ability to determine how much energy
different scratchpad allocations will save and can lead to
suboptimal allocation decisions. Profiling could help with this
problem by providing the compiler with information about
which instructions and register accesses are most likely to
be encountered at runtime. However, we note that the RSP
will be unable to adapt in the case of threads that follow
less common control flow paths. Furthermore, the compiler
must select allocations conservatively such that correctness
is maintained no matter which control flow paths threads
follow at runtime. For instance, the compiler cannot remap
a register read to the RSP unless it can statically guarantee
that a previously executed instruction wrote a valid value for
this register to the RSP. This prevents the scratchpad from
capturing register accesses that could be serviced if dynamic
information were incorporated. In contrast, control flow is
completely transparent to the cache, which just sees a series
of register accesses and therefore only responds to the control
flow paths that are taken at runtime.

3) Dynamically Shared Register Storage: The compiler is
also not certain about when instructions will be executed
dynamically. This stems from uncertainty about which control
flow paths will be executed, how long it will take for depen-
dencies on long latency-operations such as loads from global
memory to resolve, and what decisions the warp scheduler will
make at runtime. As mentioned previously, a strand boundary
is inserted before dependencies on long-latency operations.
This is done so that scratchpad space will not be idly oc-
cupied by a warp that is waiting for such a dependency to
resolve. However, this is conservative, as it is possible that the
long latency dependency will have resolved before execution
reaches it. Scratchpad allocations are also conservative in that
scratchpad capacity is equally divided between the maximum
number of warps that could simultaneously issue instructions
from the scheduler. However, some active warps may execute
different segments of code at the same time in hardware or
issue instructions more frequently than others. Therefore, some
warps may have larger or smaller immediate-term register
working sets than others.

An opportunity exists for the warps to dynamically share

(c) Hybrid-amenable code. The RSP
component can capture register
accesses for sequential arithmetic
instructions in the loop body. The RC
component can capture accesses to the
loop-carried value in R4.

(b) Scratchpad-amenable code. The
compiler can effectively anticipate
register accesses for sequential
arithmetic instructions and make RSP
allocations accordingly.

BB1
R1 = R10 << 0x4
R2 = R11 << 0x4
R3 = R12 << 0x4
R4 = R13 + R1
R2 = R13 + R2
R3 = R13 + R3
…
R9 = R9 * R10

BB1
R0 = load[R4]
…
… = R0 …
R1 = …
R2 = …
R3 = …
… = R1 …
… = R1 …
… = R1 …
R4 = R4 + STRIDE
ConditonalBr BB1

BB1
…
R2 = load[…]
… = R2 …
…

BB2
…
R3 = load[…]
…

BB3
… = R3 …
…

BB5
… = R3 …
…

BB4
…

(a) Cache-amenable code. Complex
control flow and long-latency
dependencies impair RSP effectiveness,
but an RC can respond to the dynamic
behavior of these features.

Fig. 5. Examples of code for which an RSP, RC, and hybrid would be
particularly effective

register capacity based on their immediate-term working sets,
allowing more total register accesses to be captured across the
executing warps. However, the compiler cannot take advantage
of this because it cannot know which warps will execute which
code at which time. In contrast, RC capacity is dynamically
shared between all warps. If a warp stalls at runtime, the
cache’s LRU mechanism allows it to reclaim the capacity
occupied by that warp’s registers if the space is needed. Figure
4 compares the register energy consumed for a cache where
each active warp is assigned a private, equally-sized cache
segment as is done in an RSP and for a cache where capacity
is dynamically shared between warps. These results show that
a dynamic sharing of register storage is able to achieve greater
energy savings than fixed partitioning. An RC can incorporate
this beneficial feature, but an RSP must statically divide its
capacity between the active warps.

D. Advantages of a Hybrid Design

The above discussion suggests that for kernels with features
such as complex control flow and frequent long latency
operations, like the example shown in Figure 5a, an RSP
is likely to be ineffective at reducing register energy. We
expect that an RC will outperform an RSP in such cases. For
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kernels whose dynamic execution consists mostly of sequential
arithmetic operations, such as the one shown in Figure 5b, an
RSP will likely save more energy than an RC. This is because
the compiler can accurately predict future register accesses
and proactively allocate registers to the scratchpad in these
situations. Because a hybrid design includes both an RC and
an RSP, it will be at least somewhat effective in either scenario.
This allows the hybrid design to capture register accesses
across a broader range of code patterns than a cache-only or
scratchpad-only design.

