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Abstract—Mobile devices are ubiquitous in daily lives. From
smartphones to tablets, customers are constantly demanding
richer user experiences through more visual and interactive
interface with prolonged battery life. To meet the demands,
accelerators are commonly adopted in system-on-chip (SoC) for
various applications. Coarse-grained reconfigurable architecture
(CGRA) is a promising solution, which accelerates hot loops
with software pipelining. Although CGRAs have shown that they
can support multimedia applications efficiently, more interactive
applications such as augmented reality put much more pressure
on performance and energy requirements.

In this paper, we extend heterogeneous CGRA to provide
SIMD capabilities, which improves performance and energy
efficiency significantly for augmented reality applications. We
show that if we can exploit data level parallelism (DLP), it is
more beneficial to run on SIMD natively than to transform it into
instruction level parallelism (ILP) and run on CGRA. To utilize
this property, multiple processing elements in CGRA are grouped
to form homogeneous SIMD cores. To reduce the hardware
overhead of fetching and replicating configuration in SIMD mode,
we propose a ring network and a recycle buffer to pass the
configuration around as well as to temporarily store it, which has
minimized impact on throughput. Also, we modify memory access
units and memory banks to support split memory transactions
with forwarding for handling SIMD data access. To adapt to the
proposed extension, we introduce a compile technique for SIMD
mode code generation to maximize the resource utilization of
each SIMD core. Experimental results show that it is possible
to achieve an average of 17.6% performance improvement while
saving 16.9% energy over heterogeneous CGRA.

I. INTRODUCTION

Contemporary mobile devices are subject to high perfor-
mance and energy efficiency as consumers are constantly
demanding better user experience; for example, running high
definition multimedia applications without recharging the de-
vices too frequently. Application-specific integrated circuits
(ASICs) are the dominant solutions today because they provide
the best performance per watt. However, as more mobile
applications are introduced, the lengthy design time, and high
non-recurring expenses of ASICs are making programmable
solutions to be more attractive. Programmable accelerators can
support multiple applications, allow the reuse of the hardware
design among several generation of mobile devices, and enable
the device to have longer life time by continuously updating
the software.
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Coarse-grained reconfigurable architecture (CGRA) is a
prominent programmable accelerator made up of multiple
processing elements (PEs), which are placed in a 2-D array
with reconfigurable routing resources to interconnect them.
Fast reconfiguration time and software-controlled dynamic
reconfiguration enable CGRAs to provide large computing
power with high energy efficiency. Due to the abundance
of PEs, it is natural to exploit ILP in CGRAs. Previous
studies have succeeded on delivering performance/energy re-
quirements in wireless signal processing and multimedia [9],
[15], [25], [16]. Some other works proposed more advanced
compiler techniques [17], [22], [20], [3], [10] as well as more
complex PEs [2] to improve the performance of CGRAs.

Although CGRAs have met the requirements of many
mobile applications, foreseeable future applications are ex-
pected to be more visually engaging and more interactive;
for example, augmented reality. These new applications set
much more stringent performance/power requirements for
CGRAs. Closely analyzing augmented reality applications and
their kernels, we find abundance of available DLP, which
were traditionally accelerated by SIMD [28], [14], [30] and
GPGPU [19]. However, DLP-only accelerators have a serious
drawback as they are wasteful when the accelerating region
does not have any DLP.

In this paper, we first show that extending CGRA with
DLP support is the most promising solution for future mobile
applications. CGRA can accelerate a wider range of loops
than SIMD because it can accelerate non-DLP loops as well
as DLP loops. However, if we can exploit DLP, it is always
better to utilize DLP rather than to transform it into ILP. In
order to utilize DLP in CGRA, it may not be possible to map
each iteration to each PE as SIMD because CGRAs may have
heterogeneous PEs to save power consumption for expensive
operations [24]. To cope with the heterogeneity, CGRA can
be conceptually divided into SIMD cores, which is a smallest
group of PEs that can provide identical functionalities. SIMD
cores are the basic unit for scheduling DLP loops. The inter-
connects between the SIMD cores, which exist due to baseline
CGRA, are simply ignored when scheduling instructions for
CGRA in SIMD mode.

