
Fine Grain Cache Partitioning using Per-Instruction Working Blocks

Jason Jong Kyu Park

University of Michigan

Ann Arbor, MI, U.S.A.

jasonjk@umich.edu

Yongjun Park

Hongik University

Seoul, Korea

yongjun.park@hongik.ac.kr

Scott Mahlke

University of Michigan

Ann Arbor, MI, U.S.A.

mahlke@umich.edu

Abstract—A traditional least-recently used (LRU) cache
replacement policy fails to achieve the performance of the
optimal replacement policy when cache blocks with diverse
reuse characteristics interfere with each other. When multiple
applications share a cache, it is often partitioned among
the applications because cache blocks show similar reuse
characteristics within each application. In this paper, we extend
the idea to a single application by viewing a cache as a shared
resource between individual memory instructions.

To that end, we propose Instruction-based LRU (ILRU), a
fine grain cache partitioning that way-partitions individual
cache sets based on per-instruction working blocks, which
are cache blocks required by an instruction to satisfy all the
reuses within a set. In ILRU, a memory instruction steals a
block from another only when it requires more blocks than
it currently has. Otherwise, a memory instruction victimizes
among the cache blocks inserted by itself. Experiments show
that ILRU can improve the cache performance in all levels of
cache, reducing the number of misses by an average of 7.0%
for L1, 9.1% for L2, and 8.7% for L3, which results in a
geometric mean performance improvement of 5.3%. ILRU for
a three-level cache hierarchy imposes a modest 1.3% storage
overhead over the total cache size.

Keywords-Cache Replacement Policy; Fine Grain Cache
Partitioning;

I. INTRODUCTION

While a traditional least-recently used (LRU) replacement

policy in a cache closely approximates Belady’s optimal

replacement algorithm [1], it often fails when cache blocks

with diverse reuse characteristics interfere with each other.

Past research on a shared cache has shown that a thread-

aware shared cache management is effective in providing

increased performance [2], [3], [4], [5]. These management

schemes partition the shared cache among the threads or ap-

plications to reduce inter-thread interference because blocks

show similar reuse characteristics within each application.

We apply the same strategy to view the cache as a shared

resource between individual memory instructions even if

only a single application is running. Because cache blocks

accessed or inserted by the same instruction show similar

reuse characteristics, partitioning a cache among the indi-

vidual instructions can reduce interference between them. In

that sense, a cache replacement policy becomes a resource

management policy, where a memory instruction that inserts

a block has to choose between taking more blocks by

stealing one from another instruction or maintaining the

same blocks by evicting one owned by itself.

A traditional least-recently used (LRU) policy assumes

that the miss frequency of an instruction correlates to the

number of the cache blocks to give to that instruction. Prior

works on bypass have shown that the cache misses are not

the right measure to choose the number of cache blocks for

an instruction, especially in the last level cache (LLC) [6],

[7], [8], [9]. In these works, many of the cache misses are

bypassed to avoid the unnecessary consumption of blocks.

However, their solutions do not extend to upper level caches

(closer to the CPU). They assume that cache blocks with no

temporal locality are abundant, which is correct only in the

LLC due to the filtered memory references.

To improve the cache performance in every level of

cache with a single, uniform replacement policy, we propose

Instruction-based LRU (ILRU), that partitions individual sets

of the cache based on the per-instruction working blocks
1. When a memory instruction experiences a cache miss,

its number of working blocks is compared to its currently

occupying blocks in that set. When the instruction already

has enough blocks, it victimizes among those inserted by

itself, so that it never occupies more than necessary. It steals

a block from another instruction when it is occupying fewer

than its working blocks. The notion of working blocks nat-

urally subsumes the behavior of bypass when an instruction

requires zero blocks. Because ILRU chooses to evict the

LRU block when victimizing among the blocks occupied by

itself, it behaves exactly the same as the traditional LRU

when an instruction requires all the blocks in a set.

Prior shared cache studies have employed auxiliary tag

directories or shadow tags per core to estimate the partition

size for each core [5], [10]. However, the same approach

cannot be utilized for ILRU because there are too many

memory instructions compared to the number of cores.

Instead, ILRU introduces the concept of a hit position to

allow in-place prediction with the cache behavior under

ILRU, and uses a single shared shadow tag per set among

1We intentionally avoid the term ”working set” and use ”working blocks”
because working set traditionally means the amount of memory in bytes
required by a process in a given time interval regardless of the cache sets.
Working blocks are the number of cache blocks required by an instruction
to support all the reuses in a given time interval within a set.

the instructions. For each instruction, a hit position measures

how many cache blocks (including the hit block) inserted by

the same instruction were ahead of the hit block in the LRU

chain. The instruction must have occupied at least the same

number of blocks in that set as the hit position to satisfy

that reuse. If the instruction had fewer blocks in the set,

the current hit block would have been evicted resulting in a

miss. To have small, shared shadow tags, only the bypassed

blocks and the blocks evicted from non-LRU positions are

inserted into the shadow tags. If an entry in the shadow tags

hit, the instruction that inserted the entry is predicting lower

number of working blocks than the actual number.

To reduce the overall hardware storage overhead, ILRU

first utilizes set sampling [11]. In set sampling, only a few

sampling sets are monitored to measure the hit position and

the rest of the sets follows the decision made by the sampling

sets. Because shadow tags are only required by the sampling

sets, the overhead of shadow tags can be significantly

reduced. However, identifying the inserting instruction for

every cache block in non-sampling sets still imposes large

storage overhead. ILRU utilizes a hot instruction table, which

keeps track of the last N instructions that recently inserted

a block in the cache. The hot instruction table allows to

precisely track these N instructions, but other instructions

will alias with those N instructions. In lower level caches,

the number of inserting instructions is small enough that the

alias problem has negligible impact on performance.

This paper makes the following contributions:

• We show the opportunity of viewing a cache as a shared

resource between individual memory instructions. The

notion of working blocks for individual instructions

subsumes the bypassing when zero blocks are required,

and the traditional LRU replacement when all the

blocks are required.

• We propose Instruction-based LRU, a fine grain cache

partitioning strategy, that utilizes per-instruction work-

ing blocks. ILRU improves cache performance at every

level of the cache hierarchy.

• We introduce the concept of a hit position to allow in-

place prediction for the per-instruction working blocks.

ILRU employs shared shadow tags to monitor whether

the predicted number of working blocks is correct.

• We implement ILRU with low hardware cost using set

sampling and a hot instruction table. The techniques

rely on sampling only a few sets to approximate the

whole cache behavior and capturing only the last N

instructions that inserted a block in lower level caches.

