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Abstract—The last level cache (LLC) is critical for mobile
computer systems in terms of both energy consumption and
performance because it takes a large portion of the chip area and
misses often cause expensive stalls. Prior works have studied the
importance of bypassing the LLC, and focused on improving LLC
performance. However, they did not fully exploit the opportunity
for reducing energy consumption because they all employ a Cache
First Policy (CFP). In CFPs, blocks are initially cached to monitor
their re-reference behavior to make bypass decisions. As a result,
CFPs tend to populate the LLC with useless blocks, and consume
extra energy for unnecessary writes. In this paper, we take the
opposite approach and propose a Bypass First Policy (BFP), where
cache blocks are bypassed by default and only inserted if they
are expected to be reused. A BFP can save significant energy
by reducing the number of never-rereferenced cache blocks
written to the LLC. Evaluations show that BFP reduces energy
consumption by 57.1% across SPEC CPU2006 and 21.7% across
MediaBench benchmark suites on average. Furthermore, BFP
achieves a geometric mean speedup of 18.3% for LLC-intensive
benchmarks with less than 8kB of extra storage, which is better
or comparable to state-of-the-art CFPs while consuming similar
or less storage overhead.

I. INTRODUCTION

Mobile System-on-Chip (SoC) processors are becoming

more like desktop-class processors. For instance, the Apple

A9 is a dual core, where each core features 6-wide issue and

out-of-order execution with 64kB L1 instruction/data caches

and a 3MB L2 cache. It also has 4MB L3 cache, which

services not only the CPU cores but all the components on

the entire SoC. As the last level cache (LLC) in mobile SoC

becomes larger as in desktop-class processors, it is becoming

a critical component in terms of both energy consumption

and performance. For example, the LLC is reported to be

responsible for at least 15% of the total processor energy [1],

even when the LLC employs low standby power (LSTP)

technology to optimize for energy efficiency.

Although a cache is built on the assumption that tempo-

ral locality is abundant, the LLC often deviates from the

fundamental assumption. Many cache blocks in the LLC do

not exhibit temporal locality. For example, a traditional least-

recently used (LRU) replacement policy has been shown to

have large gap with the better replacement policy for the

LLC [2]. Many prior works have studied LLC behavior and

showed that bypassing incoming blocks [3], [2] can sub-

stantially improve LLC performance. These works observe

the re-reference patterns of cache blocks in the LLC, and

predict which incoming blocks are not likely to be reused

by associating address region [4], program phase [2], or

instruction [3], [5] to bypassing predictions.
Although these works have investigated what reference

characteristics provide a good indication of bypasses, they all

share a common trait of being Cache First Policies (CFPs)

because they must cache blocks in order to monitor their re-

reference behavior. CFPs conservatively over-insert blocks into

the LLC to make sure that reused blocks are not bypassed by

mistake. As a result, unnecessary energy is consumed when

writing never-rereferenced blocks to the LLC.
In this paper, we propose a Bypass First Policy (BFP) for

the LLC that relies on a rather counter-intuitive behavior:

BFP defaults to bypassing. BFP reduces the number of never-

rereferenced blocks by only caching blocks that are likely

to be re-referenced. The key difference between CFPs and a

BFP is the way they monitor the reuse characteristics to make

decisions. For example, dead block predictions [6] bypass the

incoming blocks when they are predicted to be dead, however,

these works are CFPs because they make the predictions

after caching blocks to monitor reuse characteristics. The

counterpart in a BFP implementation would be live block

prediction, where the incoming blocks are bypassed by default

and an opposite prediction is made.
Because never-rereferenced blocks dominate in the LLC,

a BFP can reduce the energy consumption significantly as

unnecessary writes of never-rereferenced blocks to the LLC

are avoided. However, we do not want to sacrifice LLC per-

formance to achieve energy savings. To predict when a block

is likely to be re-referenced, we observe the LLC behavior

under optimal replacement. We restate the traditional principle

of locality with a specialization for the LLC: 1) reused blocks

are likely to be reused, and 2) memory locations within close

proximity are likely to be reused if one of them is recently

re-referenced. The key idea of BFP is that a cache block is

inserted into the LLC only when a reuse (direct or nearby

location) has been monitored. With the modified principles of

locality, we were able to achieve comparable performance to

the state-of-the-art CFPs while reducing energy consumption.
This paper makes the following contributions:

