
Characterization of Unnecessary Computations in Web Applications

Hossein Golestani, Scott Mahlke, Satish Narayanasamy

Department of Computer Science and Engineering
University of Michigan

{hosseing, mahlke, nsatish}@umich.edu

Abstract—Web applications are widely used in many dif-
ferent daily activities–such as online shopping, navigation
through maps, and social networking–in both desktop and
mobile environments. Advances in technology, such as net-
work connection, hardware platforms, and software design
techniques, have empowered Web developers to design Web
pages that are highly rich in content and engage users through
an interactive experience. However, the performance of Web
applications is not ideal today, and many users experience poor
quality of service, including long page load times and irregular
animations.

One of the contributing factors to low performance is the
very design of Web applications, particularly Web browsers. In
this work, we argue that there are unnecessary computations
in today’s Web applications, which are completely or most
likely wasted. We first describe the potential unnecessary
computations at a high level, and then design a profiler
based on dynamic backward program slicing that detects
such computations. Our profiler reveals that for four different
websites, only 45% of dynamically executed instructions are
useful in rendering the main page, on average. We then analyze
and categorize unnecessary computations. Our analysis shows
that processing JavaScript codes is the most notable category
of unnecessary computations, specifically during page loading.
Therefore, such computations are either completely wasted
or could be deferred to a later time, i.e., when they are
actually needed, thereby providing higher performance and
better energy efficiency.

I. INTRODUCTION

Web applications play an important role in the daily life

of many people, and they are widely used in both desktop

and mobile environments for various purposes such as online

shopping, navigation, and video streaming. Web pages are

getting more and more complicated in order to provide con-

tent with a visually rich user experience. Although desktop

and mobile processors have been constantly advancing in

recent years, the quality of service delivered to Web users,

especially in the mobile platform, is not satisfying yet as

they may experience delays in showing the content of Web

pages [14]. This is due to the fact that Web browsers are

complex programs, which must process multiple languages

(i.e., HTML, CSS, and JavaScript) and manage a wide

variety of network transactions.

The quality of user experience depends on how fast the

content of a Web page is displayed and how smooth one

view transitions to another. In particular, both application

designers (e.g., designers of Web browsers) and Web devel-

opers (i.e., Web page designers) should be aware that users’

satisfaction relies on three distinct metrics: page load time,

response time to user input, and animation smoothness [8].

Among these metrics, page load time is the most important

one. In a study on more than 10,000 mobile Web domains

[14], it was found that mobile websites load in 19 seconds

on average with a 3G network and in 14 seconds on average

with a 4G network. It was also observed that 53% of users

left their browsing sessions if pages took longer than 3

seconds to load. This shows how deeply Web page load

time affects user experience and highlights the need for

performance improvement of Web applications.

Considerable effort has been put into improving the per-

formance of Web applications both in academia and industry.

Commercial Web browsers are continuously improved by

leveraging complicated algorithms [9], [11], [15] and utiliz-

ing GPUs as accelerators [4], [5]. Web developers are also

provided with advanced libraries and design tools [16], [17]

for carefully managing services and ordering the resources.

Prior academic work has tried to optimize Web browsers

in different ways. [30] and [39] target Web page load time

by prefetching and caching of resources and reordering of

resources, respectively. Other proposals include enhancing

or parallelizing the JavaScript engine [18], [25], [28], [29],

proper scheduling of CPU cores [31], [36], [41], [42], [44],

and designing specialized hardware [21], [22], [43].

In this work, we argue that in current Web applications–

Web browsers in particular–there exists unnecessary compu-

tations, which are completely or most likely wasted. These

unnecessary computations are caused by processing codes

that are never used, pitfalls in the design of Web applications,

or producing output that is never or most likely not noticed

or used by the user. More details regarding potential sources

of unnecessary computations are provided in Section II.

Next, we develop a profiler that effectively identifies portions

of Web browser computations that are important to the user

(e.g., generating display pixels and network outputs), and

analyzes the computations that do not belong to this portion

(e.g., the unnecessary computations). The unnecessary com-

putations are either completely useless, or done at improper

time, so that they could be deferred to a later time when

they are actually needed. Therefore, the designed profiler

could be leveraged to both identify wasted computations and

11

2019 IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS)

978-1-7281-0746-2/19/$31.00 ©2019 IEEE
DOI 10.1109/ISPASS.2019.00010

also reveal opportunities to optimize performance and energy

efficiency of Web applications.

