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Abstract

The demand for multitasking on graphics processing units

(GPUs) is constantly increasing as they have become one of

the default components on modern computer systems along

with traditional processors (CPUs). Preemptive multitask-

ing on CPUs has been primarily supported through context

switching. However, the same preemption strategy incurs

substantial overhead due to the large context in GPUs. The

overhead comes in two dimensions: a preempting kernel suf-

fers from a long preemption latency, and the system through-

put is wasted during the switch. Without precise control over

the large preemption overhead, multitasking on GPUs has

little use for applications with strict latency requirements.

In this paper, we propose Chimera, a collaborative pre-

emption approach that can precisely control the overhead

for multitasking on GPUs. Chimera first introduces stream-

ing multiprocessor (SM) flushing, which can instantly pre-

empt an SM by detecting and exploiting idempotent execu-

tion. Chimera utilizes flushing collaboratively with two pre-

viously proposed preemption techniques for GPUs, namely

context switching and draining to minimize throughput over-

head while achieving a required preemption latency. Eval-

uations show that Chimera violates the deadline for only

0.2% of preemption requests when a 15µs preemption la-

tency constraint is used. For multi-programmed workloads,

Chimera can improve the average normalized turnaround

time by 5.5x, and system throughput by 12.2%.

Categories and Subject Descriptors D.4.1 [Operating Sys-

tems]: Process Management - Multitasking; I.3.1 [Com-
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1. Introduction

Modern computer systems are increasingly adopting graph-

ics processing units (GPUs) to aid traditional processors

(CPUs). In these heterogeneous systems, one typically of-

floads throughput-oriented workloads (or kernels) from

CPUs to GPUs. GPUs can accelerate highly data-parallel

applications effectively with the help of new programming

models, such as OpenCL [14] or CUDA [20], which put an

emphasis on thread level parallelism. Threads are distributed

among hundreds of processing units on a GPU to obtain high

throughput.

These systems often have multiple CPUs that share a sin-

gle GPU. When multiple CPUs offload data-parallel kernels

simultaneously onto a shared GPU, multitasking must be

supported. Recently, Nvidia’s Kepler architecture [21] in-

troduced the Hyper-Q feature to maintain multiple indepen-

dent kernel queues to concurrently execute independent ker-

nels on a shared GPU. However, this feature is limited to

the kernels within a single process. Multi-Process Service

(MPS) [22] achieves multitasking with a software solution,

but is limited to MPI applications. With current generation

GPUs, kernels have to wait until a previously running kernel

finishes, if multiple processes are trying to share a GPU.

Traditionally, preemptive multitasking on CPUs has been

achieved through context switching, which has a reason-

able preemption latency and throughput overhead on CPUs.

However, supporting preemptive multitasking on GPUs

through context switching can incur a higher overhead com-

pared to CPUs, where the context of an SM can be as large

as 256kB of register file and 48kB of on-chip scratch-pad

memory [1, 24, 29]. Not only does a kernel have to endure a

long preemption latency, the GPU also wastes execution re-

sources while context switching. Although Tanasic et al. [29]

has shown that the average normalized turnaround time can

still be improved with high context switching overhead, such



overhead wastes the GPU’s computing power and may be in-

effective for latency-sensitive applications [3, 12, 13].

To overcome these challenges, we propose Chimera,

a collaborative preemption approach for GPUs that can

precisely control the preemption overhead. Chimera can

achieve a specified preemption latency while minimizing

throughput overhead. Since GPUs consist of multiple SMs,

a preemption request can have multiple solutions with di-

verse overheads by preempting different subsets of SMs

with different preemption techniques. Given a preemption

request, Chimera explores the possible solutions to mini-

mize throughput overhead while conforming to the required

preemption latency. Chimera achieves the goal by intelli-

gently selecting which SMs to preempt and how each thread

block will be preempted.

Chimera first introduces SM flushing, a GPU-specific

preemption technique that is enhanced to exploit the seman-

tics of thread blocks in the GPU programming model and the

concept of idempotence to achieve low preemption latency.

A kernel is idempotent if it generates the same result even

if it is restarted in the middle of its execution [6, 8, 15, 17].

Chimera further relaxes the idempotence condition to enable

flushing for more kernels. We say that a thread block is idem-

potent at the time of preemption if it produces the same re-

sult up to preemption point even if it is restarted from the

beginning. Thus, the context of a thread block can be safely

dropped with the relaxed idempotence condition even if the

kernel is non-idempotent. Because non-idempotent execu-

tion regions tend to be clustered at the end of execution in

GPU kernels, relaxed idempotence is effective for increas-

ing the opportunities for flushing.

With flushing, Chimera has three preemption techniques

in its toolbox: context switching, draining, and flushing.

Context switching [17, 29] stores the context of currently

running thread blocks, and preempts an SM with a new ker-

nel. Draining [12, 29] stops issuing new thread blocks to

the SM and waits until the SM finishes its currently run-

ning thread blocks. Flushing drops the execution of running

thread blocks and preempts the SM almost instantly.

These three preemption techniques exhibit different trade-

offs between preemption latency and throughput overhead.

Context switching has an almost constant mid-range pre-

emption latency and throughput overhead. Draining has the

least throughput overhead, but preemption latency can be

long if preemption happens near the beginning of thread

block execution. Flushing has almost zero preemption la-

tency, but throughput overhead can be large if preemption

occurs near the end of thread block execution.

Chimera recognizes the different tradeoffs of these three

preemption techniques and chooses which SMs to preempt

and how each thread block will be preempted. Chimera es-

timates the costs of the three preemption techniques for

the candidate SMs, and intelligently selects SMs and cor-

responding preemption technique by comparing the costs.

This paper makes the following contributions:

• We introduce SM flushing, a GPU-specific adaptation of

a classic preemption technique that can instantly preempt

an SM. We combine the concept of idempotence with

the semantics of thread blocks in the GPU programming

model to enable efficient SM flushing.