More significantly, the hybrid design benefits from a fine-
grained synergy between the cache and the scratchpad. It is
often the case that within a single kernel or segment of code
some register accesses may be allocated to the scratchpad
while others are more appropriately serviced by the cache. For
instance, a strand may cover a portion of code that contains
sequential arithmetic that the RSP captures more effectively
than the RC would. At the same time, the RC may be able
to capture register communication between strands or register
accesses that the compiler failed to allocate to the RSP because
of uncertainty about dynamic behavior.

An example of this is shown in Figure 5c. The loop body
in this example contains a sequence of arithmetic instructions
in which R1 is written and then read repeatedly. The compiler
would proactively allocate R1 to the RSP and guarantee that it
is not evicted until after these reads. R4 stores a loop counter
that is read, incremented, and written at the end of the loop.
The scratchpad is not able to communicate the value stored at
the end of one loop iteration to the read of this value at the
end of the next iteration because multiple strand boundaries are
crossed in this span. However, strand boundaries do not affect
the RC, which is therefore able to service these accesses to
R4. Thus, a hybrid design could capture more register accesses
than a cache-only or scratchpad-only design in this scenario.
We note that in order for this synergy between the cache and
the scratchpad to occur, each structure must capture register
accesses that the other does not or cannot. This suggests
that the hybrid design is most likely to outperform both the
cache- and scratchpad-only designs for benchmarks where
each single-structure design is at least moderately effective.

III. DESIGN

A. Hardware

1) The Register Hierarchy: Our hybrid design adds both a
register cache and register scratchpad to the baseline GPU.
Some RSP allocations entail copying a register from the
backing store to the RSP or writing back a dirty register
from the RSP to the backing store. We enable the RC to

intercept these accesses by organizing the register structures
into a hierarchy in which the RSP is backed by the RC, which
in turn is backed by the MRF. This is shown in Figure 6. Note
that because the scratchpad uses a distinct segment of the
name space, register access outside of this segment bypass
the scratchpad. In Section IV-D, this design is compared to
alternative designs in which the RC and RSP are organized
in parallel, with both structures directly backed by the MRF.
The hierarchical design achieves greater energy savings than
the parallel approaches.

2) Register Cache and Scratchpad Policies: The designs of
the RC and RSP components are based on those described in
prior work [4], [5]. We implement a two-way set associative
RC that uses an LRU replacement policy. The cache is
write-allocated, meaning that the destination register of every
executed instruction is allocated to the cache. Read-allocation
was investigated, but resulted in cache pollution and reduced
cache effectiveness. Because threads are grouped into warps
whose instructions execute in lock-step in the hardware, both
RC and RSP capacity is allocated at warp-granularity. To
avoid unnecessarily writing dead register definitions back to
the MRF, static-liveness hints are passed from the compiler
to the hardware as proposed in prior work [4]. If this hint
indicates that a register definition’s life span ends after a final
read, the cache invalidates an entry if it contains this register
after reading the value.

RSP allocation decisions are dictated by the compiler and
are described in detail in Section III-B. Here, we note that a
number of changes may be made to the compiler’s strategy
to account for the presence of the cache in the hybrid design.
For instance, part of the advantage of including both structures
in the hybrid design is that the RSP can choose not to evict
a register that will be accessed frequently some time in the
future whereas the RC cannot account for future accesses. In
cases where register accesses occur in immediate succession,
such as a write followed directly by a read, the scratchpad
may offer less of an advantage over the cache. One possible
optimization would be to place a lower priority on allocating
such accesses to the RSP in order to preserve capacity for
accesses the RC is unlikely to capture. This technique and a
number of similar approaches were investigated, but they had
only a negligible impact on the energy savings achieved by the
hybrid design. We therefore conclude that the hybrid design is
able to effectively reduce register energy without altering the
scratchpad allocation algorithm.