Our profiler is based on dynamic backward program

slicing, and it works on the instruction and memory traces

collected while a Web browser renders a Web page. The

main slicing criteria are the pixels buffer at points where it

contains the final values of pixels that are going to be put

on the device display. While going backwards, the profiler

identifies instructions whose execution has any effect on the

values stored in the pixels buffer. Therefore, the instructions

that do not belong to the calculated slice do not have

anything to do with what is shown to the user. As an

alternative to pixels buffer, system calls could be leveraged

to define broader slicing criteria (Section IV-C), so that the

profiler determines what instructions have any impact on

the values communicated with I/O, including the network,

display monitor, and audio device.

The profiling results show that only 45% of dynamically

executed instructions on average contribute to the value of

pixels in the process of rendering the Web pages in our

benchmarks. We provide details of slicing percentage in

important threads of the rendering process of the browser

under test (Google Chromium). Moreover, by analyzing the

the instructions which do not belong to the pixel-based

slice (i.e., 55% of all instructions), we categorize potentially

unnecessary computations and show that the most notable

category is processing of JavaScript codes.

In the remaining sections of this paper, we first provide

background on how Web browsers render Web pages and

what the potential sources of unnecessary computations are.

Next, in Section III, the design of the backward-slicing-

based profiler is presented. We introduce the evaluation

methodology in Section IV and describe how we leverage

the profiler to identify unnecessary computations of different

benchmarks. Then, we present and discuss the results in

Section V. Finally, the paper is concluded in Section VII.

II. BACKGROUND AND MOTIVATION

A. Rendering Pipeline of Web Browsers

For rendering a Web page, browsers follow a number

of steps called the rendering pipeline. Figure 1 shows an

overview of this pipeline, which is described below:

• First, the browser starts parsing an HTML file and

generates a tree named the Document Object Model

(DOM). This tree defines the hierarchical relationship

between all the different elements available in the

HTML file.

• Next, CSS files are parsed and a tree called CSS

Object Model (CSSOM) is constructed. CSS files are

complementary to the HTML file and define the exact

style of the different elements in the HTML file.

• In the next step, the required JavaScript codes are

executed which can arbitrarily modify or update the

object model trees.

Figure 1: Rendering pipeline of a Web browser.

0

20

40

60

80

100

0 2 4 6 8 10 12 14 16 18 20

CP
U

 U
til

iz
at

io
n

(%
)

Time (s)Loaded

Figure 2: CPU utilization by the main thread of the tab

process while browsing amazon.com.

• After running JavaScript codes, the browser merges the

updated DOM and CSSOM and generates a new tree

which then gets trimmed down to only contain objects

that include visual context to the user. The resulting

tree is called the Render Tree.

• Next, the exact position and size of different elements,

which may be grouped in different layers, are computed

in the layout stage. Then, the required graphical com-

mands are generated in the paint stage, and according

to the relative order of the layers computed in the

compositing stage, the final view of the Web page is

rendered in the user’s display.

Note that the pipeline outlined above describes how a

Web page is rendered during both load time and also the

time when the page is modified based on user interactions

(e.g., opening a menu) or dynamics of the page (e.g., an

animation). However, the computations of load time are

much more intensive because the whole page is rendered

from the ground up, while once it is completely loaded,

changes made to the page by user interactions or dynamics

only affect a few elements of the page. To illustrate this

behavior, Figure 2 shows the percentage of CPU utilization

in a fairly short browsing session, where the amazon.com
website is loaded, the user scrolls down and up a little bit,

clicks to see the next two photos in a photo roll, and finally

opens a menu. The utilization percentage corresponds to the

main thread of the tab process, in which the most critical

computations, such as calculation of styles and execution

of JavaScript code, are performed. Note that compositing is

done in a separate thread (More details about the architecture

of the Chromium browser are provided in Section V).

12

Table I: Unused JavaScript and CSS code bytes.