• We show that relaxing the idempotence condition is es-

sential for SM flushing to achieve its promised preemp-

tion latency. Detecting the relaxed idempotence condition

can be done in software.

• We show that the three available preemption techniques

for GPUs, namely context switching, draining, and flush-

ing, make different tradeoffs between preemption la-

tency and throughput overhead. Moreover, these trade-

offs change as a thread block makes execution progress

on an SM.

• We propose Chimera, a collaborative preemption ap-

proach for a shared GPU that achieves a specified pre-

emption latency while minimizing throughput overhead.

Chimera recognizes tradeoffs of available preemption

techniques, and makes an intelligent decision as to which

SMs to preempt and how to preempt each thread block.

2. Background and Motivation

This section provides an overview of the GPU programming

and execution models, and introduces the three preemption

techniques used in Chimera. This section also motivates the

need for collaboration among the preemption techniques. We

will use Nvidia’s terminology throughout the paper.

2.1 GPU Programming Model and Execution Model

A GPU program consists of host code, which contains the

sequential code sections of the program, and a kernel, which

has the parallel code sections. The host code is run on the

CPU, while the kernel code is offloaded from the CPU to the

GPU for acceleration.

The GPU programming model is based on a single in-

struction multiple thread (SIMT) model to explicitly express

the parallelism in the kernel code. In the SIMT model, a pro-

grammer only writes a code for the basic unit of execution,

called a thread. A group of threads called a thread block

is also specified by the programmer. Within a thread block,

the programmer can synchronize threads through an explicit

barrier operation. Also, threads within a thread block can

access a common, fast, on-chip scratch-pad memory called

shared memory. The entire kernel is executed by launching

grids of thread blocks to the GPUs.

Figure 1 illustrates a GPU architecture and its execution

model. The top left box shows a kernel with the notion of a

GPU programming model. The bottom box depicts the GPU

architecture with a memory hierarchy. The top right box rep-

resents a GPU execution model with the contexts of run-

ning thread blocks. In a GPU, each streaming multiprocessor
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Figure 1. GPU architecture and execution model.

(SM) has a private L1 data cache, a read-only texture cache,

and a read-only constant cache. The memory subsystem of

the GPU consists of multiple memory partitions. Each mem-

ory partition contains a shared L2 cache bank and a memory

controller.

The GPU execution model relies on the notion of a thread

block. Thread blocks from a kernel can run in arbitrary order

because thread block executions are independent from each

other. When a kernel is launched, each thread block is sched-

uled to one of the SMs. Depending on the resource con-

straints, the number of thread blocks that can run simulta-

neously on an SM may vary. Also, current generation GPUs

only allow thread blocks from the same kernel to be exe-

cuted on the same SM. When a thread block is dispatched

to an SM, the thread block is split into groups of 32 threads

called warps, where threads within a warp operate on a sin-

gle common instruction. Each warp has its own register con-

tents, and shares the state of a shared memory if they are in

the same thread block.

SMs do not share any states among themselves. Spatial

multitasking [1] exploits this property to allow GPUs to run

multiple kernels on different subsets of SMs. Preemptive

multitasking can also exploit the same property by preempt-

ing only a subset of SMs to yield to a new kernel. Starvation

can also be avoided by scheduling at least one SM to each

available kernel.

2.2 Prior Preemption Techniques

Supporting preemptive multitasking incurs overheads in

terms of latency and throughput. For example, context

switching for preemption in CPUs involves saving context

of the currently running process/thread, running the operat-

ing system (OS) scheduler to choose the next process/thread

to run, and loading context of the selected process/thread.

Preempting a process/thread experiences increased response

time due to preemption latency. Also, system throughput

is degraded because no progress is made during context

switching. The overhead of context switching is proportional

to the size of the context.

Modern GPUs can have up to 2048 threads concurrently

running on a single SM [21]. Because each thread accesses

its own registers, the context size for a SM can grow quickly.

Moreover, each SM has its own on-chip scratch-pad mem-

ory, which is shared by the threads within a thread block.

For modern GPUs, the context of a single SM can be as

large as 256kB of register file and 48kB of shared mem-

ory [1, 24, 29]. With such a large context, preempting with

context switching has high overhead in both preemption la-

tency and wasted throughput.

To avoid throughput overhead of context switching, SM

draining [29] has been proposed, which exploits the GPU

execution model. Because thread block executions are inde-

pendent from each other, a thread block does not have to re-

member its context when it finishes execution. When an SM

is preempted with draining, new thread blocks are no longer

issued to that SM. When the SM finishes all the running

thread blocks, the SM is preempted and can be assigned to

another kernel. As the SM is continuously making progress

during preemption, throughput overhead of draining is much

less than that of context switching.

Draining, however, does not solve the preemption latency

problem. Because the preemption latency of draining is de-

pendent on the remaining execution time of thread blocks in

the SM, it can be much higher than that of context switching.

2.3 SM Flushing

To enable low preemption latency, we introduce SM flush-

ing, which further exploits the independence of thread block

execution in the GPU execution model. Flushing drops an

execution of a thread block without context saving and re-

executes the dropped thread block from the beginning on an-

other SM. Because thread block executions are independent,

other thread blocks do not notice whether a thread block has

been rerun from the beginning. Flushing reduces the pre-

emption latency to almost zero. However, certain conditions

have to be met to ensure the correctness of the thread block

execution that was dropped and rerun from the beginning.

A GPU kernel is idempotent if it produces the same result

regardless of the number of times it is executed [6, 8, 15,

17]. Because there is no interaction between thread blocks,

idempotence conditions for a GPU kernel are much simpler

than those in general CPU applications. To be idempotent,

a kernel should not have any 1) atomic operations, and 2)

overwrites to a global memory location that is read in the

kernel. In the benchmarks we studied, 12 out of 27 kernels

were found to be idempotent. The idempotence conditions

are listed in Table 2. Without enabling flushing in all the

kernels, flushing loses its effectiveness because it cannot

preempt non-idempotent kernels. We discuss the details of

relaxing the idempotence conditions, and implementation of

flushing in Section 3.4.
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Figure 2. Estimated preemption latency for each preemption technique. For draining, a uniform random distribution on the

preemption point across thread block execution is assumed. For flushing, zero preemption latency is assumed.
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Figure 3. Estimated throughput overhead for each preemption technique when thread blocks running on an SM are assumed

to be in sync. For flushing, a uniform random distribution on the preemption point across thread block execution is assumed.