We also propose a ring network that connects SIMD cores
to reduce the overhead of replicating and distributing configu-
ration and to maintain scalability. The ring network passes
configuration to next SIMD core, which slightly increases
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Fig. 1. Typical workflow of an augmented reality application.

the latency as the number of SIMD cores but does not
impact throughput. An interconnect from last SIMD core to
first SIMD core contains a recycle buffer, which can keep
up to 16 configurations to avoid re-fetching from memory
again. SIMD data access is supported by adding split memory
transactions with forwarding, which redirects loads and stores
to appropriate memory access units. Since a single SIMD core
consists of multiple PEs, SIMD mode code generation has to
adapt to the underlying CGRA structure as well. To account
for it, we use acyclic scheduling when there is abundance of
ILP in the loop, whereas we exploit modulo scheduling when
there is not enough ILP in the loop.

This paper is organized as follows. Section II explains the
target applications and why CGRAs need DLP extension.
Section III presents the architectural implementation including
the ring network and recycle buffer for configuration, and
split memory transaction with forwarding. It also explains the
compiler technique to adapt the SIMD schedule to resource
constraints. Section IV analyzes and discusses the resulting
performance and energy. Section VI concludes this paper.

II. MOTIVATION

A. Benchmarks Overview

Augmented reality augments real, physical world with
computer generated inputs providing interactivity in real-
time to users [5]. Figure 1 illustrates a typical workflow of
an augmented reality application. From real world sensors,
the application gathers information about surrounding real,
physical world. Through subsequent vision processing, ap-
plications extract features, which are used to reason about
the environment. Depending on what the application needs
to know about the environment, a set of extracted features can
be different. With perceived environment, application starts
rendering 3D virtual objects, which will be mapped onto the
vision to provide augmented reality.

We selected several benchmarks to represent the augmented
reality applications: the whole augmented reality application
from MEVBench [7], common vision kernels for feature
extraction that are simultaneously included in both MEVBench
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Fig. 2. The ratio of execution time in innermost DLP loops, non-DLP but
software pipelinable innermost loops, and remaining regions.

and SD-VBS [29] except for sift, and 3D graphics render-
ing [8].

Augmented reality applications typically consist of hot re-
gions which are mostly nested loops. We analyze the innermost
loops to measure the potential availability of DLP and ILP in
the applications. After control flows inside the innermost loops
are resolved using the if-conversion technique, we classify
the loops into DLP loops, non-DLP but software pipelinable
loops, and remaining loops. We identify DLP loops with
following conditions: 1) counted loops, 2) no data-dependent
exits, 3) no subroutine calls, 4) no backward loop-carried
dependencies, and 5) constant strided memory accesses. For
detecting software pipelinable loops, we have less strict rules:
1) counted loops, 2) no multiple exits/backedges, and 3) no
subroutine calls.

Figure 2 illustrates the ratio of execution time spent in inner-
most DLP loops, non-DLP but software pipelinable innermost
loops, and remaining regions. Remaining regions include non-
loop code regions as well. Execution time was measured in a
simple ARM processor. As shown in Figure 2, innermost DLP
loops take the largest portion of execution time followed by
non-DLP software pipelinable loops.

B. CGRA vs. SIMD

Traditional solutions for accelerating DLP loops are vector
processor [27] or SIMD architecture. Because DLP loops have
more constrained conditions, SIMD architecture is efficient for
two reasons. First, instruction fetch is simplified because every
SIMD core is running the same schedule. Second, there is no
need for extra synchronization logic nor interconnects because
there is no dependency between iterations of DLP loops.

CGRA, on the other hand, can accelerate software pipelin-
able loops as well with the cost of more interconnections.
Park et al. [24] showed that CGRA with heterogeneous PEs
is a better solution because the dynamic count of expensive
operations such as multiplication, division and memory access
is very small. By measuring performance and power of CGRA
with heterogeneous PEs, sharing multipliers and memory
access units per 4 PEs exhibited a good design point for
reducing power without degrading performance too much.
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Fig. 3. Comparison of SIMD and CGRA with 16 PEs (normalized to SIMD).