• We motivate why bypass by default is important by

showing that the number of bypassed blocks in the LLC
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Fig. 1: Percentage of never-rereferenced blocks in the LLC

under optimal replacement (OPT) [7], RRIP [2], PDP [8],

and DSB [9]. A never-rereferenced block is a block that is

victimized with no reuse. We show LLC-intensive benchmarks

from SPEC CPU2006 and Mediabench, and the average across

all the benchmarks in each suite.

is large even with optimal replacement.

• We analyze the behavior of an optimal LLC replacement

policy and revisit the principle of locality customized to

the LLC by focusing on how cache hits are generated.

• We propose a Bypass First Policy (BFP) that bypasses

incoming blocks by default. BFP inserts a cache block

only when it is likely to be reused and predicts that a

cache block with a recent reuse, or with a recent reuse

in the spatially nearby addresses, is likely to be reused.

• We show that a simple BFP can be implemented with a

storage overhead of less than 8kB. Energy is significantly

saved with a BFP because it avoids unnecessary writes to

the LLC. Moreover, BFP achieves comparable or larger

performance improvements than prior CFP schemes.

II. MOTIVATION

In this section, we first motivate why cache blocks should

be bypassed first instead of being inserted into the LLC by

observing the number of never-rereferenced blocks in the LLC

under the various replacement policies. We further study the

LLC behavior under the optimal replacement to inspire when

cache blocks should be inserted.

A. Optimal Replacement Study

Optimal replacement discards a cache block with the fur-

thest reuse in the future. In practice, the optimal policy cannot

be implemented because it requires oracle knowledge of

future memory references. Although impractical, exploring the

LLC behavior under optimal replacement discovers interesting

insights on how the LLC should be managed.

Figure 1 shows the percentage of never-rereferenced blocks

in the LLC under optimal replacement and other state-of-the-

art CFP policies. On the x-axis, we list the LLC-intensive

benchmarks from SPEC CPU2006 and Mediabench bench-

mark suites. We define the LLC-intensity as the percentage

of instructions-per-cycle (IPC) improvement as the LLC size
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Fig. 2: Distribution of the hits to cache blocks with a sin-

gle reuse and multiple reuses in the LLC under optimal

replacement. We show LLC-intensive benchmarks from SPEC

CPU2006 and Mediabench, and the average across all the

benchmarks in each suite.

is quadrupled from 2MB to 8MB. The LLC-intensive bench-

marks are the ones with more than 25% improvement. We

compute the average across whole benchmark suite including

non-LLC-intensive benchmarks for completeness.

From Figure 1, we can see that never-rereferenced blocks

dominate in the LLC even with the optimal replacement,

where an average of 76.4% and 45.3% of cache blocks

are never-rereferenced in SPEC CPU2006 and Mediabench,

respectively. Many previous works, which also noted this

phenomenon, have explored bypass opportunities by predicting

which blocks are never likely to be reused. Ideally, if we can

perfectly bypass cache blocks that will never be reused, only

cache blocks with definite reuses will be inserted into the

LLC. With perfect bypassing, the LLC performance would

be maximized and the energy consumption will be minimized

because never-rereferenced data are not written to the LLC.

However, as shown in Figure 1, state-of-the-art CFP policies

that exploit bypasses often have larger number of never-

rereferenced blocks than the optimal replacement because their

bypass predictions are not perfect.

Since never-rereferenced blocks are dominant in the LLC

even with the optimal replacement or any state-of-the-art

CFPs, we argue that we should rethink the conventional

wisdom on the LLC, which inserts by default. A BFP that

bypasses by default and inserts only when a cache block is

likely to be reused will significantly reduce the number of

never-rereferenced blocks in the LLC, thus, saving dynamic

energy significantly. However, BFP should be designed in a

way so that it still provides comparable performance to CFPs

as the LLC performance is also an important metric.