2.4 Tradeoff

Context switching, draining, and flushing make different

tradeoffs between preemption latency and throughput over-

head. Figure 2 shows the estimated preemption latency for

each preemption technique. In the figure, the y-axis shows

preemption latency on a logarithmic scale, and the x-axis

shows the kernels in the benchmarks. If multiple kernels are

launched in a benchmark, they are differentiated with num-

bers after the benchmark name and a dot. All the labels and

numbers for benchmarks and kernels are listed in Table 2.

To estimate the preemption latency of context switching,

an SM is assumed to have only its share of global mem-

ory bandwidth to save its context. Context size can be calcu-

lated from the kernel’s resource usage even before the ker-

nel launch. The same method was used in [29] to project the

estimated preemption latency for context switching. To esti-

mate the preemption latency for draining, the average time to

execute a thread block is first measured through simulation.

Assuming uniform random distribution on the preemption

point across the execution of a thread block, the preemption

latency for draining can be calculated. The preemption la-

tency for flushing is assumed to be zero.

In Figure 2, context switching shows a relatively constant

response time in the order of 10 µs, while draining exhibits

diverse response time ranging from 0.8 µs to 10212.8µs. On

average, context switching, draining, and flushing require

14.5 µs, 830.4 µs, and 0 µs, respectively, to preempt an SM.

They are equivalent to an order of 10,000, 500,000, and 0

cycles, respectively, in current generation GPUs.

Figure 3 shows the estimated throughput overhead for

each preemption technique. In the figure, the y-axis shows

the percentage of throughput overhead for each preemp-

tion technique compared to the throughput without preemp-

tion. Thread blocks running on an SM are assumed to be

in sync. The throughput overhead of context switching is

twice the preemption latency divided by the thread block ex-

ecution time, where the preemption latency is doubled be-

cause throughput overhead comes both from context sav-

ing and context loading. SM draining is assumed to have

zero throughput overhead because it continuously does use-

ful work until the thread block finishes. In reality, thread

blocks can be out of sync, which will cause draining to in-

cur some throughput overhead. To estimate the throughput

overhead of flushing, a uniform random distribution on the

preemption point across the execution of a thread block is

again assumed. The throughput overhead of flushing is inde-

pendent of the kernel, and is constant across all the bench-

marks. Overall, context switching, draining, and flushing

have throughput overhead of 47.7%, 0%, and 30.7%, respec-

tively.

2.5 Motivation

Different tradeoffs from the three preemption techniques en-

courage using different preemption techniques for each ker-

nel. In fact, different tradeoffs can be further exploited by
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using different preemption techniques within one preemp-

tion request. Because a preemption request would typically

want multiple SMs at the same time, each SM can be pre-

empted with a different preemption technique. Moreover,

each thread block in the SM can be preempted with a dif-

ferent preemption technique.

Figure 4 depicts the theoretical cost of each preemption

technique if a thread block at given progress is preempted.

The cost can be thought of as an aggregate measure of

preemption latency and throughput overhead. The cost of

context switching is dependent on the context size and the

available bandwidth for an SM, which is almost constant

across thread block execution. The cost of draining, which is

primarily preemption latency, is dependent on the remaining

execution time of a thread block. It decreases toward the

end of the thread block progress. The cost of flushing, on

the other hand, is primarily throughput overhead, which is

dependent on the work thrown away by flushing. More work

is thrown away as the thread block progresses; hence, the

cost increases accordingly.

The figure motivates to preempt with flushing if a thread

block is in the early stage of execution, with context switch-

ing if a thread block is in the middle stage of execution,

and with draining if a thread block is near the end of exe-

cution. The exact points at which to switch the preemption

decision is based on the cost estimation of each preemption

technique.

3. Architecture

Chimera is a collaborative preemption with three individual

techniques: context switching, draining, and flushing. Con-

text switching is implemented with a software trap routine.

Draining is performed by adding logic in a thread block

scheduler that stops issuing new thread blocks. Flushing re-

quires reset logic in SMs, which clears all the states and

in-flight instructions in the SM. For context switching and

flushing, an SM has to send the stopped thread blocks’ IDs
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Figure 5. GPU scheduler with preemptive multitasking.

The scheduler is two-level: the kernel scheduler assigns SMs

to each kernel that may involve preemption decisions, and

the thread block scheduler executes the decision by dispatch-

ing or preempting thread blocks from each SM. SMs can

feedback the schedulers when an event that can change the

scheduling decision occurs.

back to the thread block scheduler so that they can be re-

issued to the other SMs.

Chimera decides which SMs to preempt and which pre-

emption technique to use for each thread block in the SMs,

given the number of SMs to preempt. Chimera makes the

decision based on the upper bound for preemption latency

given by the preempting application or kernel. Chimera first

estimates preemption latency and throughput overhead for

each thread block in an SM when it is preempted with each

preemption technique. Chimera chooses preemption tech-

niques with the least throughput overhead that satisfy the

given preemption latency for an SM, which can give the total

cost of preemption for each SM. With the calculated costs,

Chimera selects SMs which can minimize throughput over-

head while meeting the required preemption latency.

3.1 GPU Scheduler with Preemptive Multitasking

Figure 5 illustrates the GPU scheduler with preemptive mul-

titasking when multiple GPU kernels are running concur-

rently. The scheduler is a two-level scheduler: the kernel

scheduler assigns kernel to each SM, which may involve pre-

emption decisions, and the thread block scheduler carries out

the decision. The thread block scheduler dispatches a new

thread block to an SM, or preempts an SM with the given

preemption techniques based on the decisions from the ker-

nel scheduler. The kernel scheduler is a part of an operating



system that manages a GPU device, while the thread block

scheduler is a hardware module in a GPU, which is an exten-

sion of GigaThread engine in Fermi [19] with a preemption

support.