Figure 3 compares the power consumption, performance,
and energy efficiency of SIMD, homogeneous CGRA, and
heterogeneous CGRA with 16 PEs using the average across
all the target benchmarks. For CGRAs, Figure 4 (a) is used
except that every PEs have multiplier and memory access units
in homogeneous CGRA. All the numbers are normalized to
SIMD.

Moving from SIMD to homogeneous CGRA, the power
consumption increases due to complex interconnects as well
as instruction memory access overhead. However, the power
consumption of complex interconnects, which is included in
control in Figure 3 (a), are the main source of the increase.
Moving from homogeneous CGRA to heterogeneous CGRA,
we reduce power consumption significantly as complex func-
tional units are removed. Because functional units dominate
power consumption, heterogeneous CGRA consumes even less
power than homogeneous SIMD architecture.

SIMD architecture can accelerate DLP loops faster than
CGRA. As shown in Figure 3 (b), it runs 50% faster on
average for DLP loops compared to homogeneous CGRA.
If we look at non-DLP, software pipelinable loops, CGRA
outperforms SIMD with 5x speedup on average because SIMD
cannot accelerate the region at all. It confirms that without
accelerating these loops, we may not be able to achieve the
target performance. If we compare the performance between
homogeneous CGRA and heterogeneous CGRA, we can con-
firm that heterogeneity in CGRA degrades performance only
in negligible amount.

Figure 3 (c) illustrates energy consumption of three archi-
tectures. Although SIMD is the most energy efficient archi-
tecture for DLP loops, it wastes energy in non-DLP software
pipelinable loops as it cannot accelerate them. In all cases,
heterogeneous CGRA is always more energy efficient than
homogeneous CGRA because power saving is larger than the
performance degradation. Overall, SIMD and homogeneous
CGRA is about the same in energy consumption, while het-
erogeneous CGRA is 20% more energy efficient.

From the analysis, we can conclude that if heterogeneous
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Fig. 4. (a) Overview of a baseline heterogeneous CGRA. (b) Overview of
the proposed CGRA with DLP support.

CGRA can incorporate the efficiency of SIMD architecture
in DLP loops, it will be the most efficient solution in both
performance and energy.

III. ARCHITECTURE

A. Baseline CGRA

The baseline CGRA consists of 16 PEs, each of which
is composed of functional units, configuration memory, and
its own register files. Functional units are a group of ALU,
multiplier, and memory access units. Configuration memory
contains an instruction, which tells PE to do a specific oper-
ation, or to route values to nearby PEs. Distributed register
files are used as a temporary storage for computation as well
as an intermediate storage for routing to the nearby PEs. As
discussed previously, we have heterogeneous PEs as shown in
Figure 4 (a), where complex units (greyed PEs) are distributed
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Fig. 5. Execution model of the proposed CGRA with DLP support.

in a way to avoid congestion in the network. Each PE is only
connected to its neighbouring PE to form a mesh network.

B. CGRA with DLP Support

Figure 4 (b) extends baseline heterogeneous CGRA with
DLP support. Because SIMD requires identical cores or lanes
to execute replicated schedules, four PEs are grouped as a
SIMD core to have one multiplier and one memory access
unit for each SIMD core. Additionally, we further make
interconnections more dense inside each SIMD core to provide
efficient schedules when CGRA is in SIMD mode, while
interconnects across SIMD cores remain the same. Locally
dense, globally sparse interconnect topology is a common
topology to provide sufficient performance scalability while
keeping routing overhead to a reasonable level [23], [1].

Figures 5 shows the execution model of the proposed CGRA
with DLP support. For software pipelinable only loops, it will
use entire 4x4 array to accelerate the loops. For DLP loops, it
will utilize 2x2 SIMD core to accelerate the loops, and other
SIMD cores will run the same schedule.

In traditional SIMD, instruction fetch and decoding unit is
shared among SIMD cores as each core runs the same instruc-
tion on different data. In CGRA, each PE owns configuration
memory, which supplies instruction every cycle. Without any
mechanism, CGRA will not exploit the benefits of SIMD.
To solve the problem, we add ring network for SIMD mode,
which only incurs a cost of fixed cycle latency between the
execution of each SIMD core. Resulting instruction schedule
in SIMD mode is exhibited in Figure 6. With N SIMD cores,
it takes N-1 more cycles to finish than the traditional SIMD
with same number of cores.