B. Opportunities

The key for a BFP is to predict when the reuses are likely

to occur. Otherwise, the benefit of a BFP may not be realized

due to reduced performance. We start from the principle of

locality to predict which blocks are likely to be reused in

the LLC. Figure 2 shows the distribution of the cache hits in

the LLC under optimal replacement. Again, we list the LLC-

intensive benchmarks from SPEC CPU2006 and Mediabench
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Fig. 3: Distribution of cache hits for the number of misses

between hits within a 128kB memory region across the whole

SPEC CPU2006 benchmarks under the optimal replacement.

benchmark suites on the x-axis. On average, 84.1% and 78.6%

of the cache hits in the LLC come from the cache blocks

with multiple reuses for SPEC CPU2006 and Mediabench,

respectively. From Figure 2, we make following remark: cache

blocks that are reused at least once, are likely to be re-

referenced in the future. We highlight the “reuse” because

typical incoming blocks in the LLC would not observe any

reuses. The remark is essentially a restatement of temporal

locality with a modification specific to the LLC.

Another well-known form of locality is spatial locality.

Figure 3 shows the distribution of cache hits for the num-

ber of misses between hits within a 128kB memory region

under optimal replacement. We used a 128kB memory region

because all the sets with the same tag in the 16-way 2MB

LLC form 128kB memory regions. For a memory region with

less size, a part of the set index has to be also considered.

The figure suggests that cache hits occur in bursts within a

128kB memory region as 72.2% of hits occur consecutively.

Note that there is a long tail beyond the forty misses between

hits, which is not shown in the graph. It suggests that if the

LLC starts observing reuses for a memory region, it is likely

that other cache blocks in the same region will be reused in

a burst. We make following remark: if one cache block in a

memory region is reused recently in the LLC, cache blocks

within the same memory region are likely to be re-referenced.

We highlight the “recent” as well as the “reuse” because the

spatial locality is rather observed in bursts. The remark restates

the spatial locality in a specialized form for the LLC.

To summarize, we have shown that CFP mechanisms

can have inaccurate inserts because never-rereferenced blocks

dominate in the LLC. Consequently, it is strongly suggested

that cache blocks should be bypassed by default, and only be

inserted if they are likely to be reused. Studying the optimal

replacement, we observed two important characteristics: 1)

reused blocks are likely to be re-referenced, and 2) recently

reused memory regions are likely to be re-referenced.

III. BFP DESIGN

A. Bypassing First

BFP bypasses incoming blocks by default, and predicts

which incoming blocks should be inserted. Intuitively, we

would like to only insert blocks that are likely to be re-

referenced. Recalling the modified principle of locality in

valid tag

Cache

Set 0
Set 1
Set 2

Set N

...

Shadow Directory

...

Width

Spatial Locality Predictor (SLP)

...

Depth

valid tag confidence

Fig. 4: Architecture overview of BFP. Each cache set has

shadow directory, which is a tag array for bypassed blocks,

to predict temporal locality. SLP, which is another tag array

with confidence, predicts spatial locality for the entire LLC.

Section II-B, BFP inserts blocks when they were recently

bypassed and re-referenced again, or when one of the blocks

within the same memory region has been recently inserted.

Figure 4 illustrates the architectural overview of BFP. To

capture the modified temporal locality in the LLC, BFP

attaches shadow directories [10] to the cache sets. Note that

BFP has shadow directories for all the cache sets unlike

previous studies [10], where the shadow directories only

existed for sampling sets. These shadow directories hold the

few recent bypasses to see if they are re-referenced. Each entry

in the shadow directory consists of a valid bit, and tag. To

monitor the modified spatial locality in the LLC, BFP has a

spatial locality predictor (SLP), which stores recently inserted

memory regions. Each entry in the SLP consists of a valid bit,

tag, and confidence.

Figure 5 depicts the behavior of BFP when the LLC misses.

❶ When the LLC misses, ❷ the corresponding shadow direc-

tory is looked up to see whether the incoming block exists.

If exists, the incoming block exhibits the modified temporal

locality, thus will be inserted into the LLC. Otherwise, ❸ SLP

is searched to check whether any block in the same memory

region has been recently inserted. If found, the incoming

block is inserted into the LLC because it shows modified

spatial locality. ❹ If the incoming block does not exhibit

any locality, we put the incoming block in the corresponding

shadow directory and bypass the LLC. Note that writebacks

are always bypassed in BFP without being inserted into the

shadow directory. BFP is not in the critical path as it does not

affect cache access time. Choosing whether to bypass or insert

can take multiple cycles, and be processed in parallel while

generating a request to the main memory.