An SM partitioning policy in the kernel scheduler tells

how many SMs each kernel will run on. The policy is orthog-

onal to the preemption decisions. It may be dependent on a

characteristic of a kernel [1] or a priority of a kernel [29].

Chimera in the kernel scheduler achieves an SM partitioning

policy by making preemption decisions. The kernel sched-

uler communicates to the thread block scheduler through

SM-to-kernel mapping information which contains per-SM

information about which kernel to schedule, whether pre-

emption is necessary or not, and which preemption tech-

nique to use. The thread block scheduler always prefers to

schedule the preempted thread blocks first so that the size of

the preempted thread block queue can be limited.

Chimera consists of two parts: estimating costs of pre-

emption for each technique, and selecting SMs to preempt

with corresponding preempting techniques. To estimate the

costs, Chimera gathers statistics for SMs. The statistics are

measured using hardware and reported directly to Chimera.

Based on these statistics, Chimera estimates preemption la-

tency in cycles, and throughput in the number of instructions

rather than IPC. Chimera can directly compare the estimated

cost of each preemption technique because they are calcu-

lated in the same units.

3.2 Cost Estimation

To distinguish different tradeoffs between different preemp-

tion techniques, Chimera has to estimate the cost of each

preemption technique precisely for each SM. First, Chimera

measures the total number of executed instructions for each

thread block to determine the progress of each thread block.

Note that instructions are counted not in thread granular-

ity, but in warp granularity so that control divergence in

a warp has minimal effect on the total executed instruc-

tions. Second, Chimera also measures the progress of each

thread block in cycles. Chimera can calculate the average

instructions-per-cycle (IPC) or cycles-per-instruction (CPI)

of a thread block with these two statistics.

We estimate the preemption latency of context switching

using the same method as detailed in Section 2.4. To esti-

mate the throughput overhead of context switching, the aver-

age IPC of preempted kernel on a single SM is multiplied by

twice the preemption latency of context switching. Note that

preemption latency is doubled because throughput overhead

not only comes from context saving, but also from context

loading. The preemption latency of draining is estimated by

multiplying the remaining instructions to execute in a thread

block by the average CPI of the preempted kernel. We avoid

using the average execution cycles per thread block directly

because it has much larger variance compared to the aver-

age executed instructions, leading to less accurate estima-

tions. The throughput overhead of draining is estimated by

Algorithm 1 Preemption Selection

Input: LatLimit, Kernel, NumPreempts ⊲ From SM Scheduling Policy

Output: SM Preemptions[1..NumPreempts]

1: for each SM in Kernel do

2: for each TB in the SM do

3: for each Preemption Technique do

4: TBCosts.push(EstimateCost(TB, Technique))
5: end for

6: end for

7: TBSorted = SortByThroughputOverhead(TBCosts)

8: while !TBSorted.empty() do

9: TBCandidate = TBSorted.pop()

10: if meets latency(TBCandidate) and TBCandidate.TB not in

SingleSMCost then

11: SingleSMCost.add(TBCandidate)
12: end if

13: end while

14: for each TB not in SingleSMCost do

15: SingleSMCost.add(EstimateCost(TB, Switch))

16: end for

17: SMCosts.push(SingleSMCost)

18: end for

19: SMSorted = SortByThroughputOverhead(SMCosts)
20: for i = 1 to NumPreempts do

21: while !SMSorted.empty() do

22: SMCandidate = SMSorted.pop()

23: if meets latency(SMCandidate) then

24: SM Preemptions[i] = SMCandidate

25: break

26: end if

27: end while

28: end for

29: return SM Preemptions[1..NumPreempts]

summing the difference between the number of executed in-

structions for each thread block and the maximum number

of executed instructions among them. Flushing is always as-

sumed to have zero preemption latency. The total number of

executed instructions for thread blocks in the SM is used to

estimate the throughput overhead of flushing. When the cost

cannot be estimated due to the lack of gathered statistics, we

conservatively use the maximum value as the estimated cost

to avoid selecting affected techniques.

3.3 Preemption Selection

Chimera is a collaborative preemption that achieves low

overhead multitasking through multiple preemption tech-

niques with different overheads. SM scheduling policy,

which is independent of these decisions, provides Chimera

a preemption latency constraint, a kernel to preempt, and

the number of SMs to preempt. Given the inputs, Chimera

generates combinations of which SM to preempt and how to

preempt, while satisfying the latency constraint.

Algorithm 1 illustrates how Chimera selects a subset of

SMs and techniques to preempt. The algorithm starts by es-

timating the cost of each preemption technique for the thread

blocks in an SM (line 2-6). The costs for the thread blocks

are sorted by throughput overhead (at line 7), and a pre-

emption technique for a particular thread block is selected

if the preemption latency constraint is met and it is not al-



ready selected with another preemption technique (line 8-

13). If a thread block cannot meet the constraint with any

preemption technique, Chimera performs context switching

for the thread block (line 14-16). Now, Chimera knows the

preemption costs for each SM that is running the given ker-

nel. It sorts all the costs by throughput overhead (at line 19).

From the list of sorted candidates, Chimera finalizes the pre-

emption selection (line 20-28). When finalizing the decision,

Chimera checks whether the candidate satisfies the preemp-

tion latency constraint (at line 23). Because only one can-

didate exists for an SM, Chimera does not have to check

whether the candidate SM is already selected.