3) Integration into a Streaming Multiprocessor: Every SM
in the GTX 980 contains 4 schedulers. Each warp is mapped to
one scheduler for its entire lifetime and only issues instructions
from this scheduler. Therefore, a warp’s registers will only
be accessed by instructions issued from a single scheduler.
As such, private register cache and scratchpad storage is
provisioned for each scheduler. A scheduler may issue up
to two instructions in a single cycle and each instruction
may write 1 register and read 3 registers. To avoid limiting
performance, 2 write ports and 6 read ports are provisioned
for the temporary register storage. This high degree of multi-
porting results in higher access energy than a design with a
lower port count. However, the total energy of the register
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Fig. 8. Register energy for various hybrid register cache / scratchpad
configurations with total storage of 12 KB / SM

hierarchy is dominated by the MRF, so this is not a major
detriment.

4) Scaling the Hybrid Design: Our thesis is that, for a given
amount of register storage, a hybrid register cache / scratchpad
will more effectively reduce register energy than a cache-only
or scratchpad-only design of the same capacity. Therefore,
we will evaluate the three designs with the same amount
of storage allocated for each. Figure 7 shows the register
energy of each approach relative to the baseline for a range
of storage capacities. In this survey, the capacity allocated
to the hybrid design is equally divided between its RC and
RSP subcomponents. The results show that increasing RSP
capacity above 12 KB per streaming multiprocessor results in
higher energy consumption. This is because the energy saved
by eliding additional MRF accesses is offset by the increased
energy required to access the RSP beyond this point. We
wish to compare the hybrid design against the best possible
implementation of this technique, so we will evaluate the three
approaches with 12 KB / SM of capacity. However, we note
that the hybrid design consistently achieves higher energy
savings than the cache-only and scratchpad-only designs for
all capacities examined.

It is not intuitively obvious how storage capacity should
be divided between the RC and RSP subcomponents of the
hybrid design. As discussed above, we provision 12 KB /
SM of total capacity for the hybrid design. This translates
to 6 warp-wide registers per active warp. Here, we evaluate
allotting 2 KB, 4 KB, 6 KB, and 8 KB of this storage to
the RSP with the remaining storage alloted to the RC. 2

KB / SM of storage provides one warp-wide register for
each active warp1, so smaller increments of storage division
do not represent compelling points in the design space. The
results are shown in Figure 8. The greatest energy savings
are achieved with 8 KB alloted to the RC and 4 KB to the
RSP. This translates to 4 registers per active warp of cache
storage and 2 registers per active warp of scratchpad storage.
However, we note that the optimal division of capacity varies
by benchmark. This is because some benchmarks exhibit
more cache-amenable behavior while others exhibit more
scratchpad-amenable behavior. Using Cacti [12], we estimate
that this hybrid configuration increases GPU die area by 4.7%,
compared to 5.7% and 3.6% for the RC and RSP designs,
respectively.

B. Compiler Support

The compiler is responsible for remapping registers to the
scratchpad with the goal of minimizing the energy consumed
by register writes and reads. We implement a compiler al-
gorithm to do this that is modeled after the one described
by Gebhart et al. [5]. The compiler’s task consists of several
subtasks: strand formation, allocation candidate identification,
and allocation candidate selection.

As discussed in Section II-C, the compiler divides the kernel
code into segments called strands and will only remap a
register to the scratchpad within the span of a single strand.
The compiler forms strands by iterating over the program in
SIMT execution order, adding each instruction to the current
strand as it proceeds. The current strand ends when one of the
following is encountered:

• A basic block with any control flow input edges that are
not contained in the strand. This ensures that each strand
has only a single entry point.

• A basic block that could be executed multiple times in
SIMT execution order if included in the strand

• A backwards branch or the target of a backwards branch
• A function call or a return, unless it is a predicated return

that exits the kernel
• An instruction that has a dependency on a long latency

operation if it is possible that this will be the first
dynamically executed instruction with this dependency

The strand formation process repeats until the set of strands
covers the entire kernel.