II. MOTIVATION

Per-instruction working blocks are the number of cache

blocks required by an instruction to satisfy all the reuses

during a block’s lifetime within a set. In this section, we

first show the per-instruction working blocks at an intuitive

level with several examples. We then observe the additional

opportunities of identifying per-instruction working blocks

over an ideal bypass technique that can only benefit when

there are zero working blocks. We finally derive the concept

of a hit position, which predicts the per-instruction working

blocks for the lifetime of a cache block.

A. Per-Instruction Working Blocks

Figure 1 illustrates the number of working blocks for

instruction A, and the cache behavior under LRU on top

and ideal working block replacement (IWBR) on bottom.

IWBR perfectly knows per-instruction working blocks. The

figure shows memory references, and the resulting LRU

chain of a single set under LRU and IWBR with a hit/miss.

The sequence of memory references are identical for the

same working blocks in both LRU and IWBR. A white box

indicates an access or insertion of a block by instruction A,

whereas a grey box indicates an access or insertion by other

instructions. A tag is given inside the box to distinguish

the accesses. Examples show when the number of working

blocks for instruction A are zero, one, and two, respectively.

In Figure 1 (a) and (d), the block inserted by instruction A

is never re-referenced. In this case, instruction A requires no

blocks, and the block can be bypassed. Moreover, bypassing

block 4 results in cache hits for the references to blocks

2 and 1 with IWBR. Instruction A may not require cache

blocks for various reasons, e.g., it may be an instruction in

a loop with a stride larger than the block size with no re-

references from other instructions. Iterating over large linked

lists can result in similar behavior. In lower level caches,

there are more such cases because reuses are filtered by

upper level caches. The notion of per-instruction working

blocks can detect bypass candidates.

Figure 1 (b) and (e) depict a simple example, where an

instruction with a small stride is referencing an array within

a loop. The block inserted by instruction A experiences a

burst of accesses from instruction A. In the example, the size

of the array is large enough so that the same set experiences

another burst of accesses from instruction A. Here, all the

accesses to the blocks inserted by instruction A are satisfied

even if instruction A only had one block in the set, e.g., if the

block 8 replaced block 4, which was inserted by instruction

A. The number of working blocks for instruction A thus

equals to one. Subsequent references to blocks 1 and 0 are

hits under IWBR, and misses under LRU.

Figure 1 (c) and (f) illustrate an example, where the

number of working blocks for instruction A is two. When

a multi-row filter is applied in 2D image, re-references can

occur from other instructions in some distant time because

a pixel is re-referenced after traversing through the entire

x-axis of the image. In this case, the first block inserted

by instruction A is re-referenced after the insertion of the

second block by instruction A. Instruction A requires two

working blocks to support all reuses. Under IWBR, the last

reference to block 0 is a hit, which LRU fails to capture.

4

(a) Working Blocks = 0, LRU (b) Working Blocks = 1, LRU (c) Working Blocks = 2, LRU

Ref.

0

MRU LRU

1 2 3

LRU Chain

4 0 1 2

T
im

e

5 5 4 0 1

2 2 5 4 0

1

Miss

Miss

Miss

1 2 5 4

6

Miss

6 1 2 5 Miss

4

Ref.

4

MRU LRU

0 1 2

LRU Chain

4 0 1 2

5 5 4 0 1

8 8 5 4 0

8

Hit

Miss

Miss

8 5 4 0

1

Hit

1 8 5 4 Miss

Ref.
MRU LRU

LRU Chain

4

4 0 1 2

4 0 1 2

5 5 4 0 1

8 8 5 4 0

8

Hit

Miss

Miss

8 5 4 0

4

Hit

4 8 5 0 Hit

12 12 4 8 5 Miss

0 0 12 4 8 Miss

0 0 1 8 5 Miss

4

(d) Working Blocks = 0, IWBR (e) Working Blocks = 1, IWBR (f) Working Blocks = 2, IWBR

Ref.
MRU LRU

LRU Chain

0 1 2 3

T
im

e

: inserted by instruction Atag

tag : inserted by other instructions

5 5 0 1 2

2

0 1 2 3

2 5 0 1

1

Miss

Miss

Hit

1 2 5 0

6

Hit

6 1 2 5 Miss

4

Ref.
MRU LRU

LRU Chain

4 0 1 2

5 5 4 0 1

8

4 0 1 2

8 5 0 1

8

Hit

Miss

Miss

8 5 0 1

1

Hit

1 8 5 0 Hit

Ref.
MRU LRU

LRU Chain

4 4 0 1 2

5 5 4 0 1

8

4 0 1 2

8 5 4 0

8

Hit

Miss

Miss

8 5 4 0

4

Hit

4 8 5 0 Hit

12 12 4 5 0 Miss

0 0 12 4 5 Hit

0 0 1 8 5 Hit

Figure 1. The cache behavior when instruction A has working blocks of (a) zero under LRU, (b) one under LRU, (c) two under LRU, (d) zero under
ideal working block replacement (IWBR), (e) one under IWBR, and (f) two under IWBR. Note that reference streams are identical for the same working
blocks in both LRU and IWBR.

0%

20%

40%

60%

80%

100%

SPECf SPECint

16

8-15

4-7

1-3

0

Figure 2. Distribution of the number of working blocks for instructions. The number of working blocks in the range of 1-3, 1-7, 1-15 are additional
opportunities over ideal bypassing for L1, L2, and L3, respectively.

At maximum, an instruction may require all the blocks in

a set. In such case, evicting a cache block without the notion

of the per-instruction working blocks is indistinguishable

from IWBR. The maximum case rarely occurs because it

is likely that contending memory instructions insert cache

blocks into a set before an instruction fully occupies the set.

B. Opportunity

Figure 2 shows the distribution of the number of working

blocks for dynamic instructions in a memory-intensive sub-

set of SPEC CPU2006 benchmark suite. We discuss how

the subset is selected in Section V. We assume that L1,

L2, and L3 caches are 32kB 4-way, 256kB 8-way, and

2MB 16-way associative, respectively. A zero working block

indicates a bypass opportunity. Any other number of working

blocks below the associativity of a cache indicates additional

opportunities for viewing a cache as a shared resource

between individual instructions over ideal bypassing. The

figure illustrates that these additional opportunities between

zero and the associativity are 65%, 33%, and 18% in L1,

L2, and L3, respectively. Thus, for example, 65% of the

L1 evictions offer the opportunity to improve hit rate by

selecting a non-LRU block to replace.

C. Hit Position

To facilitate working block guided replacement, the re-

maining question is how to measure or predict the per-

instruction working blocks. We can discover insights on how

Cache

Shadow Tags

Working Block

Predictor Table (WBPT)

Update

PC V L WB

PC: PC tag

V: Valid bit

Replacement Policy

C
Bypass or Non-LRU Evict

L: Learned bit

WB: Working blocks

C: Confidence

Figure 3. Architectural overview of ILRU.

to predict per-instruction working blocks from Figure 1.