BFP solely focuses on predicting whether incoming blocks

should be bypassed or cached. The underlying promotion and

replacement policy of the LLC can be chosen arbitrary. We use

a 1-bit not-recently used (NRU) replacement for the practical

implementation.

B. Shadow Directory

Shadow directory keeps track of the few recently bypassed

blocks for each set, and monitor the reuses. Shadow directory

entry is evicted in a round-robin. This requires additional
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Fig. 6: Average aliases with varying tag bits in the 2MB LLC.

log2width-bit per set to denote the round-robin position. As

shown in Figure 5, shadow directory is filled when the LLC

misses and the incoming block is bypassed. A shadow direc-

tory entry in the current round-robin position is filled with the

incoming block, and the round-robin position is incremented

subsequently. A shadow directory entry is invalidated and

moved to SLP if it hits.

Shadow directory has two control parameters as shown in

Figure 4. First, the number of bits for each tag in the shadow

directory entry controls the trade-off between the storage

overhead and the aliasing between two different tags. Second,

the width of shadow directory, which is the number of entries

in the shadow directory per set, determines how many blocks

are recorded per set, which also trade-offs between the storage

overhead and the monitored number of bypasses.

Figure 6 shows the average percentage aliases over all

memory references when tag bits are swept from 8-bit to 20-

bit. Once partial tags uses at least 14-bit, aliases are negligible

as they are reduced to almost 0%. Therefore, BFP will use a

14-bit partial tag. We found out that shadow directory gives

sufficient improvement only with two entries per set as will be

discussed in Section IV-C. In such case, the hardware overhead

of shadow directory per set is 31-bit, where 30-bit is from an

entry with a valid bit and tag, and 1-bit is from the round-robin

position. In the 16-way 2MB LLC with 64B blocks, BFP only

requires 7.75kB extra storage for shadow directories.

C. Spatial Locality Predictor

SLP stores the recently inserted memory regions. SLP en-

tries are also victimized in a round-robin order, which require

additional log2depth-bit for the round-robin position. Figure 5

illustrates how an entry is allocated in the SLP. When a shadow

directory hits, the tag is moved from the shadow directory to

the SLP. Note that depending on the size of a memory region,

few extra bits from the set index may be appended. When

the memory region already exists in the SLP, its confidence is

increased by one. On the other hand, confidence of the SLP

entry is decreased by one when a block evicted from shadow

directory without a reuse is within the memory region of the

SLP entry. When the confidence is zero, the SLP entry is no

longer valid.

Figure 4 shows that SLP has two control parameters: depth,

and tag. SLP uses 2-bit confidence. SLP performs sufficiently

well with only one entry as further discussed in Section IV-C.

Extra SLP entries seldom provide additional benefits because

a memory region is reused in bursts as shown in Figure 3.

Similar to the shadow directories, SLP uses a 14-bit partial

tag. As will be discussed in Section IV-C, a 64kB memory

region gives the maximum benefit for the 16-way 2MB LLC

with 64B blocks, which requires one extra bit from the MSB

of set index besides the 14-bit partial tag. In a nutshell, SLP

requires 17-bit for the 16-way 2MB LLC with 64B blocks.

D. Set Dueling

BFP can suffer if single reuse blocks dominate because

BFP’s assumption on locality is violated. In fact, we found out

that cache first policy (CFP), which inserts by default, is better

than BFP for such cases. Set dueling [11] is a technique that

dynamically selects between two cache management policies

in the runtime. In set dueling, a few sets called leader sets are

dedicated to each cache management policies. A single counter

called psel is incremented when the first policy causes a miss

in one of its leader sets, and decremented when the second

policy invokes a miss in one of its leader sets. Depending on

the psel value, the rest of the sets called follower sets will

choose to use the policy with less misses. In the LLC, the

behavior in a few leader sets can often be generalized into

the whole cache behavior hence set dueling is effective in

the LLC. We duel BFP with CFP to utilize CFP when BFP’s

assumption is violated. Shadow directories for CFP leader sets

can be removed for hardware optimization as they are not

used at all. However, we choose to keep shadow directories

for all the sets because the overhead is only in the range of

hundreds of bytes, and the uniformity across the sets may



Architecture Parameters Parameters

(SPEC CPU2006) (Mediabench)