The time complexity of algorithm 1 is O(NT logT +
NlogN), where N is the number of SMs that a kernel to

preempt is occupying, and T is the number of available

thread blocks in an SM. The first term comes from the first

loop (line 1-18), where preemption techniques are selected

for particular thread blocks. Two loops (line 2-6 and line

8-13) take the linear time complexity of O(PT ), where P

is the number of preemption techniques. In Chimera, P is

a maximum of 3. The third loop (line 14-16) only takes

the linear time complexity of O(T ). Therefore, sorting (at

line 7) defines the time complexity with O(PT logPT ) =
O(T logT ). Since the outer loop runs N times, the entire loop

(line 1-18) takes O(NT logT ). The second term, which is

O(NlogN), comes from sorting for SMs (at line 19). The

last loop (line 20-28) only takes the linear time complexity

of O(N). In general, N is in the order of 10 for current GPU

generations. Furthermore, N will be reduced as more kernels

run concurrently on the GPU because each kernel is likely to

occupy a lower number of SMs. Also, T is a fixed number

(maximum of 16 in Kepler [21]), but is typically less than

the maximum (8 is the largest number of thread blocks per

SM for simulated benchmarks in Table 2). Thus, the impact

of the selection algorithm in Chimera is negligible to the

preemption latency.

3.4 SM Flushing

SM flushing can be effective if it can preempt all kernels,

whether they are idempotent or not. Flushing may still vi-

olate the required preemption latency if it cannot preempt

an SM due to non-idempotence. Implementation of flushing

is fairly straightforward as an SM already has a circuit that

resets or clears itself.

We relax the idempotence condition by looking at thread

blocks individually with the notion of time. A GPU thread

block is idempotent at a given time if it neither 1) has ex-

ecuted any atomic operations yet, nor 2) has overwritten a

global memory location that is read by the thread block. Be-

cause atomic operations or global memory overwrites tend to

be performed at the end of a thread block execution, a thread

block can remain idempotent for the most of its execution

time even if the kernel itself is non-idempotent.

With the relaxed idempotence condition, SMs have to no-

tify the GPU scheduler when thread blocks have progressed

System Parameters

SM 30 SMs, 1400 MHz, 8 SIMT width

32768 registers per SM

8 maximum thread blocks per SM

48 kB shared memory

Memory Subsystem 6 memory partitions

177.4 GB/s bandwidth

Table 1. System configuration

beyond the non-idempotent point. The notification is imple-

mented in software by inserting a store instruction in front of

atomic operations or global overwrite operations. The store

is made to a pre-defined address, which is non-cacheable.

SMs will prepend their ID to the store so that the store ad-

dress is unique for each SM. As SMs are in-order cores,

these inserted stores are guaranteed to take place before the

atomic or global overwrite operations. The GPU scheduler

looks at these pre-defined addresses to check whether each

SM can be preempted with flushing.

As atomic operations are separate hardware instructions,

they are trivial to find. Global overwrite operations are found

by compiler analysis to distinguish between global writes

and global overwrites. While pointer alias analysis is unde-

cidable [10] in general, pointers are used in a more restricted

fashion in GPU kernels, which allows the compiler to find

global overwrites precisely in most cases.

4. Results

We use the GPGPU-Sim v3.2.2 [2] to evaluate Chimera.

GPGPU-Sim only models the GPU, while the host code

runs natively on CPUs. GPGPU-Sim does not model the

overhead of data transfers between the CPU and GPU as

well. We model a Fermi [19] architecture with 30 SMs.

All the system configuration parameters are summarized

in Table 1. We implement context switching by halting an

SM for the estimated context switch time instead of using

software trap routine. The result for context switching will

be rather optimistic in the sense that the memory bandwidth

consumed by context switching will affect other SMs to slow

down in reality and vice versa, whereas our implementation

does not account for the effect.

For all the preemption techniques, we use the same SM

scheduling policy, which is similar to the mix of Smart

Even and Rounds in spatial multitasking [1]. SMs are dis-

tributed evenly across the kernels except when the kernel re-

quires less SMs than the even split. A kernel can request less

SMs than the even split for two reasons: if a kernel is size-

bound, where the grid size or the number of thread blocks

for the kernel cannot fully occupy its portion of SMs at its

launch, or if the remaining number of thread blocks is insuf-

ficient to fully occupy the given number of SMs near the end

of execution.

We use a wide range of GPGPU applications from Nvidia

Computing SDK [18], Rodinia [4], and Parboil [28] bench-



Benchmark (Label) Source Kernel (Label) Average Context TBs Switching Idempotent

[Input] Drain Time /TB /SM Time

BlackScholes (BS) Nvidia SDK [18] BlackScholesGPU (0) 60.9 µs 24 kB 4 17.0 µs Yes
[4M Options]

B+ Tree (BT) Rodinia [4] findRangeK (0) 3.5 µs 46 kB 2 15.9 µs No

[1M Nodes] findK (1) 2.8 µs 36 kB 3 18.7 µs No

Back Propagation (BP) Rodinia [4] bpnn layerforward (0) 3.1 µs 12 kB 6 12.5 µs No

[128K Nodes] bpnn adjust weights (1) 1.8 µs 22 kB 5 19.0 µs No

Coulombic Potential (CP) Parboil [28] cenergy (0) 746.9 µs 7 kB 8 10.4 µs No

[2K Atoms on 256x256 Grid]

Fast Walsh Transform (FWT) Nvidia SDK [18] fwtBatch2Kernel (0) 2.3 µs 21 kB 5 18.2 µs No

[8M] fwtBatch1Kernel (1) 7.2 µs 28 kB 3 14.5 µs No

modulateKernel (2) 321.8 µs 18 kB 6 18.7 µs No

Heart Wall Tracking (HW) Rodinia [4] kernel (0) 5.2 µs 67 kB 2 23.4 µs No

[656x744 Pixels/Frame]

HotSpot (HS) Rodinia [4] calculate temp (0) 4.5 µs 38 kB 3 19.7 µs Yes

[1024x1024 Data Points]

Kmeans (KM) Rodinia [4] invert mapping (0) 424.3 µs 10 kB 6 10.4 µs Yes

[0.5M Data Points, 34 Features] kmeansPoint (1) 118.8 µs 12 kB 6 12.5 µs Yes

Leukocyte Tracking (LC) Rodinia [4] GICOV kernel (0) 1162.0 µs 17 kB 7 20.9 µs Yes