If we only look at the cache blocks inserted by the same

instruction as the hit block, the number of working blocks

exactly matches with the hit position (the distance from the

MRU block). The intuition behind the hit position is simple.

Suppose the instruction was forced to have fewer number

of blocks than the current hit position. The instruction

would have replaced the hit block with another block while

handling previous cache misses, which would convert the

current hit to a miss. For example, if the instruction A

in Figure 1 (f) had one working block, block 8 would

have replaced block 4. The re-reference to block 4 after

insertion of block 8 would become a cache miss. Therefore,

an instruction requires at least as many blocks as the hit

position. If multiple evicting blocks have smaller hit position

compared to the currently predicted working blocks, it is safe

to assume that the working blocks have decreased due to the

program phase change. Figure 1 (e) and (f) also show that

the prediction needs an initial learning period. At the time

of the access to block 8, the sequence of the references are

the same, but the number of working blocks is different. The

prediction can be correctly made only after we have seen all

the reuses until the first block’s eviction. During the initial

learning period, instructions are assumed to require all the

cache blocks, e.g., the traditional LRU.

III. ARCHITECTURE

ILRU partitions the cache using per-instruction working

blocks. To achieve such partitioning, ILRU maintains a

working block predictor table (WBPT) to keep track of the

predictions for the per-instruction working blocks. Because

per-instruction working blocks depend on the underlying

cache configuration, a WBPT exists for each level of cache.

Figure 3 illustrates the architectural components of ILRU

in a single level of the cache hierarchy. Arrows indicate

interactions between architectural components. In addition,

metadata in a WBPT entry is listed in detail. The WBPT

is indexed by PC. Like other previous works based on PC-

indexed tables [12], [13], we found out that using a 15-bit

partial PC is sufficient to achieve the same performance as

using the full PC. The partial PC is stored in the load-store

queue and is transferred with the memory reference through

all levels of cache. As discussed in Section II-C, a WBPT

entry also has a learned bit, which indicates whether the

initial learning period has finished or not. The number of

working blocks is (log2Associativity + 1) bits wide, and

the confidence is two bit saturating counters. Shadow tags

mimic cache behavior when ILRU is not applied so that

ILRU can correct mispredictions. The additional metadata

for each tag in the cache and shadow tags is shown in Table I

and is discussed in Section IV-B.

A. Cache Lookup

Cache lookup is unmodified from a traditional cache

because ILRU only modifies the replacement policy. LRU

stack is updated as in the traditional LRU replacement.

Updating the WBPT or accessing shadow tags are not on

the critical path. They can be delayed one cycle after the

cache access if there exist any timing problems.

B. Replacement Policy

Figure 4 illustrates how replacement works with ILRU.

The replacement candidate decision is based on the learned

bit, the number of working blocks, and the number of blocks

occupied by the inserting instruction in the set. Note that the

confidence does not affect the replacement policy. When the

learned bit is not set, the instruction is in the initial learning

period. The instruction is assumed to require all the blocks in

the set, which is essentially the same as the traditional LRU

replacement as shown in Figure 4 (a). When the learned

bit is set, the number of working blocks and the number of

occupying blocks for the inserting instruction are compared.

In Figure 4 (b), instruction B already occupies three blocks

in the set, which is equal to or more than the number of

working blocks. In this case, ILRU victimizes the LRU

block among the blocks inserted by instruction B, which

is indicated by the dashed circle. However, if an instruction

occupies fewer than its working blocks as shown in Figure 4

(c), ILRU victimizes the LRU block to acquire more blocks.

Note that instruction B loses its working block to instruction

A due to the contention; however, the predictor will adjust

the working blocks afterwards to resolve the contention. A

block is bypassed when an instruction requires zero blocks.

C. Occupying Blocks

Occupying blocks is detected similarly to the prior works

on a shared cache, where they check whether a block

belongs to cores or threads [2], [3], [5], [10], [14]. The

detailed calculation is performed in two steps. First, 15-bit

partial PC comparison is performed, which is faster than tag

comparison. Second, results of the comparisons are added

to calculate occupying blocks. The same method is used

to calculate hit position in Section IV-A, where the second

step is subtraction instead of addition because LRU status

already contains information on the hit position without

taking instructions into account and which blocks are ahead.

Note that choosing a victim can take multiple cycles, which

only has to be faster than accessing the lower level cache.

(a) Initial Learning Period

: inserted by instruction Atag

tag : inserted by instruction B

Next Ref.

0

MRU LRU

(b) Working Blocks Blocks

Next Ref.

(c) Working Blocks > Occupying Blocks

Next Ref.

tag : inserted by instruction C

Working BlocksLearnedPC

2TA

3TB

-FC

4 44

5

1 2 3 0

MRU LRU

1 2 3 0

MRU

1 2 3

55

6 66

4 0 1 2

5 4 0 1

6 5 4 0

4 0 1 2

5 4 0 2

6 5 4 2

4 0 1 2

6 5 4 0

5 4 0 1

Steal a cache block Steal a cache blockRestrict cache blocks

LRU

: Evicting cache blocks

WBPT

Figure 4. ILRU replacement policy: (a) instruction C steals a block from another instruction in the initial learning period, (b) instruction B restricts its
blocks by evicting one of the occupying blocks, and (c) instruction A steals a block from another instruction because it occupies fewer than its working
blocks.

D. Shadow Tags

In-place prediction of ILRU cannot react when the pre-

diction should be corrected. To address this issue, we utilize

shadow tags [5], [10] to simulate the cache behavior as if

ILRU was not applied. Shadow tags are essentially the same

as tag arrays in the cache except for the metadata.

In ILRU, shadow tags store the bypassed blocks and non-

LRU evictions for all memory instructions. Shadow tags

have a special metadata called life, which is the same as

its expected LRU position in the corresponding set before

eviction. The life monotonically decreases afterwards as

the corresponding set is accessed. When the life becomes

zero, the shadow tag is invalidated. Each shadow tag

stores 16-bit partial address tags, 15-bit partial PC, and

log2Associativity bit life. A cache block still has to be

fetched from lower level caches even if it hits in the shadow

tags. When a shadow tag hits, it is invalidated because its

behavior can be tracked in the cache again.

IV. PREDICTOR

ILRU predicts per-instruction working blocks using a hit

position. A hit position measures the position of the hit block

considering only the blocks inserted by the same instruction.

It corresponds to how many blocks the instruction had to

maintain for the current hit to take place. Because ILRU

uses hit position for the prediction, the contending memory

instructions are taken into account automatically. If multiple

instructions require blocks that exceed the associativity in

total, they will compete with each other. However, an in-

struction with earlier reuses will eventually keep its working

blocks because only it continues to observe hits, while the

others lose their working blocks as they observe misses due

to contention.