Processor 4-way Out-of-Order
128-entry ROB

L1 I-Cache 32kB/4-way/64B blocks 64kB/4-way/64B blocks
1 cycle access 1 cycle access

L1 D-Cache 32kB/8-way/64B blocks 64kB/8-way/64B blocks
1 cycle access 1 cycle access

L2 Cache 256kB/8-way/64B blocks 2MB/16-way/64B blocks
10 cycle access 30 cycles access

L3 Cache 2MB/16-way/64B blocks N/A
30 cycle access

Main Memory 200 cycle access

TABLE I: System configuration

be more important for SRAM circuit designs. Like previous

works, we use 32 leader sets for BFP and CFP, respectively.

Set dueling introduces 10-bit extra storage for psel counter.

E. BFP and Inclusion Property

Bypassing the LLC breaks the inclusion property unless

upper level caches also bypass the block. However, it is likely

that a block is never reused in the LLC because its reuses are

satisfied by the upper level caches. BFP can exploit previous

techniques to preserve the inclusion property. In RRIP [2], the

incoming block is predicted to have low rereference interval

so that inclusion property can be preserved until the next few

misses. Gupta et al. [12] showed that a small bypass buffer

is enough to preserve inclusion property for bypassed blocks

until upper level caches can satisfy all the reuses. In terms of

energy perspective, the second approach is better because the

energy cost of updating a small bypass buffer is smaller than

the energy cost of updating a cache line in the LLC.

A bypass buffer is a fully associative cache structure. If a

block is bypassed in the LLC, it is inserted into the bypass

buffer. The bypass buffer is maintained by pLRU algorithm,

and allows a block to remain for inclusion property during the

maximum of N misses when it has N-entry. Gupta et al. [12]

have shown that 16-entry bypass buffer can preserve inclusion

property long enough to have negligible performance impact.

IV. RESULTS

We use a modified version of CMP$im [13], a Pin-

based [14] trace-driven simulator to evaluate BFP. A 4-way

out-of-order core with 128-entry reorder buffer (ROB) is used

for evaluation. We model a desktop-class CPU with a three-

level cache system for SPEC CPU2006, and a mobile CPU

with a two-level cache system for Mediabench [15]. The upper

level caches use traditional LRU replacement. The system

configuration parameters are summarized in Table I.

We use LLC-intensive benchmarks from SPEC CPU2006

and Mediabench to evaluate BFP. Benchmarks are simulated

for 1 billion instructions. We use SimPoint [16] to identify

a single representative 1 billion instruction interval. To select

the LLC-intensive benchmarks, we rank benchmarks with the

percentage of speedup when the LLC is increased from 2MB

to 8MB, and pick the ones with more than 25% improvement.

From Mediabench, we ran H.264, MPEG-4, and JPEG-2000.

For non-LLC-intensive benchmarks, there is negligible change
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Fig. 7: Comparison of energy reduction over LRU for RRIP,

PDP, DSB, and BFP. To be fair, a bypass buffer was attached

to PDP, DSB, and BFP to store bypassed blocks for inclusion

property.
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Fig. 8: Dynamic power consumption for the 2MB LLC and the

bypass buffer (Left), and a distribution of energy consumption

in RRIP, PDP, DSB, and BFP (Right). In the right graph, LLC,

Extra, and BB refer to energy consumed by the LLC, extra

storage, and bypass buffer, respectively.

in performance with BFP as well as the prior replacement

policies that are compared. The baseline LRU replacement

does not employ any bypassing mechanisms.