[640x480 Pixels/Frame] dilate kernel (1) 391.7 µs 9 kB 8 13.5 µs Yes

IMGVF kernel (2) 10173.2 µs 87 kB 1 15.2 µs No

LU Decomposition (LUD) Rodinia [4] lud diagonal (0) 17.4 µs 4 kB 8 5.6 µs No

[512x512 Data Points] lud perimeter (1) 26.2 µs 5 kB 8 8.1 µs No

lud internal (2) 3.5 µs 16 kB 6 16.6 µs No

MUMmer (MUM) Rodinia [4] mummergpuKernel (0) 10212.8 µs 18 kB 6 18.7 µs Yes

[50000 25-character Queries ] printKernel (1) 76.4 µs 24 kB 5 20.8 µs Yes

Needleman-Wunsch (NW) Rodinia [4] needle cuda shared 1 (0) 18.2 µs 8 kB 8 11.1 µs No

[4096x4096 Data Points] needle cuda shared 2 (1) 18.7 µs 8 kB 8 11.1 µs No

SAD Parboil [28] mb sad calc (0) 42.3 µs 7 kB 8 10.1 µs Yes

[1920x1072 Pixels] larger sad calc 8 (1) 82.9 µs 8 kB 8 11.1 µs Yes

larger sad calc 16 (2) 19.7 µs 2 kB 8 2.8 µs Yes

Stencil (ST) Parboil [28] block2D hybrid coarsen x 122.3 µs 11 kB 8 15.9 µs Yes

[512x512x64 Grid] (0)

Table 2. Benchmark Specification

mark suite. Table 2 lists all the evaluated benchmarks, their

inputs, and their kernels with their characteristics. We show

the estimated average drain time, the size of the context for

one thread block, the maximal number of concurrent thread

blocks per SM, the estimated context switch time, and idem-

potence of the kernel. Note that kernel idempotence can be

relaxed in flushing. We selected a subset of benchmarks from

each benchmark suite so that they show diverse characteris-

tics in terms of the context switching time, draining time,

and the idempotence condition.

4.1 Periodic Task with Deadline

We first analyze each GPGPU benchmark, when it is concur-

rently run with a synthetic GPU benchmark, which mimics

a periodic, real-time task that has a hard deadline. The syn-

thetic GPU benchmark is launched every 1ms, preempting

half of the SMs, and executed for 200µs. The deadline for the

synthetic benchmark is the execution time plus the required

preemption latency. The synthetic benchmark is killed if it

misses the deadline. The simulation is run until a GPGPU

benchmark executes 1 billion instructions or finishes its ex-

ecution.

Figure 6 illustrates the percentage of preemptions that

violate the deadline of the synthetic benchmark when the

preemption latency constraint is set to 15µs. On average,

context switching, draining, flushing, and Chimera miss the

deadline for 56.0%, 61.3%, 7.3%, and 0.2% of preemptions,

respectively. Flushing, despite its zero preemption latency,

violates the deadline for BT and FWT because these bench-

marks have non-idempotent kernels with short thread block

execution time. In such cases, flushing is more likely to miss

the deadline because thread blocks have higher chances to

be in a non-idempotent region even with the relaxed idem-

potence condition. On the other hand, Chimera misses the

dealine in 0.2% cases only. These misses are primarily due

to the incorrect estimation of draining latency. However, the

error is in the range of few hundred cycles (< 1µs), and can

be avoided by providing a headroom to preemption latency

constraint against the deadline.

Figure 7 shows the overhead on throughput for each pre-

emption technique in the same scenario. If the deadline of

the synthetic benchmark is missed, we ignore the throughput

additionally gained by running GPGPU benchmark more

during that period so that the measured overhead is fair

among the preemption techniques. Also, we neglect the

throughput of the synthetic benchmark on purpose, to isolate

throughput overhead of each preemption technique. Over-

all, context switching, draining, flushing, and Chimera have
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Figure 6. The percentage of preemptions that violate the deadline of a periodic, real-time task when GPGPU benchmarks are

run together. The preemption latency constraint is 15 µs.
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Figure 7. Throughput overhead of each preemption technique when GPGPU benchmarks are run with a periodic, real-time

task. The preemption latency constraint is 15 µs. Effective throughput is used to avoid giving unfair advantage to the preemption

techniques that frequently miss the deadline.

throughput overhead of 12.2%, 8.9%, 19.3%, and 10.1%,

respectively. Draining does not have zero throughput over-

head as explained in Section 2.4 because the assumption

that thread blocks are running in sync is not true in practice.

However, it still achieves the minimum throughput overhead

compared to switching, and flushing. Chimera shows sim-

ilar throughput overhead with significantly fewer deadline

misses. FWT, LUD, and NW show least throughput over-

head for Chimera because they include kernels that either

have short execution time (SMs will be quickly freed) or

occupy less than half of all available SMs from the begin-

ning. In such case, preemption can be performed with low

overhead since a new kernel can be launched to the idle SMs.

As shown by the figures, Chimera can almost always

meet the preemption latency constraint while individual pre-

emption technique cannot. Chimera achieves this goal while

maintaining the low throughput overhead of draining. In

fact, Chimera can have lower throughput overhead than in-

dividual preemption technique as in LUD by collaboratively

utilizing all the techniques.

4.2 Impact of Preemption Latency Constraint

Chimera is a collaborative preemption with controlled over-

head. Figure 8 demonstrates the impact of preemption la-

tency constraint when it is varied from 5µs to 20µs. We use

the same multi-programmed workloads as in Section 4.1.

Figure 8 (a) shows the percentage of preemptions that

Chimera violates the deadline when the preemption latency

constraint is varied from 5µs to 20µs. When the preemption

latency is 5µs, 10µs, 15µs, and 20µs, violations happen for

2.00%, 1.08%, 0.24%, and 0.00% of preemptions, respec-

tively. As explained with Figure 6, flushing may fail to meet

the deadline if a kernel is non-idempotent, and has short

thread block execution time. Since flushing is what Chimera

relies on to achieve low preemption latency, Chimera also

suffers from the same problem when the preemption latency

constraint is extremely low as in the case of 5µs.