ILRU allocates a WBPT entry to an instruction when

cache misses. The initial learning period for the WBPT entry

ends when a block inserted by the instruction is evicted for

the first time.

A. Updating the WBPT

To understand high level behavior on the measurement

of hit position, we visualize an LRU chain with blocks that

have same instruction identifier as the hit block when there

is a cache or shadow tag hit. Figure 5 (a) illustrates how the

WBPT is updated when the cache hits. The LRU chain of the

instruction, which inserted the hit block, is shown to clarify

the hit position. The number of working blocks is increased

to the hit position only when the hit position is larger than

the current prediction. The confidence metadata is set to the

maximum value if the number of working blocks is updated.

The maximal hit position (MHP) metadata for the hit block

is updated accordingly as well. To avoid updating the WBPT

for every cache hit, the WBPT is only updated when the hit

position is greater than or equal to its MHP. We did not

show this comparison in the figure for the sake of brevity.

Figure 5 (b) illustrates the WBPT updates when a shadow

tag hits. When a shadow tag hits, the LRU chain of the

instruction is constructed assuming that the shadow tag is

in its expected LRU position, which corresponds to the life

metadata. Otherwise, shadow tags are completely ignored

when forming the LRU chain of an instruction. As the last

line of Figure 5 (b) shows, the inserted block is treated as if

it was inserted by instruction A, not instruction C, because

a shadow tag indicates a misprediction for instruction A. In

fact, it can be thought of as copying the metadata from the

shadow tag to the inserted block.

Figure 5 (c) depicts how the WBPT is updated when

a block is evicted. The WBPT is only updated when the

evicted block’s MHP is smaller than the current prediction.

ILRU decreases the confidence first, and decreases the

working blocks only when the confidence is zero. The MHP

metadata for a newly inserted block is reset to zero.

B. Reducing Hardware Overhead

Prior works [11], [5], [10], [7] have shown that sampling

a few sets in the LLC can closely approximate the behavior

(a) Hit

(Hit Position > Working Blocks)

Reference

(b) Shadow tag hit

(Hit Position > Working Blocks)

Reference

Working Blocks (WB)PC

1A

2B

42 0

MRU

1 2 3

4 0 1 2

Increase Working BlocksIncrease Working Blocks

1

PC

A

0

MRU

1 2 3
LRU LRU

: inserted by instruction Atag

tag : inserted by instruction B

tag : inserted by instruction C

0 2

Hit Pos. = 2 > 1 = Working Blocks

PC

C

2 0 1 3

Confidence (C)

3

0

WB

2

C

3

WB

2

C

3

1C 2

4

: shadow tag by Atag

Hit Pos. = 2 > 1 = Working Blocks

2 : Maximal Hit Position 2 : Maximal Hit Position

: Updated value

(c) Miss

(Maximal Hit Position < Working Blocks)

Reference

4

Decrease Working Blocks

0

MRU

1 2 3
LRU

MHP = 1 < 2 = Working Blocks

PC

B

4 0 1 2

WB

1

C

0

Maximal Hit Position : 1

0 : Maximal Hit Position

WBPT

4

Figure 5. Updating the predictor: increasing the predicted working blocks (a) when cache hits and the hit position is larger than the current prediction;
(b) when a shadow tag hits and the hit position is larger than the current prediction; and (c) decreasing the predicted working blocks when the maximal
hit position is smaller than the current prediction when cache misses.

in the entire LLC. Similarly, we use set sampling to reduce

the hardware overhead of the shadow tags in ILRU. We refer

to the sets that update the working blocks as sampling sets,

and the others that follow the prediction as non-sampling

sets. Sampling sets have corresponding shadow tags, while

non-sampling sets do not.

Sampling is useful when memory access patterns are

regular across the sets so that the whole cache behavior can

be approximated with few sampling sets. It is likely that the

memory references are more regular in lower level caches

because irregularities are filtered by upper level caches. Like

prior works, we have 32 sampling sets out of 2048 sets in

the LLC. We sample all the sets in L1, and 128 sets out

of 512 sets in L2. To choose the sampling sets, we use the

static assignment proposed in dynamic set sampling [11].

Furthermore, ILRU reverses the assignment between the L2

and the LLC so that the LLC can capture and compensate

for the patterns that were not sampled by the L2 cache.

Through experiments, we have found out that shadow tags

in the sampling sets can be sized to have only half of

the associativity of the set that they are attached to with

negligible impact on the performance.

To reduce the hardware overhead of identifying instruc-

tions, ILRU utilizes a hot instruction table, which keeps track

of the last N instructions that inserted a cache block. A hot

instruction table with 16 entries can distinguish instructions

with a 4-bit ID. A hot instruction table is fully-associative

and maintained in LRU order. When an instruction inserts

a block into the cache and it is not resident in the hot

instruction table, it replaces the LRU instruction in the hot

instruction table and uses that ID. The instruction aliases

with the replaced instruction. We discuss the impact of

Table I. EXTRA METADATA IN TAG ARRAYS

Set Field Bitwidth Description

Sampling PC 15 bits Instruction identifier
MHP log2Assoc+ 1 bits Maximal hit position

Non-sampling ID 4-5 bits Instruction identifier

Shadow tags Tag 16 bits Partial address tag
PC 15 bits Instruction identifier
Life log2Assoc+ 1 bits Expected LRU position

aliasing in Section V-C.

The metadata for each tag entry are summarized in

Table I. In non-sampling sets, the overhead of the additional

metadata is less than one-third of that in the sampling sets.

C. ILRU on a Shared LLC

ILRU partitions a cache at an instruction granularity. In a

shared LLC, ILRU continues to partition at the instruction

granularity by differentiating the instructions from different

threads. When the partial PC is sent to the shared LLC to

identify an instruction, the logical thread ID is prepended to

the partial PC. Once the instructions are differentiated, the

predictor and the replacement policy will adapt accordingly

because the prediction itself considers all the contending

memory instructions.

V. RESULTS

The Pin-based [15] Graphite [16] simulator is used to

evaluate ILRU. An in-order core with an out-of-order mem-

ory system is modeled. The processor has a 8-entry load

buffer as well as a 8-entry store buffer. A three-level cache

system is used: the L1 instruction cache uses traditional

LRU replacement, and the unified L2 and L3 cache are non-

inclusive. Unless specified otherwise, a hot instruction table

is 32-entry for L2 and 16-entry for L3, and the WBPT is

-10%
0%

10%
20%
30%
40%
50%

SPECfp SPECint

M
P

K
I

R
ed

u
ct

io
n
 (

%
)

L1 L2 L3

(a) MPKI reduction in each level of cache for ILRU

-20%
-10%

0%
10%
20%
30%
40%
50%

SPECfp SPECint

M
P

K
I

R
ed

u
ct

io
n
 (

%
)

ILRU DRRIP SHiP

(b) Comparison of MPKI reduction in L3 for ILRU and prior works

Figure 6. MPKI reduction over LRU.