Once a strand has been formed, the compiler identifies every
possible maximal register allocation within the strand. We
say an allocation is maximal if extending its range would
necessarily result in an interval in which the allocation oc-
cupies scratchpad capacity to hold a value that will not be
read from the scratchpad. There are two primary types of
scratchpad allocations: Write allocations and read allocations.
The range of a write allocation begins with a strand instruction
writing its result to the scratchpad and ends with a read of
the register from the scratchpad. If the lifetime of a register
definition written to the scratchpad extends beyond this final
read, the register value must be written to the backing store.

1128 bytes / warp-wide register, 4 active warps / scheduler, 4 schedulers /
SM
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We refer to these cases as live-out allocations. A write-
allocated register may be written multiple times within the
range in our implementation, whereas it may only be written
once at the start of the range in the implementation described
by Gebhart et al. [5]. The range of a read allocation begins
with a register read that transfers the value from the backing
store to both the functional unit pipeline and the scratchpad.
The range ends with a later read. Read-allocated registers may
not be written in the RSP and thus never need to be transfered
from the RSP to the backing store. Registers may only be
allocated to the RSP within a strand and registers may not be
communicated through the RSP across strand boundaries. For
registers that are allocated to the RSP but whose lifetimes span
strand boundaries, the compiler is responsible for directing
register transfers between the RSP and the backing store by
selecting live-out and read allocations as appropriate. In these
cases, the compiler must be able to statically guarantee that in
all possible runtime scenarios register definitions are transfered
in a way that ensures correctness.

Finally, the compiler selects which allocation candidates to
map to the scratchpad. The goal of this selection process
is to maximize energy savings with the limitation that the
available capacity of the scratchpad cannot be exceeded. For
each allocation candidate, the compiler first calculates the
register access energy that would be saved by mapping the
allocation to the scratchpad. A score is assigned to each
candidate by dividing its energy savings by the length of
its range and the candidates are placed in a list sorted by
this score. The compiler then iterates through the sorted list,
greedily mapping each allocation to the scratchpad if there is
space available for the allocation’s entire range. If space is
not available for an allocation’s entire range, the range may
be reduced and the allocation reinserted into the sorted list.
The range of a write allocation is first reduced by iteratively
removing read and write accesses from the tail of the range. If
the entire range is eliminated without mapping the allocation
to the scratchpad, the accesses from the original range are
restored except for those before the second write and the
process starts over. For a read allocation containing N register
reads, the range is reduced by producing new allocations with
ranges corresponding to the subsets of the original range with
N-1 consecutive reads. If none of these new allocations are
selected, new allocations with N-2 reads are created and so
on. When an allocation with a reduced range is mapped to
the RSP, the portions of the original range that were removed
are used to generate new allocation candidates. This is more
sophisticated than the technique describe in prior work [5],
which only removes accesses from the tail for both write and
read allocations and does not generate new allocations to cover
the excluded accesses.

IV. EVALUATION

A. Methodology

We simulate our design using GPGPU-sim 3.2.2 [14] con-
figured to model an Nvidia GTX 980 [6]. The simulation
parameters are listed in Table I. A custom compiler framework
is used to analyze the code and map registers to the scratchpad

TABLE I
GPGPU-SIM SIMULATION PARAMETERS

Architecture Nvidia Maxwell
Number of SMs 16
Warps 64 warps/SM, 32 threads/warp
Warp schedulers 4 schedulers/SM, issue max. 2 instruc-

tions/scheduler/cycle, Two-level scheduler with 4
active warps/scheduler and round robin outer-level policy
plus GTO inner-level policy for RC, RSP, and hybrid
designs, GTO scheduler for the baseline

Register file 256 KB/SM, 16 banks, 1 read-write port/bank
RFC and RFSP 12 KB total/SM, 128 B/line, 2 write ports, 6 read ports,

2-way associate with LRU replacement (cache only)
Shared memory 96 KB/SM
L1 cache 48KB, 32 MSHRs, 1 request/cycle, global data accesses

bypassed [13]
L2 cache 2048 KB, 4 memory partitions, 224 GB/s B/W

as described in Section III-B. We model the energy consumed
by the RC and RSP components using Cacti 6.5 [12] at 28 nm.
For consistency, the energy of the MRF is also modeled with
Cacti. The energy consumption of the other GPU components
is estimated using GPUWattch [3]. Our design is evaluated
across the applications in the Rodinia benchmark suite [11].