We used CACTI [17] to estimate the energy consumption of

BFP. We used 22nm technology LSTP (Low Standby Power)

process in CACTI. We assumed 2GHz processor to estimate

the static energy. We gathered the accesses to the LLC as

well as to the extra BFP structures in the simulated workloads

to measure the dynamic activities. The shadow directory is

modeled as a 2-way associative cache structure with a 14-bit

tag, where the data array was ignored. The SLP is modeled

as a direct-mapped cache with a 14-bit tag, where the data

array was ignored. We also modeled a bypass buffer, which is

a 16-entry, fully associative cache structure.
We compare BFP to three prior works for the LLC:

DRRIP [2], PDP [8], and DSB [9]. The respective authors

provided C++ source codes that work in the CMP$im envi-

ronment. They all are CFPs but employ bypasses to improve

the LLC performance. We use 2-bit DRRIP with ǫ = 1/32, 32

sampling sets, and 10-bit psel counter. We use dynamic PDP-2

with 32-entry RD sampler, Sc = 4, and dmax = 256. We use

the first configuration among the three available configurations

for DSB.

A. Energy Consumption

We first show how much BFP can save energy compared

to CFPs that also employ bypasses. Figure 7 shows the

comparison of energy reduction over the traditional LRU
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Fig. 9: Comparison of MPKI reduction over LRU for BFP and

prior works.

replacement. The LLC-intensive benchmarks on the x-axis

are listed in LLC-intensive order. For both SPEC CPU2006

and Mediabench, we also show the average across whole

benchmarks from each suite. We add a bypass buffer to PDP,

DSB, and BFP as explained in Section III-E for fairness

because blocks are actually bypassed in PDP, DSB, and BFP,

while RRIP inserts a block to the LLC with low priority, which

will be evicted at the next miss. Note that PDP does not include

the energy consumed by the logic to compute PD.

In Figure 7, RRIP, PDP, DSB, and BFP can reduce energy

consumption by 5.4%, 41.1%, 41.1%, and 57.1%, respectively,

for entire SPEC CPU2006 benchmark suite. For Mediabench,

RRIP, PDP, DSB, and BFP can reduce energy consumption

by 0.3%, 5.5%, 2.2%, and 21.7%, respectively. As shown by

the results, BFP saves much more energy compared to CFP

schemes, where wrf is the only exception where PDP saves

more than BFP. In wrf , set dueling results in using CFP mode

rather than BFP mode hence BFP consumes similar energy

to the baseline. In general, BFP avoids unnecessary writes

to the LLC from never-rereferenced blocks, and writes them

to the bypass buffer. Figure 8 (Left) shows that the bypass

buffer costs much less power than the LLC. Figure 8 (Right)

shows that extra energy consumption from additional storage

is negligible in all the schemes. Energy is also saved from

improved performance, and this reduction is similar for BFP

and CFPs because they perform similarly.

B. Performance

Figure 9 shows the MPKI reduction over LRU for RRIP,

PDP, DSB, and BFP. Figure 10 illustrates the IPC improvement

of RRIP, PDP, DSB, and BFP over LRU. On average, MPKI

is reduced by 9.7%, 10.1%, 12.5%, and 11.2% for the entire

SPEC CPU2006 benchmark suite with RRIP, PDP, DSB,

and BFP, respectively. For Mediabench, MPKI is reduced by

-1.9%, -3.1%, 1.9%, and 0.9% in RRIP, PDP, DSB, and BFP,

respectively. As a consequence, the system performance is

improved by an average of 4.8%, 4.0%, 5.8%, and 5.7%

for SPEC CPU2006 benchmark suite in RRIP, PDP, DSB,

and BFP, respectively. For Mediabench, -0.1%, -0.4%, 1.5%,

and 1.3% improvements are achieved with RRIP, PDP, DSB,

and BFP, respectively. If we only consider the LLC-intensive

benchmarks, the geometric mean improvements over all the
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Fig. 10: Comparison of IPC improvement over LRU for BFP

and prior works.

benchmarks are 15.8%, 12.7%, 18.6%, and 18.3% for RRIP,

PDP, DSB, and BFP, respectively.

An interesting case is discovered in Figure 10. While PDP

outperforms RRIP in sphinx3 and hmmer, RRIP performs

better than PDP for mcf and cactusADM . BFP achieves the

best performance in both cases by performing closely to PDP

in sphinx3 and hmmer, and outperforming RRIP in mcf
and cactusADM . This shows that BFP can provide benefits

for all the workloads while RRIP and PDP works better than

each other for a different subset of workloads. Compared to

DSB, BFP achieves the similar performance improvement.