Table II. SYSTEM CONFIGURATION

Architecture Parameters

Processor In-order core with out-of-order memory
8-entry load buffer, 8-entry store buffer

L1 I-Cache 32kB, 4-way, 64B blocks
1 cycle access

L1 D-Cache 32kB, 4-way, 64B blocks
1 cycle access
512-entry, 4-way WBPT

L2 Unified Cache 256kB, 8-way, 64B blocks
10 cycle access
512-entry, 4-way WBPT
32-entry Hot instruction table

L3 Unified Cache 2MB, 16-way, 64B blocks
30 cycle access
512-entry, 4-way WBPT
16-entry Hot instruction table

Main Memory 200 cycle access

4-way 512-entry for all the caches. Table II summarizes the

system configuration parameters.

Memory-intensive benchmarks from SPEC CPU2006 are

used to evaluate ILRU. Benchmarks are fast forwarded for 5

billion instructions and simulated for 1 billion instructions.

Caches are warmed up during fast forwarding. To select

memory-intensive benchmarks, we choose benchmarks with

at least 1% IPC improvement when one of the caches was

doubled in size under traditional LRU replacement, which

amount to 14 benchmarks. We neglect the non-memory-

intensive benchmarks as there is negligible change in per-

formance with any of the simulated replacement policies.

ILRU is evaluated against DRRIP [17], and SHiP [13].

We use 2-bit DRRIP with ǫ = 1/32, 32 sampling sets, and

10-bit PSEL counter. We use SHiP-PC-S with 16K-entry

SHCT, and 14-bit partial PC as the signature. We only apply

DRRIP and SHiP to the L3 cache, and employ traditional

LRU replacement on the L1 and L2 caches because DRRIP

and SHiP do not improve cache performance in upper level

caches, as mentioned in [17].

We also compare ILRU with TA-DRRIP [17] in a multi-

core, shared LLC environment. Each multi-programmed

workload is a combination of concurrently running single-

threaded benchmarks. Each single-threaded benchmark is

run on each individual core. Due to the number of possible

combinations, we study all the combinations in a 2-core

configuration, and 501 randomly generated combinations

in a 4-core configuration. The size of the LLC is 2MB

multiplied by the number of cores. Each simulation is run

until all benchmarks execute 1 billion instructions. When

one benchmark finishes earlier than the others, it is rewinded

and re-run from the beginning like prior works [5], [18],

[19], [14], [17], [13], [20]. The reported results are collected

only for the first 1 billion instructions window.

A. Performance

Figure 6 (a) shows MPKI reduction of ILRU over tradi-

tional LRU replacement in each level of caches. ILRU re-

duces the MPKI by an average of 7.0% for L1, 9.1% for L2,

and 8.7% for L3. Cache is utilized more efficiently in ILRU

compared to LRU because ILRU allows each instruction to

have only working blocks which are often smaller than the

miss frequency. Figure 6 (b) shows MPKI reduction of ILRU

and prior works over traditional LRU replacement in the

LLC. ILRU reduces more misses compared to DRRIP and

SHiP, which reduce MPKI by an average of 3.3% and 4.9%,

respectively. Note that MPKI reduction in L3 for ILRU is

the same in both figures.

Figure 7 presents the IPC improvement for ILRU and

prior works over the traditional LRU replacement. For

ILRU, we further breakdown the improvement by showing

the contribution from each level of cache. ILRU improves

IPC, on average, by 5.3% in total, where L1, L2, and L3

contribute 0.4%, 1.2%, and 3.7%, respectively. DRRIP and

SHiP improve performance by an average of 2.2% and 2.8%,

respectively. ILRU outperforms DRRIP and SHiP in most

-4%
0%
4%
8%

12%
16%

SPECfp SPECintIP
C

 I
m

p
ro

v
em

en
t

ILRU:L1 ILRU:L2 ILRU:L3 DRRIP SHiP

Figure 7. IPC improvement over LRU. ILRU is shown with contributing factors from L1, L2, and L3.

0%
20%
40%
60%
80%

100%

SPECfp SPECintN
o

n
-L

R
U

 E
v

ic
ti

o
n

s

L1 L2 L3

Figure 8. A fraction of non-LRU evictions (including bypasses) for ILRU in different levels of caches.

cases because fine grain cache partitioning at the instruction

granularity can reduce the interferences not only between

non-temporal and other references, but also between instruc-

tions with diverse reuse characteristics. IPC improvement

does not directly correlate with the MPKI reduction for a

number of reasons. First, out-of-order memory support can

hide miss latencies using memory level parallelism (MLP).

Second, the absolute MPKI might be so small that a large

percentage change in MPKI is negligible in terms of its

influence on the overall performance.

Workloads such as gamess, soplex, bzip2, and omnetpp
have smaller MPKI in the L3 compared to other workloads,

although their MPKIs in upper level caches are large. Among

them, soplex, and omnetpp suffer from the increase in L3

MPKI for ILRU, DRRIP, and SHiP. In these benchmarks,

L3 MPKI is so small that mispredictions are not observed

in the sampling sets yet while non-sampling sets incur

more misses. If we simulate for long enough period, these

misses will balance out with the reduced misses from correct

predictions. Also, their impact on performance is negligible

due to the small value of the original L3 MPKI under

traditional LRU replacement as shown in Figure 7. bzip2
is an opposite case, where a 45% reduction in L3 MPKI

contributes only 2.3% performance improvement.

ILRU discovers an interesting case in xalancbmk. The

performance achieved by DRRIP and SHiP from the L3 is

equally gained from the L2 for ILRU. ILRU does not reduce

L3 MPKI at all because the opportunity no longer exists as

it was already exploited in L2. It is better to reduce misses

in upper level caches because it consumes less dynamic

power. Further experiments showed that DRRIP and SHiP

also achieve similar improvement for L2 in xalancbmk, but

they do not provide benefit in general. In gamess, only

ILRU can achieve a performance improvement. Because

gamess has sudden drop in the number of misses when

moving from L2 to L3, only ILRU can only improve the

performance of gamess by reducing L2 misses. In bwaves,

ILRU needs to be applied to all levels of cache to achieve

a gain in performance. The reduction in L1 misses converts

to performance improvement after the few remaining misses

with long latencies are removed in lower level caches.