Website Amazon Bing
Google
Maps

Only
Load

Unused bytes 955 KB 103 KB 1.9 MB
Total bytes 1.6 MB 199 KB 3.9 MB
Percentage 58% 52% 49%

Load
and

Browse

Unused bytes 882 KB 82.5 KB 2.0 MB
Total bytes 1.6 MB 206 KB 4.6 MB
Percentage 54% 40% 43%

B. Unnecessary Computations in Web Browsers

In the rendering pipeline of Web browsers, there may be

unnecessary computations. We categorize them into three

main groups:

Unused JavaScript and CSS codes: There are various

JavaScript and CSS libraries that Web developers tend to

use–such as jQuery [7], Bootstrap [2], and React [10]–in

order to reduce development time. Not all these codes, when

imported, are really used, meaning that processing them is a

useless computation. Table I shows the percentage of unused

JavaScript and CSS code bytes after loading three different

websites–that is, Amazon, Bing, and Google Maps–and also

after browsing them for 30 seconds in a typical way. As

can be seen, about 40-60% of JavaScript and CSS codes are

unused, and even by browsing the websites, not all these

codes are used. Moreover, in the case of Bing and Google

Maps, more code bytes are downloaded while browsing,

which adds to the total bytes, and may add to the number

of unused bytes, as compared to the load time.

Browser design pitfalls: Web browser designers have

been constantly trying to improve the performance of Web

browsers by leveraging complicated methods and algo-

rithms. Although the improvement in the performance of

Web browsers could be easily observed by comparing their

earlier versions to their state-of-the-art ones, there are a num-

ber of optimizations, some of which are done speculatively,

that have not been fully verified to work all the time or in the

common case. For example, in the compositing algorithm of

the Chrome browser [3], multiple elements of the page are

grouped together as different layers, and to avoid repainting

their contents, each layer has its own backing store/cache.

However, this is expensive in terms of memory requirements;

moreover, the computations and memory space related to

the layers that are only rendered once and will not be

required to be repainted (e.g., because they are always on

top of other layers or they are always invisible) are wasted.

The compositing algorithm of Chrome blindly accepts these

overheads and potentially unnecessary computations. Other

examples include multi-threaded rasterization, which may

invalidate some pixel-based optimizations done at the early

stages of the rendering pipeline [9], and the JavaScript JIT

compiler deoptimizations, which are done because of wrong

assumptions of the compiler about object types [37].

Imperceptible computations: A Web page consists of

many layers, which may overlap each other, and elements,

which may never be noticed or utilized by the users. For

example, a layer that is overlapped by another layer may

most likely remain invisible while the user interacts with

the Web page. Similarly, a button element that is placed

at the bottom of the page may never be clicked by the

user. Therefore, the calculation of their styles and layouts, or

compilation of the JavaScript code that corresponds to their

event handlers (e.g., the code for handling the onclick event)

is imperceptible to the user. Existence of Web analytics tools

that could even track user clicks and scrolls enlightens the

fact that not all the elements in the Web page have the same

importance level.

C. Detection of Unnecessary Computations

A program slice contains instructions whose execution

affects the values of a set of variables at a specific point

in the program execution. The pair (program point, set of
variables) is called slicing criterion [38]. Program slicing is

typically done by starting from the program point given by

the slicing criterion and going backwards toward the begin-

ning of the program. Hence, this is called backward program

slicing. Program slicing could be done either statically or

dynamically. In static program slicing, no assumption is

made on program inputs, while in the dynamic approach,

slicing is done on the dynamic instruction trace of a sample

execution. Static program slicing is less precise in that it has

to make conservative assumptions on program inputs. Thus,

our choice for the profiler is dynamic program slicing.

A profiler based on dynamic backward program slicing

can theoretically identify all wasted computations mentioned

in Section II-B. If the slicing criteria are defined in a way to

include all the “necessary” variables at exact program points,

execution of whatever instructions that are not part of the

calculated slice is unnecessary. However, these necessary

variables should be carefully specified, which may not be

practical or even possible. If such criteria intuitively cover

what the user cares about–that is, visual contents shown

to them and page objects with which they interact–the

computations related to processing unused JavaScript and

CSS codes, layers that are invisible, and page elements that

are not important to the user will be discovered.