C. Sensitivity

Figure 11 depicts the sensitivity of BFP to the various

configuration parameters. The geometric mean of IPC im-

provement across the LLC-intensive benchmarks, and all the

benchmarks in the suites are presented to show the sensitivity.

Figure 11 (a) illustrates the sensitivity of BFP to the number

of entries per set in shadow directory when it is swept from

one to five. There is a huge gap between when it is increased

from one to two. After the width becomes more than three,

the performance improvement starts to decrease slowly. This

is mainly due to sphinx3. While the performance slowly

improves for most of the benchmarks when the number of

entries is incremented, sphinx3 heavily suffers from more

entries because monitoring more bypassed blocks escalate the

number of inserts significantly to thrash the LLC. On the

other hand, mcf and cactusADM are continuously improved

as the number of entries is incremented. For example, the

performance of mcf can be improved upto 39.1% when the

number of entries is five. While the shadow directory performs

the best when there are three entries, we decided to use two

entries per set as it consumes less storage overhead with

similar performance to the three.

Figure 11 (b) shows the sensitivity of BFP to the number

of entries in SLP when it is changed from one to four.

Although there is no significant change with more entries,

IPC improvement with the single entry is slightly higher than

the others in the LLC-intensive benchmarks. Because spatial

locality is observed in bursts as shown in Section II-B, having

more entries in SLP provides no additional benefits. In fact,

SLP may pollute the cache by generating more inaccurate

inserts beyond the burst. BFP chooses to use one SLP entry.
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Fig. 11: Sensitivity of BFP to (a) the number of entries per set

in shadow directory, (b) the number of entries in SLP, and (c)

memory region size. A geometric mean of IPC improvements

for the LLC-intensive benchmarks and the whole benchmark

suites are presented.

Figure 11 (c) depicts the sensitivity of BFP to the size of a

memory region when it is altered from 128kB to 8kB. When

all the benchmarks are considered, the size of a memory region

has negligible impact. For the LLC-intensive benchmarks,

there is no general trend. Having a larger memory region

allows SLP to quickly grasp the burst because more sets are

monitored. On the other hand, unrelated data structures will

be grouped into the same memory region as the size of a

memory region grows. While the trend of dominant effect

is consistent within a single benchmark, it is not identical

across diverse benchmarks. For example, sphinx3 consistently

performs better with a smaller memory region while bzip2
constantly shows more improvements with a larger memory

region. Although the difference is small, we still picked a

64kB memory region for BFP because it showed the highest

performance improvement in the LLC-intensive benchmarks.

D. Hardware Overhead

BFP can achieve the performance improvement with low

storage overhead. Table II compares the hardware overhead

of prior works with BFP. PDP and DSB use sampling, and

the corresponding storage overhead is shown in the third row.

In PDP, 64 sets are sampled together, meaning there are 32

sampling sets (2048 / 64 = 32) in our configuration. In DSB,

32 sets are sampled together, meaning there are 64 sampling

sets (2048 / 32 = 64) in our configuration. RRIP and PDP

both use 2-bit per cache block state, which consumes 8kB

in total. RRIP adds 10-bit psel counter as an extra storage.

PDP needs an extra storage of 515-bit for the reuse distance

(RD) sampler per sampled set, and 0.13kB for the array of RD

counters. PDP also requires logic to compute the protecting

distance (PD), which is reported to be 10K NAND gates [8].

DSB has 5-bit per cache block state, which is 20kB in total.

DSB also requires 22-bit per set for adaptive bypassing, and

748-bit per ATD. BFP uses 1-bit per cache block state, which

consumes 4kB, and 31-bit extra storage overhead per set for

shadow directory, which is 7.75kB in total. It also utilizes 17-

RRIP [2] PDP [8] DSB [9] BFP

Per line 2-bit 2-bit 5-bit 1-bit
Per set 22-bit 31-bit
Per sampled set 515-bit 748-bit
Extra 10-bit 10K gates* 51-bit 17-bit SLP

0.13kB 10-bit psel

Total 8.0kB 10.14kB + 31.3kB 11.75kB
10K gates

*Logic to compute PD

TABLE II: Comparison of hardware overhead. 64 and 32 sets

are sampled together in PDP and DSB, respectively.

bit for SLP, and 10-bit for psel counter. Compared to RRIP

and PDP, BFP achieves better performance with comparable

hardware overhead. Compared to DSB, BFP achieves similar

performance with 2.7x less storage overhead.