B. Non-LRU Evictions

Figure 8 depicts the fraction of cache block evictions in

ILRU that are non-LRU evictions including bypasses. On

average, the fraction of non-LRU evictions is 55% for L1,

73% for L2, and 68% for L3. In zeusmp, and libquantum,

most of the evictions are non-LRU evictions, but their MPKI

reductions and performance improvements are small. These

workloads have almost the same MPKI in all levels of cache,

meaning that misses in L1 also result in misses in lower level

caches. In such cases, misses are unlikely to be reduced even

if ILRU has large number of non-LRU evictions because

cache capacity is the main reason for the misses. A large

number of non-LRU evictions shows that the LRU block

is not necessarily the best candidate for eviction. ILRU can

reduce the interference between memory instructions more

effectively than the traditional LRU.

C. Sensitivity of ILRU

Figure 9 illustrates the sensitivity of ILRU to various

parameters. Figure 9 (a) and (b) show the performance im-

provement over LRU when we change the number of entries

in the hot instruction table for L2 and L3, respectively.

All denotes the use of the 15-bit partial PC to identify

instructions instead of using the hot instruction table. The

size of a hot instruction table can influence the performance

in two ways. Destructive aliasing, where the number of hot

instructions is larger than the size of the hot instruction table,

causes ILRU to evict the wrong blocks. Figure 9 (a) shows

such case, where increasing the number of entries for the

hot instruction table in the L2 shows more performance im-

provement. Constructive aliasing, where multiple infrequent

0%

5%

10%

SPECfp SPECint meanIL
R

U
 o

v
er

 L
R

U 8 16 32 64 All

(a)

0%

5%

10%

SPECfp SPECint meanIL
R

U
 o

v
er

 L
R

U 8 16 32 64 All

(b)

0%

5%

10%

SPECfp SPECint meanIL
R

U
 o

v
er

 L
R

U 128 256 512 1024 2048

(c)

0%

5%

10%

SPECfp SPECint meanIL
R

U
 o

v
er

 L
R

U 128 256 512 1024 2048

(d)

0%

5%

10%

SPECfp SPECint meanIL
R

U
 o

v
er

 L
R

U 128 256 512 1024 2048

(e)
Figure 9. Sensitivity of ILRU to the size of a hot instruction table in (a) L2, and (b) L3; and to the size of a WBPT in (c) L1, (d) L2, and (e) L3.

-5%
0%
5%

10%
15%
20%

1 51 101 151

IL
R

U
 o

v
er

T
A

-D
R

R
IP

Workloads

Weighted Speedup (2-core)

-5%
0%
5%

10%
15%
20%

1 51 101 151
IL

R
U

 o
v
er

T
A

-D
R

R
IP

Workloads

Throughput (2-core)

-5%
0%
5%

10%
15%
20%

1 51 101 151

IL
R

U
 o

v
er

T
A

-D
R

R
IP

Workloads

Harmonic Mean (2-core)

-5%
0%
5%

10%
15%
20%

1 101 201 301 401 501IL
R

U
 o

v
er

T
A

-D
R

R
IP

Workloads

Weighted Speedup (4-core)

-5%
0%
5%

10%
15%
20%

1 101 201 301 401 501IL
R

U
 o

v
er

T
A

-D
R

R
IP

Workloads

Throughput (4-core)

-5%
0%
5%

10%
15%
20%

1 101 201 301 401 501IL
R

U
 o

v
er

T
A

-D
R

R
IP

Workloads

Harmonic Mean (4-core)

Figure 10. ILRU performance improvement over TA-DRRIP on a shared cache for 2-core (top) and 4-core (bottom) workloads.

instructions alias, causes these instructions to occupy fewer

ways together. Constructive aliasing occurs in Figure 9 (b)

and explains the higher performance improvements in 32

and 64 entries compared to using the partial PC in Figure 9

(a), where the partial PC identifies instructions perfectly. For

the L2 hot instruction table, we chose 32 entries, which had

peak performance with the least hardware overhead. The L3

hot instruction table had peak performance at 8 entries in

SPECfp and at 16 entries in SPECint. We conservatively

picked 16 entries for the L3 hot instruction table.

Figure 9 (c), (d) and (e) depict the sensitivity of ILRU to

the size of the WBPT. Although it is a small difference, L1

and L2 showed peak performance at 512 entries. L3 shows

small performance increase once the size of the WBPT

exceeds 256 entries. Although 256 entries are enough on

average-wise, a few benchmarks lose performance with 256

entries compared to 512 entries. Thus, we conservatively

chose 512 entries for the WBPTs in all of the evaluations.

D. ILRU on a Shared LLC

Figure 10 shows the performance of ILRU over TA-

DRRIP on a shared LLC for 2-core and 4-core configu-

rations. We use three commonly used metrics to measure

the performance of multi-programmed workloads: weighted

speedup, throughput, and harmonic mean of IPC improve-

ments. The weighted speedup indicates the reduction in total

execution time. The throughput is the raw performance im-

provement per cycle. The harmonic mean balances between

fairness and performance. On average, ILRU shows 3.2%,

3.2%, and 3.0% improvements over TA-DRRIP in weighted

speedup, throughput, and harmonic mean, respectively, in the

2-core configuration, and 3.2%, 3.4%, and 3.0% improve-

ments in the 4-core configuration.

For more than 90% of the multi-programmed work-

loads, ILRU improves over TA-DRRIP in all three met-

rics. TA-DRRIP performs better than ILRU when a multi-

programmed workload consists of mcf , where DRRIP

gained 1% more performance than ILRU in the single

core configuration. However, ILRU still improves significant

performance compared to LRU. The result shows that ILRU

is still robust even in the shared environment, where con-

tending memory instructions come from another application.

E. Hardware Overhead

Table III presents the storage overhead of ILRU in the

whole system. A partial PC is additionally stored in a 8-

entry load buffer and a 8-entry store buffer in a core, and

miss status handling registers (MSHRs) in each level of

cache. Each level of cache has overheads from the metadata

in sampling sets and non-sampling sets. A WBPT exists

for each cache. A hot instruction table exists for L2 and

L3, but not for the L1 cache. The number of sampling

sets is 128 sets, 128 sets, and 32 sets for L1, L2, and L3,

respectively. Sampling sets also have shadow tags, which

are 2-way, 4-way, and 8-way associative for L1, L2, and

L3, respectively. Non-sampling sets require less overhead

compared to sampling sets, and are the majority of the sets in

lower level caches. In total, ILRU requires 29.7 kB additional

storage in a three level cache hierarchy system, which is

1.3% of the total cache size. If the LLC is shared among

multi-cores, the second column tells whether the additional

storage overhead has to be replicated as the number of

cores increases. The overhead from sampling sets and non-

sampling sets in the LLC, which takes more than half of the

total overhead, can be shared in multi-core environment.