We compare the effectiveness of our hybrid design against
an RC and an RSP that are based on the designs presented in
prior work [4], [5]. 12 KB / SM of temporary register storage
is provisioned as discussed in Section III-A4, with 8 KB /
SM alloted to the RC and 4 KB / SM alloted to the RSP
subcomponents of the hybrid design.

B. Energy Savings and MRF Access Elision

The motivating idea behind our hybrid design is that RCs
and RSPs employ complimentary allocation schemes and, as
a result, a hybrid approach will reduce register energy more
effectively than either alone. We further expand this hypothesis
and make three claims:

• Claim 1: In the case of benchmarks for which both
a cache-only and scratchpad-only design are similarly
effective, the complimentary nature of the RC and the
RSP usually produces a synergistic effect that benefits
the hybrid design.

• Claim 2: Due to this synergy, fewer register accesses must
be serviced by the MRF with the hybrid design compared
to a cache-only or scratchpad-only design.

• Claim 3: As a result, the hybrid design more effectively
reduces register energy.

We now investigate each of these claims.
1) Energy Savings: In Figure 9, we show the energy

consumed by the entire register hierarchy (MRF, RC, and
RSP) relative to the baseline design, which employs a standard
greedy-then-oldest (GTO) scheduler rather than a two-level
scheduler. Across all benchmarks, the geometric mean of the
register energy relative to the baseline is 47.9% for the RC,
47.1% for the RSP, and 38.7% for the hybrid design. Further,
the geometric mean of the total GPU energy relative to the
baseline is 94.3% for the RC, 93.9% for the RSP, and 92.8%
for the hybrid design.

Accesses to the RC and RSP in the hybrid design consume
less energy than accesses in the cache-only and scratchpad-
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Fig. 9. Register energy for cache-only [4], scratchpad-only [5], and hybrid designs. * = balanced benchmark
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Fig. 10. Register write and register read elision rates for cache-only,
scratchpad-only, and hybrid designs. * = balanced benchmark

only designs with the same total capacity because the individ-
ual structures in the hybrid design are smaller. While this is
beneficial, it is not the primary cause of the hybrid design’s
superior energy savings. Furthermore, it is conceivable that
the RC or the RSP in the single-structure designs could be
modified with partitioning or power gating schemes such that
their energy consumption would be similar to that of one of
the smaller structures in the hybrid design. In order to verify
that our hybrid design offers an advantage even in this case,
we again simulate the RC and RSP approaches with 12 KB
/ SM of storage, but model their energy consumption as if
only 6 KB / SM had been provisioned. These results are
shown with the label ”half-size power” in Figure 9. Under
these conditions, the geometric mean of the register energy
relative to the baseline is 45.1% for the RC and 43.1% for
the RSP. Thus, our hybrid design saves more register energy

than the single-structure designs even after controlling for the
difference in structure sizes, verifying Claim 3.

2) MRF Access Elision: The hybrid design is more ef-
fective at reducing register energy than the cache-only or
scratchpad-only designs primarily because it is better able to
elide accesses to the MRF. This is illustrated in Figure 10,
which shows the percent of register writes and reads that are
elided by each scheme. Across all benchmarks, the geometric
mean of the percent of register writes elided is 73.3% for the
RC, 58.1% for the RSP, and 78.3% for the hybrid design.
The geometric mean of the percent of register reads elided
is 71.5% for the RC, 64.8% for the RSP, and 75.5% for the
hybrid design. These results support Claim 2.

We note that the geometric mean of the percent of register
accesses elided by the scratchpad is lower than for the cache.
However, scratchpad accesses do not require tag stores or
comparisons, so the RSP still reduces register energy more
effectively than the RC. Further, the scratchpad elides sub-
stantially more register accesses than the cache for some
benchmarks, such as hotspot.

3) RC and RSP Synergy in the Hybrid Design: The above
results demonstrate that the hybrid design reduces the number
of MRF accesses, leading to lower register energy consump-
tion. We now focus on the mechanisms that enable it to do so.
The motivating idea behind our hybrid design is that RCs and
RSPs employ complimentary allocation schemes. When the
two are combined, a synergistic effect can result that allows
the hybrid design to capture more register accesses for the
same segment of code than a cache or scratchpad alone. This
synergy is particularly likely to occur when both an RC and
RSP are at least moderately effective and therefore both able
to contribute to the set of register accesses captured.