Figure 8 (b) shows throughput overhead of Chimera when

the preemption latency constraint is varied from 5µs to 20µs.

Again, we use effective throughput to measure throughput

overhead to avoid giving unfair advantage to the preemp-

tion techniques that miss the deadline. Chimera have 16.5%,

12.2%, 10.0%, and 9.0% throughput overhead when the pre-

emption latency constraint is 5µs, 10µs, 15µs, and 20µs, re-

spectively. As shown in the figure, Chimera can reduce more

throughput overhead when the preemption latency constraint

is increased. If only one preemption technique is utilized, the

loose deadline cannot be exploited.

Figure 8 (c) shows distribution of each preemption tech-

nique used in Chimera when the preemption latency con-

straint is varied from 5µs to 20µs. As the preemption la-

tency constraint is reduced, Chimera exploits flushing more

because flushing is the only preemption technique that pro-
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Figure 9. The percentage of preemptions that violate 15µs

preemption latency constraint when SM flushing uses strict

or relaxed idempotence condition.

vides low preemption latency at the expense of through-

put overhead. About 19% of preemptions constantly utilize

draining because thread blocks near the end of their execu-

tion always exist even for low preemption latency constraint.

Context switching has constant preemption latency regard-

less of the constraint hence its utilization quickly drops as

the preemption latency constraint is reduced.

4.3 Relaxed Idempotence Condition in SM Flushing

Figure 9 illustrates the effectiveness of relaxing the idempo-

tence condition for flushing. We refer to the original idempo-

tence condition as strict, and the relaxed idempotence con-

dition as relaxed. The percentage of preemptions that vio-

late 15µs preemption latency constraint is shown for all the

workloads used in Section 4.1. On average, flushing violates

the deadline for 50.0%, and 0.2% of the total preemptions

with strict and relaxed idempotence condition, respectively.

When strict idempotence condition is used, the kernel

idempotence decides whether an SM can be preempted with

flushing or not. With relaxed idempotence condition, thread

blocks in such kernel can still be preempted with flushing if

they have not reached non-idempotent region. Without the

relaxed idempotence condition, flushing cannot achieve its

promised low preemption latency because non-idempotent

kernels cannot be preempted. The violations for strict idem-

potence condition will be the same regardless of the preemp-

tion latency constraint. The results show that it is mandatory

for flushing to have relaxed idempotence condition to pro-

vide instant preemption.

4.4 Case Study

In this section, we further investigate Chimera when a com-

bination of GPGPU benchmarks without hard deadline is

concurrently executed. Each multi-programmed workload is

a combination of LUD with one of the benchmarks in Ta-

ble 2. LUD is chosen because it launches multiple kernels

that require different number of SMs, which results in nu-

merous preemption requests. GPGPU benchmarks do not

have hard deadline hence we chose preemption latency con-

straint to be 30µs, which is the maximum possible preemp-

tion latency for context switching in our configuration.

Each simulation runs until all benchmarks either exe-

cute 1 billion instructions or finish its execution. Among the

benchmarks, FWT, HW, KM, LC, MUM, SAD, and ST run

more than 1 billion instructions. When one benchmark fin-

ishes earlier than the others, it is restarted from the begin-

ning to prohibit the last remaining benchmark from running

on its own. The reported results are gathered only for the first

1 billion instructions or first execution whichever is reached

first. All the benchmarks are started simultaneously at the

beginning. This is a typical setting for simulating multi-

programmed workloads [1, 25, 29–31]. For the baseline, we

use non-preemptive scheduling, where each kernel has to

wait until previous kernel has finished its execution. Kernels

are launched following first-come, first-serve (FCFS) policy.

To compare the performance of preemption techniques,

we use the metrics suggested by Eyerman et al. [7]. Average

normalized turnaround time (ANTT) quantifies the user-

perceived slowdown due to multitasking using Equation 1,

where N denotes the number of kernels, CPImulti
i is the

CPI when a kernel is executed in the multi-programmed

workload, and CPI
single
i is the CPI when the kernel is

executed on its own. System throughput (STP) measures the

progress of the system under multitasking using Equation 2,

where parameters are the same as in ANTT.

ANTT =
1

N

N∑

i=1

CPImulti
i

CPI
single
i

(1)

STP =

N∑

i=1

CPI
single
i

CPImulti
i

(2)
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Figure 10. ANTT improvement over the non-preemptive FCFS when LUD is concurrently executed with another benchmark.
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Figure 11. STP improvement over the non-preemptive FCFS when LUD is concurrently executed with another benchmark.

Figure 10 presents the ANTT improvement of each pre-

emption technique over the non-preemptive FCFS. On av-

erage, context switch, draining, flushing, and Chimera im-

proves the ANTT by 20.9x, 19.3x, 23.6x, and 25.4x, respec-

tively. HW, KM, LC, MUM, and SAD have a kernel, whose

execution time is extremely long. Preemptive multitasking

improves ANTT drastically over non-preemptive FCFS be-

cause non-preemptive FCFS has to wait until these kernels

finish their execution. Among single preemption techniques,

flushing has the most ANTT improvement as it has the least

preemption latency. Chimera can improve the ANTT more

than flushing because it can preempt non-idempotent thread

blocks using other preemption techniques.

Figure 11 shows the STP improvement of each preemp-

tion technique over the non-preemptive FCFS. Overall, con-

text switch, draining, flushing, and Chimera improves the

STP by 16.5%, 36.6%, 31.4%, and 41.7%, respectively.

Since LUD does not occupy all the available SMs, STP

is significantly improved despite the throughput overhead

of preemption techniques. Here, spatial multitasking is ef-

fectively improving STP. In LUD/SAD, Chimera improves

STP much less than the top single preemption technique,

which is draining. Chimera shows such behavior when the

cost estimation is not accurate enough for context switch-

ing, and draining. Cost estimation is not precise if thread

blocks have large variations in the execution time or in the

CPI. Again, Chimera achieves the most STP improvement

over any single preemption technique because Chimera can

choose alternative low overhead preemption technique if

one preemption technique incurs larger overhead compared

to the others while a single preemption technique is forced

to endure the overhead. We see larger difference in STP

compared to throughput overhead in the Section 4.1 because

preemptions occur more frequently than 1ms interval in the

simulated multi-programmed workloads.