To further save the energy overhead of fetching instructions
from configuration memory, we add recycle buffer to the ring
network. Instead of discarding the instruction, last SIMD core
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redirects the instruction back to the first SIMD core, which
can reuse the instructions. The recycle buffer is similar to the
loop cache [13], which is a small instruction buffer for the
loop body to save the energy. The recycle buffer can store
sixteen instructions, which is based on the average number of
instructions in the loop body. If the loop body exceeds the size
of the recycle buffer, only part of the loop body is stored in the
recycle buffer and remaining instructions have to be fetched
from configuration memory again.

Figure 7 shows the hardware structure of the recycle buffer
as well as how it behaves when the loop body is larger than
the recycle buffer. Because we use if-conversion to handle
control divergence, we only need to keep whether the entry in
the recycle buffer is the last configuration in the loop. When
the current configuration pointer has reached the end of the
recycle buffer and the corresponding entry is not the last one,
SIMD core accesses the configuration memory again to fetch
the remaining instructions using the last address stored in the
recycle buffer. If the configurations fit in the recycle buffer,
the configuration pointer will point to the first entry after the
last entry.

For data memory access, we assume full crossbar network
between memory access units and memory banks. Instead of
resolving bank conflicts with hardware, we insert extra cycles
to memory access latency to schedule accordingly [6]. Based
on the data memory network for CGRA, we add forwarding
support to exploit the regular memory access patterns in SIMD
mode. Similar to DMA, forwarding access is initiated by
SIMD core 0 when it fetches the data for itself. SIMD core 0
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will flag that the request is in SIMD mode, and supplies stride
information as well. Memory bank can calculate the address
for subsequent data and send directly to the next SIMD cores
without additional requests. In order to send response without
a request, split memory transaction is introduced, which is
already common with AMBA AXI [4] in SoC. Note that the
destination memory access unit in SIMD memory access can
be figured out easily because the order of SIMD cores in the
ring network is fixed. The overall data network is illustrated
in Figure 8.

C. Compiler Support

To efficiently utilize the abundant resources, CGRA gener-
ally uses modulo scheduling [26], which overlaps instructions
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Fig. 10. Dynamic configurability in SIMD mode.

from successive iterations of a loop to achieve software
pipelining [12]. Because the compiler looks across the iter-
ations for instruction scheduling, modulo scheduling provides
more chances to exploit ILP. In this paper, we apply more ad-
vanced edge centric modulo scheduling [22], which addresses
the routing problem in CGRA more efficiently, for non-DLP
software pipelinable loops.

For DLP loops, scheduling among SIMD cores is processed
as discussed before in Section III-B. Instruction scheduling
inside each SIMD core is similar to the instruction scheduling
in VLIW architecture because it has dense interconnections.
In fact, overall schedule can be viewed as pipelined execution
across the SIMD cores. Instead of performing cyclic schedulng
for entire array, CGRA with DLP support essentially restricts
each iteration to be scheduled in fixed number of PEs, which
we defined as a SIMD core, and replicate the schedule for full
array.

Compilation flow is depicted in Figure 9. We have a differ-
ent compilation path for DLP loops and software pipelinable
only loops. In SIMD mode, we tried to find the availability
of ILP in the loop body. If there is abudance of ILP in the
iteration, acyclic scheduling is performed to generate the code.
On the other hand, if there is less ILP in each iteration, modulo
scheduling is employed to exploit ILP from other iterations.
By adapting to the ILP in DLP loops, we can maximize
the resource utilization. For software pipelinable only loops,
modulo scheduling is performed to utilize the full array of
PEs.

D. Dynamically Configuring SIMD Cores

We envision that the future mobile programmable accelera-
tors will run multiple applications simultaneously as multicore
CPUs are becoming predominant in SoC. To meet the future
use case scenarios, prospective CGRAs will increase the
number of PEs to scale the performance. SIMD mode support
should also scale continuously with the number of PEs.