In the next section, we describe our slicing-based profiler,

and then in Section IV, we explain how slicing criteria are

chosen to effectively identify unnecessary computations.

III. PROFILER DESIGN

The profiler implemented and used in this work is based

on dynamic backward program slicing. Figure 3 shows an

overview of the profiler design and how it works. The

profiler performs dynamic backward program slicing on a

trace of dynamically executed machine instructions. In other

words, it does not do slicing at the C/C++ source code

level; rather, it tracks back machine-level instructions from

13

Backward Pass
- Data Flow Analysis
- Slicing

Forward Pass
- Building CFG*
- Building CDG**

Profiler Instruction Trace

Slicing
Criteria

Statistics

* Control Flow Graph
** Control Dependence Graph

Figure 3: Profiler design overview.

the end of the instruction trace to the beginning and marks

each instruction as being part of the slice or not based on

the slicing criteria as it goes backwards. The slicing criteria

essentially determine what the target variables (i.e., memory

locations) are at what points in the instruction trace. The

output of the profiler includes statistics about the calculated

slice, such as distribution of instructions of the slice among

all instructions at function-level or thread-level. Note that

unlike other slicers that only focus on a specific aspect of a

Web application, such as JavaScript [40], our profiler treats

the browser as a whole program rendering a page.

Traditionally, program slicers perform slicing on a pro-

gram dependence graph, which is a combination of the

data dependence graph and control dependence graph [38].

In our profiler, we construct the control dependence graph

in a forward pass, as displayed in Figure 3. However,

we do not explicitly construct a data dependence graph.

As will be explained in Section III-B, data dependencies

are discovered through a liveness analysis meanwhile the

profiler goes backwards and performs slicing. Since the

input trace contains exact memory addresses accessed by

the browser, the profiler does not suffer from the memory

aliasing problem in capturing data dependencies.

In the rest of this section, we go through the details of

the forward and backward passes. Then in Section IV, we

describe how the slicing criteria should be chosen so that

the unnecessary computations of a trace collected while a

Web browser renders a Web page are effectively identified.

A. Forward Pass

In a single forward pass, the profiler first builds a Control

Flow Graph (CFG) for each function/procedure from the

trace of dynamically executed instructions. Boundaries of

functions/procedures are identified through matching call

and return instructions. Note that since the profiler works on

machine-level instructions, it is necessary to build the CFGs

from the trace of dynamic instructions in that the target(s) of

indirect branches could not be found statically (i.e., from the

instruction opcode). Also, all CFGs have their own specific

entry and exit nodes.

In the next step, the Control Dependence Graph (CDG)

of the instructions is built. CDG shows on what branches

each instruction is dependent. For building the CDG, we first

need to determine the postdominators of each instruction.

In a CFG, a node n postdominates a node m if and only if

every directed path from m to exit contains n. Algorithms

for computing postdominators of each node in a CFG and

subsequently, computing the CDG are not very complicated,

and could be derived from basic compiler books and articles

[19], [23]. Note that the calculated CDG could be stored in

stable storage, so that it can be re-used multiple times in the

backward pass for different slicing criteria.

B. Backward Pass

In the backward pass, data dependence analysis and

slicing are done concurrently through liveness analysis.

Conceptually, in our slicing method, there is a set of live

variables, which is updated based on two distinct factors:

slicing criteria and operation of instructions. As Figure 3

illustrates, slicing criteria–which are pairs of (program point,
set of variables) (Section II-B)–are given to the backward

pass analyzer of the profiler as input. When the profiler

reaches to any program point specified in a slicing criterion,

it puts the corresponding set of variables into the live set.

The second factor, based on which the live variables set

may be updated, is operation of instructions, which also

determines whether or not instructions should be part of the

slice. If an instruction writes into a variable that is a member

of the live variables set, that variable is taken out of the live

variables set, and variables which are read by the instruction,

if any, are put into the live variables set. Moreover, the

instruction becomes part of the slice. As an example, if the

slicer reaches the pseudo-instruction c = a + b, and c is a

member of live variables set, it removes c from it, puts a
and b into it, and finally puts this instruction into the slice.