Chimera can improve ANTT and STP for GPGPU bench-

marks without hard deadlines as it utilizes adequate preemp-

tion technique when preemption request occurs. When all

the combinations of GPGPU benchmarks are used, Chimera

improves ANTT and STP by 5.5x, and 12.2%, respectively,

on average. Other combinations of GPGPU benchmarks

have smaller number of preemption requests, which results

in smaller improvement compared to LUD combinations.

5. Related Work

Multitasking on GPUs is receiving a lot of attention from

the research community as GPUs are becoming common

in modern computer systems. First, we list recent works on

enabling multitasking on GPUs. Next, we present previous

studies on reducing the overhead of context switching on

CPUs. Lastly, we discuss prior research that exploit the no-

tion of idempotence.

Multitasking on GPUs: First attempts on GPU multi-

tasking have been made on top of current GPUs by provid-

ing an illusion of single process to GPU or using coopera-

tive multitasking. Context funneling [32] merges GPU con-



texts of multiple processes into a shared GPU context so that

they can run concurrently on a single GPU. KernelMerge [9]

makes GPUs only see a single scheduler kernel instead of in-

dividual independent kernels. Ino et al. [11] used cooperative

multitasking to allow the concurrent execution of scientific

and graphics applications on GPUs.

Some of the recent works study the scheduling policy

when multitasking is enabled. Elastic kernels [24] transform

kernels to enable fine grain control over the resource usage

of kernels so that they can utilize SMs more efficiently.

They study their scheme with multitasking by timeslicing

a kernel to launch only a range of thread blocks at a time.

Lee et al. [16] studies the interaction between thread block

scheduling and warp scheduling. They also propose to run

multiple kernels on the same SM, but do not present any

detailed implementation.

Several works have paid attention to the independence of

thread block execution. RGEM [12] splits memory transfers

to GPU into smaller chunks so that they can be preempted

at the chunk boundary. PKM [3] partitions a kernel into sub-

kernels, where each subkernel executes a subset of thread

blocks. SM draining [29] stops issuing a thread block and

waits until all the running thread blocks are finished. In-

dependence of thread block execution is a unique property

of GPUs and creates opportunities for efficient preemption

specific to GPUs. Chimera also utilizes the independence of

thread block execution to enable SM flushing.

Spatial multitasking [1] observes that kernels may not

fully occupy all the available SMs and shows that kernels can

run on different subset of SMs. However, spatial multitask-

ing still requires preemption if one kernel wants to dynami-

cally take SM that is already running another kernel. Tanasic

et al. [29] implement context switching to show that it still

improves ANTT, however, they do not solve the problems of

long preemption latency and large throughput overhead.

Chimera can control the overhead in preemptive multi-

tasking with collaborative preemption. Chimera is the only

solution so far that can meet a given preemption latency with

minimized throughput overhead.

Context switching: Reducing the overhead of context

switching has been researched for CPUs as well. One ap-

proach is finding fast context switch points, where there are

only few live registers so that the amount of context to be

stored can be reduced [27, 33]. But they either achieve small

amount of gain or require code specific to each switch point

for context switching. Another approach is to mark registers

with additional bits to annotate whether corresponding regis-

ter should be stored during the context switch [23]. With tens

of thousands of registers in GPUs, the extra storage overhead

is not acceptable. ASTI [26] statically sets context switching

points during compile time, thus needs to know which appli-

cations will be running concurrently in advance.

All of these studies are limited in their applicability, and

cannot be directly used in GPUs for low overhead con-

text switching. In Chimera, context switching collaborates

with preemption techniques that are specialized for GPUs to

achieve low overhead preemption.

Idempotence: Idempotence has been primarily exploited

to reduce the overhead of checkpointing in hardware. Ref-

erence idempotency [15] optimizes speculative execution by

not tracking idempotent references, thus reduces speculative

storage. Idempotent processor [6] and iGPU [17] implement

low overhead exception support for CPUs and GPUs, respec-

tively. They reconstruct a consistent program state for pre-

cise exception by re-executing from the beginning of idem-

potent region to the point of exception. Relax [5] and En-

core [8] recover from soft errors with low overhead by se-

lectively rerunning the idempotent regions rather than check-

pointing all the states.

Chimera shares the idea of idempotence and is the first

solution to try the notion of idempotence to eliminate pre-

emption latency on GPUs with flushing. Moreover, flush-

ing can be implemented with minimal overhead because the

flush logic already exists, and relaxed idempotence condition

is detected in software.

6. Conclusion

In this paper, we presented Chimera, a collaborative pre-

emption approach on a shared GPU, that enables multitask-

ing with controlled overhead. Chimera utilizes two GPU-

specific preemption techniques called draining and flushing

on top of traditional context switching. Draining exploits

the independence of thread block execution to allow low

throughput overhead preemption. Flushing brings the con-

cept of idempotent execution to preemption, which can be

combined with the independence of thread block execution

to enable low preemption latency. By intelligently selecting

a subset of SMs to be preempted as well as the preemption

techniques for thread blocks, Chimera can meet a given pre-

emption latency constraint with minimal throughput over-

head. Evaluations show that Chimera violates a 15µs pre-

emption latency constraint for only 0.2% of the preemption

requests. For multi-programmed workloads, Chimera can

improve the average normalized turnaround time by 5.5x,

which can go up to 25.4x when a large number of preemp-

tion requests occur. System throughput can be improved by

12.2%, which can go up to 41.7% when a large number of

preemption requests exist. Chimera demonstrates that pre-

emptive multitasking on a shared GPU requires a different

strategy from a traditional CPU, but is practical to imple-

ment.
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