Figure 10 illustrates how we scale the CGRA with DLP
support. Instead of redesigning the ring network everytime
when the number of PEs increase, we identify 4x4 array of
PEs as a SIMD group. Chip designers can simply copy and
paste the SIMD group to meet their requirements. Additional
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interconnect between nearby SIMD groups is introduced to
pass around configurations. The controller has to identify
how many SIMD cores are available before the loop starts,
and dispatch the loop with the additional information of the
number of SIMD cores to be used. Note that due to the
replication of SIMD groups, the number of SIMD cores can
increase only in the multiple of 4.

Because underlying hardware stays the same, we would not
want to recompile the SIMD code to use more SIMD cores.
Because the SIMD code was modulo scheduled, the iterations
within a SIMD group have to stay consecutive as shown in
Figure 11. Iterations are divided into the number of SIMD
groups, and each SIMD group runs the chunk of iterations
as described in Section III-B. In fact, we can improve the
schedule by taking the ring network delay into account. If we
allocate few more iterations to earlier SIMD groups, it can
effectively hide the ring network latency.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

For baseline architecture, we extended the heterogeneous
CGRA used in Section II-B with the dense interconnects
inside SIMD core in the proposed CGRA with SIMD mode.
We added this interconnects so that the modulo scheduling
for non-DLP software pipelinable loops generates the same
schedule. SIMD architecture has 16 homogeneous PEs as in
Section II-B. Infrastructure and configuration are as follows:

Compilation and Simulation For frontend, we used the
IMPACT compiler [21] to generate machine specific in-
termediate representations. Edge-centric modulo scheduler
(EMS) [22] is implemented in the backend on the ADRES [16]
framework to compile and simulate the benchmarks.

Synthesis We specify PEs and interconnects in a CGRA
template framework, which generates RTLs in Verilog. IBM
65nm technology was used in Synopsys design compiler to
synthesize the generated RTLs. Synopsys PrimeTime PX and
CACTI [18] were used to find out the power consumption of
logics as well as memory. We used 200MHz for the target
frequency.

Configuration We assume that the memory access takes
four cycle, which includes the buffering latency to resolve
bank conflicts. Ring network was assumed to take a single
cycle to pass the configuration to the next SIMD core. We
have the total size of 64kB SRAM for configuration memory,
and total size of 256kB SRAM with 4 banks for data memory.
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Fig. 13. Execution time in DLP loops for baseline CGRA, CGRA with
SIMD mode, and SIMD.
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B. Performance Evaluation

We first show why SIMD mode can perform better than
CGRA mode, and compare the resulting performance of the
proposed CGRA with SIMD mode with the baseline. Because
the performance benefit solely comes from running DLP loops
in SIMD mode, we measure the execution time in DLP loops
to see how effective SIMD mode is. We also provide the total
execution time including non-DLP software pipelinable loops,
and remaining regions to show the overall speedup for the
target application.

Because we have more dense interconnects and smaller
number of PEs in SIMD mode, it is likely to generate more



efficient modulo schedule in less time. Efficient schedule
would utilize PE as a computation node rather than wasting it
as a route node for moving data from one PE to another. We
verify the assumption by looking at the resource utilization as
a computation node as shown in Figure 12. In CGRA mode,
41.9% more resources on average are utilized as computation
nodes compared to SIMD mode. Because SIMD mode utilizes
resources more efficiently, it is always better to use SIMD
mode in DLP loops.

In Figure 13, we show the normalized execution time of
DLP loops in the baseline CGRA, CGRA with SIMD mode,
and SIMD architecture. DLP loops runs 26.6% faster in SIMD
mode on average than the baseline CGRA. Compared to the
SIMD architecture with 16 PEs, SIMD mode in CGRA has
less opportunity for acceleration because 4 PEs were grouped
to form a SIMD core. However, because there are more
resources to utilize in single cycle, scheduling for each SIMD
core is more efficient in the SIMD mode. Furthermore, modulo
scheduling can employ ILP from other iterations to improve
the performance. As a result, in stitch and 3d, SIMD mode
actually performs better than SIMD architecture. On average,
SIMD mode in CGRA reduces the 40.7% performance gap
down to 14.1%.

Figure 14 compares the total execution time of the base-
line CGRA and CGRA with SIMD mode. Again, the total
execution time is normalized to baseline CGRA for the ease
comparison. Due to remaining regions other than DLP loops,
average performance for target benchmarks are not improved
as much as DLP loops. We gain 17.6% speedup on average.