The most significant portion of the logic overhead is

instruction comparison, which needs the same number of

comparators as the tag comparison. CACTI [21] estimates

the area of the comparators for tag comparison to be less

than 0.1% of the cache area. Therefore, doubling the number

Table III. HARDWARE OVERHEAD

Core Per core Partial PC in LD/ST buffer 16-entry 0.03 kB

L1 Per core Sampling sets 128 sets 2.2 kB
Non-sampling sets 0 sets 0 kB
WBPT 512-entry 0.9 kB
MSHR 8-entry 0.01 kB

L2 Per core Sampling sets 128 sets 4.5 kB
Non-sampling sets 384 sets 1.9 kB
WBPT 512-entry 0.9 kB
Hot instruction table 32-entry 0.08 kB
MSHR 8-entry 0.01 kB

L3 Shared Sampling sets 32 sets 2.3 kB
Non-sampling sets 2016 sets 15.8 kB
MSHR 16-entry 0.03 kB

Per core WBPT 512-entry 1.0 kB
Hot instruction table 16-entry 0.04 kB

Total 29.7 kB

of comparators incurs negligible logic overhead.

To model the power overhead of ILRU, we used 32nm

technology LSTP (Low Standby Power) process in CACTI.

We gathered the average number of accesses to ILRU struc-

tures in the simulated workloads for the dynamic activities.

The WBPT was modeled as a 4-way associative cache

structure with a 8-bit tag (7-bit as a set index) and a 1B

block. Shadow tags were modeled as a tag array of a cache

with the corresponding sets and ways, where the data array

was ignored. Extra metadata were modeled by increasing the

storage from the original cache structure. Dynamic power

overhead of ILRU in three-level cache hierarchy is 2.1%,

while static power overhead is 2.2%.

VI. RELATED WORK

Numerous studies have been proposed to improve cache

performance over LRU in both single-threaded and multi-

programmed workloads. We categorize prior works into 1)

modifying replacement policies, and 2) partitioning shared

caches for different optimization objectives.

A. Replacement Policies

The problem of LRU replacement has been studied exten-

sively, especially for the LLC. Bypass [6], [22], [23], [7],

[8], [9] chooses not to insert blocks because the incoming

block has no or distant reuse. Dead block prediction [24],

[25], [26], [12] finds a dead block, which is no longer reused.

Dead block prediction looks either trace, time, or reference

count to detect a dead block. DIP [27] retains the working

set for thrashing patterns by inserting an incoming block into

LRU position. Another set of replacement policies predicts

the re-reference interval to determine a victim block [28],

[17], [29], [13]. For example, RRIP [17] predicts that in-

coming blocks have intermediate re-reference interval. Other

works viewed replacement policies in different perspectives.

Pseudo-LIFO [19] proposes that the blocks at the top of a fill

stack have higher eviction probability. PDP [20] periodically

computes a protecting distance, which is the number of

accesses to a cache set to protect a newly inserted block

from evictions without polluting the cache.

PC or instruction trace have been also used in many litera-

tures for cache management by either predicting whether the

incoming block should be bypassed [6], whether the block

is dead [12], or whether the block has distant re-reference

interval [13]. ILRU also is based on the idea of using

an instruction as an identifier for the cache management.

However, while these techniques predict a binary outcome,

ILRU predicts the working block of an instruction, which is a

multi-valued outcome hence covers more diverse scenarios.

ILRU primarily differs from prior works by viewing a

cache as a shared resource between individual memory

instructions. By reducing the interference, ILRU can improve

cache performances in all levels of cache and for more

diverse applications.

B. Cache Partitioning

Cache partitioning has been a focus in many shared

cache management studies. Because a shared cache has to

support multi-programmed and multi-threaded workloads,

cache partitioning has to consider several objectives such as

performance [4], [14], fairness [30], and quality of service

(QoS) [31], [32]. Suh et al. [2], [3] estimate the marginal

gain of increasing cache sizes and utilize this information to

partition the cache. UCP [5] takes a similar approach, but

incorporates a monitor that is independent of the observed

cache behavior. Dybdahl et al. [10] optimizes for perfor-

mance in NUCA by having private and shared partitions,

and employs shadow tags to measure which partition benefits

more with an additional cache block. While ILRU shares the

idea of way partitioning as most of the prior cache partition-

ing studies, ILRU partitions for each instruction rather than

for each application, resulting in performance improvement

for single application as well as multiple applications. Also,

ILRU uses in-place prediction and a single shared shadow

tag rather than a private shadow tag per core.

VII. CONCLUSION

In this paper, we presented Instruction-based LRU, a

fine grain cache partitioning using per-instruction working

blocks for every level of the cache hierarchy. ILRU views

a cache as a shared resource between individual memory

instructions. When an instruction misses in a cache, it steals

a block from another only when it needs more to capture the

reuse characteristic. Otherwise, it evicts among the blocks

inserted by itself, so that it never occupies more than its

working blocks. ILRU naturally extends to shared caches

by prepending the instruction identifier with a logical thread

ID. Evaluations show that ILRU improved performance in

all level of caches, and in more diverse workloads compared

to prior LLC-only techniques. Overall, ILRU reduced the

number of misses by an average of 7.0% for L1, 9.1% for L2,

and 8.7% for L3, and improved the average performance by

5.3%. In the case of a 4-core configuration, ILRU improves

over TA-DRRIP in more than 90% of the multi-programmed

workloads, with an average of 3.2%, 3.4%, and 3.0% for

weighted speedup, throughput, and harmonic mean metrics,

respectively. ILRU for a three-level cache hierarchy imposes

a modest 1.3% storage overhead over the total cache size

with 2.1% dynamic power overhead, and 2.2% static power

overhead.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers as well

as the fellow members of the CCCP research group for their

valuable comments and feedbacks. This work is supported in

part by the National Science Foundation under grant SHF-

1217917 and by the Defense Advanced Research Projects

Agency (DARPA) under the Power Efficiency Revolution for

Embedded Computing Technologies (PERFECT) program.

REFERENCES

[1] L. A. Belady, “A study of replacement algorithms for a virtual-
storage computer,” IBM Systems Journal, vol. 5, no. 2, pp.
78–101, 1966.

[2] G. E. Suh, S. Devadas, and L. Rudolph, “A new memory
monitoring scheme for memory-aware scheduling and parti-
tioning,” in Proc. of the 8th International Symposium on High-
Performance Computer Architecture, Feb. 2002, pp. 117–128.

[3] G. E. Suh, L. Rudolph, and S. Devadas, “Dynamic partitioning
of shared cache memory,” Journal of Supercomputing, vol. 28,
no. 1, pp. 7–26, Apr. 2004.

[4] L. R. Hsu, S. K. Reinhardt, R. Iyer, and S. Makineni, “Com-
munist, utilitarian, and capitalist cache policies on CMPs:
Caches as a shared resource,” in Proc. of the 15th Interna-
tional Conference on Parallel Architectures and Compilation
Techniques, 2006, pp. 13–22.