Control dependencies also play an important role in

putting instructions into the slice or not. When an instruction

becomes part of the slice based on the described liveness

analysis above, all branches on which this instruction is

dependent should also be put into the slice. Therefore,

these branches are put into a pending list, so that when the

backward pass reaches a branch in the pending list, it is put

into the slice. Moreover, the way branches update the live

variables set differs from how regular instructions do so in

the way described in the previous paragraph: when a branch

must become part of the slice, its condition variable is put

into the live variables set. For example, when the profiler

reaches the pseudo-instruction if(c) (c is the condition

variable) which is in the pending branch list, c is put into

the live variables set, and the branch is put into the slice and

removed from the pending branch list.

In practice and at machine-level instructions, variables

are, in fact, registers and memory locations. Therefore, in

a single-threaded program, the live variables set actually

consists of a live memory set and a live registers set. On

14

the other hand, Web applications are typically multi-threaded

programs, and thus, it is required that our profiler also works

for multi-threaded programs. The profiler assumes that even

for a multi-threaded program, it is given a single instruction

trace, which means that it requires that different threads are

executed sequentially during the instruction trace collection

phase. This makes the design of the profiler simpler because

there is no need to handle synchronization between threads,

and data dependence of instructions of different threads

through shared memory can be easily identified by the live-

ness analysis described above. Finally, since the architectural

context of the CPU changes when it switches the execution

between threads, the profiler needs to keep a separate live

registers set for each thread. Note that we should not have

separate live memory sets for different threads because each

thread has a distinct address space for local memory (i.e.,

heap and stack).

IV. EVALUATION METHODOLOGY

In this section, we utilize the proposed profiler to identify

unnecessary computations in rendering real websites. We

implemented the profiler in C++ based on the descriptions

in the previous section. Our test Web browser is Google

Chromium, which is an open-source program [13]. For

collecting instruction traces, we attach Intel’s dynamic bi-

nary instrumentation tool, that is, Pin [6], to a specific tab

of Chromium (each Chromium tab has its own separate

process). Using a Pin tool written by us, we obtain the

required information about the execution of instructions and

store it in stable storage. In the rest of this section, we first

explain the details of our Pin tool. Then, we describe the

benchmarks and how slicing criteria are designated.

A. Dynamic Binary Instrumentation

Pin [6] is Intel’s dynamic binary instrumentation tool,

which can inspect and even manipulate dynamically exe-

cuted instructions using only the program binary. The task

of instrumentation and inspection/manipulation could be

customized through writing Pin tools.

We wrote a Pin tool that collects static and dynamic

information about the executed instructions. Static infor-

mation includes the required data that could be extracted

from the instruction opcodes, such as whether an instruction

is a call, return, or direct/indirect conditional/unconditional

branch, and which registers it accesses. Dynamic informa-

tion includes data that are available at runtime, such as the

addresses of memory locations accessed by an instruction,

the ID of the thread where it is executed, and the system

call number if the instruction is syscall.
System calls need special attention. Pin only instruments

user-level code and does not inspect operating system in-

structions. System calls may change the value stored in

registers and memory, thereby affecting the procedure of our

liveness analysis. In order to solve this issue, we determined

the record of all system calls that Chromium executes. We

looked in the Linux kernel manual to understand how each

of these system calls manipulate memory. For example, the

syntax of sendto system call is as follows:

ssize t sendto(int sockfd, const void *buf,
size t len, int flags,
const struct sockaddr *dest addr,
socklen t addrlen);

When our Pin tool reaches a sendto system call, it indicates

in the trace file that memory locations pointed by buf and

dest addr are read accesses. How registers are manipulated

by a system call is specified in a CPU’s ABI (Application

Binary Interface). Our profiler takes care of this issue

based on the standard specified in the Intel’s x86-64 (i.e.,

AMD64) ABI, which is the processor architecture used in

our experiments.