V. RELATED WORK

A significant number of studies have been proposed to

improve the LLC over LRU. We categorize prior works into

1) CFPs, and 2) energy saving techniques for caches.

A. Cache First Policy

CFPs exploiting bypass have received attention from many

literatures [3], [4], [9]. The primary concern in the bypass re-

search is to decide which signature correlates well with bypass.

Program phase-based predictions [2], which typically utilizes

set dueling, and address-based predictions [4] are commonly

approaches because they give benefits with small storage

overhead. DSB [9] monitors bypasses to check whether they

are effective, and changes bypassing probability adaptively.

Dead block prediction [6] predicts whether a cache block is

dead. A cache block is defined to be dead between the last

reference to itself and the time when it is evicted. A cache

block, which is dead on insertion, can be bypassed. RRIP [2]

place incoming blocks in the lower priority position, which

is less aggressive version of bypassing. PDP [8] showed that

the LLC performance can be improved when cache blocks are

protected for certain number of accesses. When all the cache

blocks in a set are protected, the incoming blocks are bypassed.

EAF [18] also exploited the modified principle of temporal

locality for the LLC: reused blocks are likely to be reused

soon. EAF is still a CFP as it stores the recently evicted block

addresses to predict the temporal locality. RC [19] exploited

the modified principle of temporal locality to reduce the data

array size for the shared LLC.

Some have studied instruction-based predictions [3], [6],

[5], [20], which incur an extra overhead of transferring the

instruction identifier (typically, the partial program counter) to

the LLC. These studies usually extend on the their prior works

by associating instruction identifiers with the desired property.

For example, SHiP [5] further extends RRIP by correlating re-

reference interval with a PC or instruction sequence. Because

instructions provide more fine-grained correlation than phases,

these predictions provide further improvement. The same

strategy can be also applied to BFP to give additional benefits,

but we leave them as future works.



The key difference between BFP and these works is that

these works perform unnecessary writes of never-rereferenced

blocks to the LLC because they are in the class of CFPs. BFP

can save more energy as these writes are avoided, and also

achieve similar or better performance compared to the CFPs.

B. Energy Saving Techniques for Caches

Numerous works have studied energy saving techniques for

caches. Leakage power has been tackled both in circuitry and

architectural levels, where architectural modifications exploit

the circuitry [21], [22]. Circuitry techniques are orthogonal

to BFP, and can provide additional improvements from static

energy saving. Some have looked at compressing frequent

values [23] or selectively activating ways [24] to reduce the

dynamic power. Many of these schemes either tradeoff be-

tween the performance and energy or focus on reducing energy

consumption without improving the performance, while BFP

achieves both.

VI. CONCLUSION

In this paper, we proposed a Bypass First Policy (BFP), an

LLC management policy that bypasses by default. Traditional

CFPs tend to populate the LLC with useless blocks as bypasses

dominate. A BFP, on the other hand, effectively reduces the

number of inserted blocks, which significantly reduces energy

consumption. To provide comparable performance to CFP

schemes, BFP investigates the principle of locality in the

LLC under the optimal replacement policy, and suggests a

slightly modified version of the principle for the LLC: 1)

reused cache blocks are likely to be re-referenced, and 2) cache

blocks within recently reused memory region are likely to be

re-referenced. We implemented a simple BFP using shadow

directories and a spatial locality predictor, which consumes

less than 8kB of extra storage overhead. Experiments show

that the BFP reduces energy consumption by 57.1% and 21.7%

for SPEC CPU2006 and MediaBench benchmark suites, re-

spectively, on average. Furthermore, BFP improves system

performance by a geometric mean of 18.3% for the LLC-

intensive benchmarks, which is better or comparable to the

state-of-the-art CFPs.
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