[5] M. K. Qureshi and Y. N. Patt, “Utility-based cache partition-
ing: A low-overhead, high-performance runtime mechanism to
partition shared caches,” in Proc. of the 39th Annual Interna-
tional Symposium on Microarchitecture, 2006, pp. 423–432.

[6] G. Tyson, M. Farrens, J. Matthews, and A. R. Pleszkun, “A
Modified Approach to Data Cache Management,” in Proc. of
the 28th Annual International Symposium on Microarchitec-
ture, Dec. 1995, pp. 93–103.

[7] H. Gao and C. Wilkerson, “A dueling segmented LRU re-
placement algorithm with adaptive bypassing,” in Proc. of the

1
st JILP Workshop on Computer Architecture Competitions,

2010.
[8] J. Gaur, M. Chaudhuri, and S. Subramoney, “Bypass and

insertion algorithms for exclusive last-level caches,” in Proc.
of the 38th Annual International Symposium on Computer
Architecture, 2011, pp. 81–92.

[9] L. Li, D. Tong, Z. Xie, J. Lu, and X. Cheng, “Optimal bypass
monitor for high performance last-level caches,” in Proc. of
the 21st International Conference on Parallel Architectures
and Compilation Techniques, Sep. 2012, pp. 315–324.

[10] H. Dybdahl and P. Stenstrom, “An adaptive shared/private
NUCA cache partitioning scheme for chip multiprocessors,”
in Proc. of the 13th International Symposium on High-
Performance Computer Architecture, 2007, pp. 2–12.

[11] M. K. Qureshi, D. N. Lynch, O. Mutlu, and Y. N. Patt, “A
case for MLP-aware cache replacement,” in Proc. of the 33rd
Annual International Symposium on Computer Architecture,
Jun. 2006, pp. 167–178.

[12] S. M. Khan, Y. Tian, and D. A. Jimenez, “Sampling dead
block prediction for last-level caches,” in Proc. of the 43rd
Annual International Symposium on Microarchitecture, Dec.
2010, pp. 175–186.

[13] C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, S. C. S.
Jr., and J. Emer, “SHiP: Signature-based hit predictor for high
performance caching,” in Proc. of the 44th Annual Interna-
tional Symposium on Microarchitecture, 2011, pp. 430–441.

[14] Y. Xie and G. H. Loh, “PIPP: Promotion/insertion pseudo-
partitioning of multi-core shared caches,” in Proc. of the 36th
Annual International Symposium on Computer Architecture,
Jun. 2009, pp. 174–183.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser,
G. Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood, “Pin:
Building customized program analysis tools with dynamic
instrumentation,” in Proc. of the ’05 Conference on Program-
ming Language Design and Implementation, Jun. 2005, pp.
190–200.

[16] J. E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beck-
mann, C. Celio, J. Eastep, and A. Agarwal, “Graphite: A
distributed parallel simulator for multicores,” in Proc. of the
16th International Symposium on High-Performance Com-
puter Architecture, Jan. 2010, pp. 1–12.

[17] A. Jaleel, K. B. Theobald, S. C. S. Jr., and J. Emer, “High
performance cache replacement using re-reference interval
prediction (RRIP),” in Proc. of the 37th Annual International
Symposium on Computer Architecture, 2010, pp. 60–71.

[18] A. Jaleel, W. Hasenplaugh, M. Qureshi, J. Sebot, S. S.
Jr., and J. Emer, “Adaptive insertion policies for managing
shared caches,” in Proc. of the 17th International Conference
on Parallel Architectures and Compilation Techniques, Oct.
2008, pp. 208–219.

[19] M. Chaudhuri, “Pseudo-LIFO: the foundation of a new family
of replacement policies for last-level caches,” in Proc. of the
42nd Annual International Symposium on Microarchitecture,
2009, pp. 401–412.

[20] N. Duong, D. Zhao, T. Kim, R. Cammarota, M. Valero, and
A. V. Veidenbaum, “Improving cache management policies
using dynamic reuse distances,” in Proc. of the 45th Annual
International Symposium on Microarchitecture, 2012, pp.
389–400.

[21] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi,
“Cacti 6.0: A tool to model large caches,” Hewlett-Packard
Laboratories, Tech. Rep. HPL-2009-85, Apr. 2009.

[22] W. A. Wong and J.-L. Baer, “Modified LRU policies for
improving second-level cache behavior,” in Proc. of the 6th
International Symposium on High-Performance Computer Ar-
chitecture, Jan. 2000, pp. 49–60.

[23] M. Kharbutli and Y. Solihin, “Counter-based cache replace-
ment and bypassing algorithms,” IEEE Transactions on Com-
puters, vol. 57, no. 4, pp. 433–447, 2008.

[24] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction
& dead-block correlating prefetchers,” in Proc. of the 28th
Annual International Symposium on Computer Architecture,
Jun. 2001, pp. 144–154.

[25] Z. Hu, S. Kaxiras, and M. Martonosi, “Timekeeping in the
memory system: Predicting and optimizing memory behav-
ior,” in Proc. of the 29th Annual International Symposium on
Computer Architecture, Jun. 2002, pp. 209–220.

[26] H. Liu, M. Ferdman, J. Huh, and D. Burger, “Cache bursts:
A new approach for eliminating dead blocks and increasing
cache efficiency,” in Proc. of the 41st Annual International
Symposium on Microarchitecture, 2008, pp. 222–233.

[27] M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely, and J. Emer,
“Adaptive insertion policies for high performance caching,”
in Proc. of the 34th Annual International Symposium on
Computer Architecture, 2007, pp. 381–391.

[28] G. Keramidas, P. Petoumenos, and S. Kaxiras, “Cache replace-
ment based on reuse-distance prediction,” in Proc. of the 2007
International Conference on Computer Design, Oct. 2007, pp.
245–250.

[29] R. Manikantan, K. Rajan, and R. Govindarajan, “NUcache:
An efficient multicore cache organization based on next-
use distance,” in Proc. of the 17th International Symposium
on High-Performance Computer Architecture, Feb. 2011, pp.
243–253.

[30] S. Kim, D. Chandra, and Y. Solihin, “Fair cache sharing and

partitioning in a chip multiprocessor architecture,” in Proc. of
the 13th International Conference on Parallel Architectures
and Compilation Techniques, 2004, pp. 111–122.

[31] R. Iyer, “Cqos: A framework for enabling qos in shared
caches of cmp platforms,” in Proc. of the 2004 International
Conference on Supercomputing, 2004, pp. 257–266.

[32] J. Chang and G. S. Sohi, “Cooperative cache partitioning
for chip multiprocessors,” in Proc. of the 2007 International
Conference on Supercomputing, Jun. 2007, pp. 242–252.