For this evaluation, we will say that a benchmark is balanced
if the difference between the register energy consumption of
the cache- and scratchpad-only designs is less than 10% of the
register energy of the baseline. For the half-size power models,
13 of the benchmarks are balanced. These are marked with a *
in Figures 9 and 10. We observe that of these 13 benchmarks,
the hybrid design consumes less energy than either half-size
power single-structure design for 9 benchmarks, elides more
register writes for 11 benchmarks, and elides more register
reads for 7 benchmarks. Thus, the hybrid design outperforms
both single-structure designs for the majority of balanced
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Fig. 11. Percent of kernel register writes and register reads elided by the RC
and RSP subcomponents of the hybrid design. The RSP generally elides more
accesses than the RC.

benchmarks, verifying Claim 1.
The hybrid design is less likely to outperform both the

cache- and scratchpad-only designs for unbalanced bench-
marks where one of these single-structure approaches is sub-
stantially more effective than the other. For example, the
majority of the execution time for streamcluster is spent in
a tight loop with a long-latency dependency in the middle,
little register reuse within the loop body, and a large num-
ber of loop-carry registers that span the backwards branch.
As a result, the cache outperforms the scratchpad for this
benchmark. Conversely, hotspot spends the majority of its
execution time in a large loop with simple control flow and
large amounts of sequential arithmetic operations. As a result,
the scratchpad saves much more energy than the cache in this
case. For both of these benchmarks, the hybrid design achieves
savings that are between those of the cache and the scratchpad.
This is because one of the structures in the hybrid design
is ineffective and the other has less capacity than its single-
structure counterpart. However, for 3 of the 8 unbalanced
benchmarks, the hybrid design still manages to achieve greater
energy savings than either single-structure design.

C. Analysis of Cache and Scratchpad Effectiveness Within the
Hybrid Design

The above discussion analyzes the overall effectiveness
of the hybrid register cache / scratchpad. We now turn our
attention to the effectiveness of the individual RC and RSP
subcomponents of the hybrid . Figure 11 shows the percent
of all register writes and reads elided by the cache and the
scratchpad within the hybrid design. We define the percent of
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Fig. 12. Fraction of kernel register reads captured by structures in the hybrid
design versus cycles between register read and last register access averaged
across all Rodinia benchmarks (log scale). The RSP component captures most
high-locality accesses, leaving lower locality accesses for the RC to capture.

register writes elided by a particular structure as the number
of writes to the structure from a higher level of the hierarchy
shown in Figure 6 minus the number of writebacks from this
structure to a lower level of the hierarchy divided by the
total number of register writes for the kernel. We define the
percent of register reads elided by a particular structure as the
number of reads serviced by the structure divided by the total
number of register reads for the kernel. These results show
that the scratchpad tends to elide more register accesses than
the cache in our hybrid design despite the fact that the best
hybrid configuration found allots more storage space to the
cache than to the scratchpad.

The reason for this is that many easily captured register
accesses are serviced by the scratchpad. This is illustrated
in Figure 12, which shows the distribution of register reads
serviced by each structure in the register hierarchy versus the
number of cycles between each read and the most recent prior
access to the same register. Within 20 cycles of the last access,
the RSP generally captures more reads than the RC. We further
note that the share of reads serviced by the RSP declines more
rapidly as the number of cycles increases than does the share
captured by the RC. Because the scratchpad captures most of
the high-locality accesses, the register accesses remaining for
the cache to intercept exhibit lower locality. This results in
reduced RC effectiveness in the hybrid design. For instance,
the geometric mean hit rate for register reads in the cache
component of the hybrid design is 51.3% compared to 71.5%
for the cache-only design. However, we note that the cache
component is still critical to the high overall effectiveness of
the hybrid design because it captures register accesses that
the scratchpad component does not, such as those that exhibit
lower locality.