C. Energy Evaluation

We evaluate energy efficiency of the proposed CGRA with
SIMD mode as well. As before, we first compare the energy
consumption in DLP loops for three architectures, including
SIMD. As we have seen that heterogeneous CGRA is more
energy efficient than SIMD architecture for whole application,
we compare energy consumption of target applications only
between the baseline CGRA and CGRA with SIMD mode.
Power overhead of SIMD extension comes from ring network,
recycle buffer, memory bank controller, and extra bits added
for memory request network. In total, it consumes 4.5% more
power than baseline heterogeneous CGRA.

Figure 15 illustrates the normalized energy consumption
in DLP loops for three architectures. For DLP loops, SIMD
was 40% more energy efficient than the baseline CGRA.
By supporting SIMD mode in CGRA, CGRA can reduce
the energy consumption for DLP loops by 37.7%, which is
nearly the same as the gap between the baseline CGRA and
SIMD. Although CGRA with SIMD mode lags in performance
compared to SIMD, overall energy consumption in DLP
loops remains the same because it consumes less power than
SIMD. Compared to SIMD architecture, CGRA with SIMD
mode is more power efficient because power reduction from
having fewer complex functional units is greater than the
interconnects in CGRA. Note that compared to the baseline
CGRA, CGRA with SIMD mode has power overheads from
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Fig. 15. Energy consumption in DLP loops for baseline CGRA, CGRA with
SIMD mode, and SIMD.
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Fig. 16. Total energy consumption of CGRA with SIMD mode compared
to normal CGRA.

the ring network and recycle buffer, but it saves more energy
from reducing configuration memory accesses by using recycle
buffer.

Figure 16 shows the overall energy consumption for aug-
mented reality benchmarks. Energy consumption is normalized
to the baseline CGRA as before. In all benchmarks, CGRA
with SIMD mode is always energy efficient. On average,
CGRA with SIMD mode can save 16.9% energy compared
to the baseline CGRA.

V. RELATED WORKS

Since the introduction of various CGRA architectures such
as ADRES [16], MorphoSys [15], and PipeRench [9], many
studies have been proposed to improve the efficiency of CGRA
through customizing hardware more to the applications or
adopting smarter compilation technique.

EGRA [2] proposed systematic approach to generate more
complex PEs. We focus more on interconnects and compilation
technique. EMS [22] showed that focusing on the routing
of the operands can improve the quality of the schedule
while reducing the compilation time. Our approach makes
one step further by exploiting DLP in the compilation time.
SIMD RA [11] tackles the problem of solving memory bank
conflicts when SIMD schedule is exploited in CGRA. We
avoid the problem by including buffering latency and taking it
into account in compilation. Instead, we focus on improving



the efficiency by incorporating benefits of SIMD architecture
through hardware.

VI. CONCLUSION

CGRAs sustained the performance and energy requirements
of multimedia applications in mobile platform. Emerging
mobile applications such as augmented reality, however, are
visually more engaging, and more interactive than previous
mobile applications. Augmented reality applications include
many DLP loops, which were traditionally accelerated by
SIMD architecture. By incorporating SIMD capability into
CGRA, we try to obtain similar performance and energy
efficiency gains for DLP loops in CGRA.

To retain the benefits of SIMD architecture, we conceptu-
alize a SIMD core, which is a group of PEs with identical
processing power, and provide a dense interconnect with
in a SIMD core. A ring network and a recycle buffer are
introduced to mimic the efficiency of instruction fetch in
SIMD architecture. To exploit the regularity in data access
pattern, split transaction is adopted to enable the forwarding
of multiple responses with single request. Compilation flow
is modified accordingly to take the most advantage out of
the SIMD mode. To maintain the scalability of SIMD mode,
a SIMD group is introduced to dynamically configure the
number of SIMD cores to be used.

The proposed CGRA with SIMD mode recovers the gap in
DLP loops between heterogeneous CGRA and SIMD archi-
tecture for both performance and energy. As a result, CGRA
with SIMD mode achieves 17.6% speedup with 16.9% less
energy in augmented reality benchmarks over the baseline
heterogeneous CGRA.
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