D. Comparison of Parallel and Hierarchical Designs

The RC and RSP components of the hybrid design are
organized in a hierarchy as shown in Figure 6. An alternative
approach is to implement the RC and RSP in parallel, with
both structures directly backed by the MRF. However, some
scratchpad allocations (live-out and read allocations, discussed
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in Section III-B) entail copying a register from the backing
store to the RSP or writing back a dirty register from the RSP
to the backing store. If the RC and RSP are implemented
in parallel, care must be taken to avoid the case where a
register is written to the RC or RSP but a stale definition of
the register is later read from the other structure. One way to
avoid this is to evict a register from the RC before allocating
the same register to the RSP unless both copies will be clean.
However, this increases MRF accesses and reduces register
energy to only 43.7% of the baseline compared to 38.7% for
the hierarchical design. Another parallel solution is to disable
live-out and read allocations, allocating registers to the RSP
only if they will reside there for their entire lifetime. This
limits which register accesses can be serviced by the RSP,
resulting in register energy that is 39.8% that of the baseline.
This is not quite as effective as the hierarchical design, which
can service accesses to a register from different structures at
different points in the register’s lifetime.

Although internally the MRF, RC, and RSP form a hier-
archy, the pipeline can access the RC and RSP in parallel.
Further, the transfer of registers between the RSP and lower
levels of the hierarchy happens preemptively in the background
and the compiler guarantees that the pipeline will never ”miss”
when it accesses a register in the RSP. Therefore, pipeline
register access latency is only increased compared to the
baseline when an access misses in the RC and then must be
serviced by the MRF. Using Cacti [12], we estimate that MRF
accesses take 0.82 ns, RC accesses take 0.22 ns, and RSP
accesses take 0.17 ns. Thus, the worst case access latency is
slightly over 1 ns. The clock frequency of the GTX 980 is
11126 MHz [6], giving a clock period of 0.89 ns. Therefore,
an extra cycle is required for the uncommon case that an access
must be serviced by the MRF. Prior work by Gebhart et. al.
[4] addressed this issue by adding a pipeline stage, which
was shown to have a negligible impact on performance in
a throughput-oriented GPU architecture.

V. RELATED WORK

Gebhart et al. [4], [5] proposed the register cache and
register scratchpad for GPUs. Our hybrid approach combines
the advantages of the RC and RSP to achieve higher energy
savings. Sadrosadati et. al. [8] prefetch registers into a register
cache when a warp becomes active, but this technique targets
register access latency, not energy.

Other works propose altering the MRF architecture to save
energy. Kloosterman et. al. [9] replace the MRF with a smaller,
memory-backed operand staging unit that limits spills and fills
using intelligent scheduling. Jeon et. al. [7] reduce the MRF
size by enabling physical registers to be used by different
warps over time. Abdel-Majeed et. al. [15] propose placing
registers in a low-power state between accesses and disabling
register accesses by inactive warp lanes. Our approach saves
energy without altering the standard register file design.

Some works propose reducing register energy by imple-
menting the MRF with novel memory technologies [16]–
[21]. These technologies present challenges such as long
access latencies and periodic refreshes. Our design’s small size

allows it to save energy using traditional memory technology,
avoiding these challenges.

Warp threads often store identical or similar values to a
register, which may be compressed. Register energy can be
reduced by storing compressed registers in small, cache-like
structures [22], [23] or by activating fewer MRF banks or
sub-arrays to access the compressed registers [24], [25]. Our
approach can reduce register energy regardless of register
values.

VI. CONCLUSION

The large size of GPU register files results in high-energy
register writes and reads. This presents a challenge to main-
taining energy-efficiency in GPUs as the size of the register
file continues to grow over successive generations. Prior work
has proposed augmenting GPUs with register caches and
scratchpads. While both of these techniques reduce the amount
of energy needed to accesses registers, we observe that each
approach is more effective for some types of register accesses
than for others. We propose a hybrid design that leverages the
dynamic allocation capabilities of the cache and the proactive
allocation capabilities of the scratchpad. This allows the hybrid
register cache / scratchpad to capture a broader range of
register accesses than either single-structure approach. As a
result, our technique is able to reduce register accesses energy
to 38.7% of the baseline, compared to 47.9% for a cache-only
design and 47.1% for a scratchpad-only design.
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