B. Benchmarks

We use the Chromium browser, as was briefly mentioned

earlier, to generate real-world benchmarks. We collected four

instruction trace sets from different websites: Amazon in

desktop view, Amazon in emulated mobile view, Google

Maps, and Bing. We chose these three websites because

their appearance and user interface totally differ from each

other. Moreover, the desktop and mobile views of Amazon

are considerably different. The instruction traces of the first

three benchmarks include the load time of the corresponding

websites (i.e., Amazon and Google Maps); that is, the trace

is collected from entering the URL to when the Web page

is completely loaded. However, the last benchmark, i.e.,

Bing, includes the instructions of loading the Web page and

browsing it in a typical way. The browsing is composed of

several user actions: opening and closing the top right menu,

clicking on a button to roll the news pane in the bottom of

the page, and typing a term in the search bar.

In Chromium, each tab is actually a separate process

composed of multiple threads. Before starting to collect the

instruction trace of a tab of Chromium, we set affinity of the

corresponding process to one, so that all the threads of that

process are sequentially executed on only one CPU core.

This requirement, as explained in Section III-B, is imposed

by our profiler. Next, we attach our Pin tool to the tab’s

process to start collecting the trace of instructions, and we

enter the URL of a website. Benchmarks are generated using

Chromium v58 that was run on an Ubuntu 14.04 desktop

with 8 GB of RAM and an Intel Xeon E31230 CPU; note

that Pin only supports Intel CPUs.

As will be explained later in this section, for the slicing

criteria that we use, we need to know the address of pixels

buffer and the points in the trace at which they contain values

that are going to be put on the screen. In order to achieve

this knowledge, we studied the source code of Chromium

and found the point in the code (which is inside the

RasterBufferProvider::PlaybackToMemory function) where

15

the final value of pixels (i.e., bitmaps) are written into a

special buffer which corresponds to a tile of the screen (tiles

are typically squares of 256× 256 pixels). We put a unique

instruction marker, that is, “xchg %r13w, %r13w”, in a

proper point in this function. We also modified the code

of this function so that whenever Chromium executes it, the

address of the tile buffer and its size are stored in an external

file. This file and also the special instruction marker are, in

fact, a set of slicing criteria provided to the profiler.

C. Choice of Slicing Criteria for Web Applications

As mentioned in Section II-B, in order for our profiler

to effectively discover unnecessary computations of a Web

application, slicing criteria should be carefully designated.

Ideally, slicing criteria should contain all variables at exact

program points that are somehow valuable and important

to the user. Defining such criteria is a difficult task be-

cause relating user satisfaction in all possible executions

to machine-level variables may not be practical or even

possible. Therefore, we try to designate slicing criteria that

closely match the ideal case. In this work, we use two types

of slicing criteria: pixels buffer and system calls.

Pixels buffer. We define our first set of slicing criteria

as the values of the pixels buffer that are shown to the

user during rendering the page. The values of pixels of the

display containing the Web page are actually the endpoint

result of the application computations. Therefore, whatever

that does not have any visible effect by no means–such as

unused JavaScript and CSS codes, invisible layers, and page

elements located at the very end of the page that are not

shown on the first view of the Web page–will not be part of

the calculated slice.

System calls. System calls are, in fact, means by which

a process communicates with the outside world, including

the network and display monitor. Therefore, we define our

second set of slicing criteria as the values used by any system

calls. Note that the slice computed by this set of slicing

criteria must be inclusive of that of the pixel-based criteria,

and the reason that we also use such criteria is to capture

important computations to the user that do not have any

visual effect, such as bank transactions through the network

or audio playback.

Both types of slicing criteria described above are browser-

independent. Particularly, in the case of pixels buffer, we

only need to locate in the browser’s source code where

this buffer is filled with the final value of the pixels. In

other words, how the values stored in the pixels buffer are

calculated, which may differ from one browser to another,

does not affect the way the profiler performs slicing.

For the benchmark related to a complete browsing

session–that is, loading and browsing the Web page for a

while–the instructions that do not belong to the calculated

slice through either of the mentioned types of slicing criteria

specify computations that were not necessary for rendering

the page in that particular session. On the other hand, such

instructions for the benchmarks that only contain loading a

Web page denote either computations that are unnecessary

(similar to the complete browsing session case), or compu-

tations that would be useful if the user started browsing the

page, e.g., computations that are responsible for preparing

the state of the application for the interactions of the user

with the page which do not have any visible effect at load

time (such as pre-compiling JavaScript code that would be

fired as soon as the user starts interacting with the page).

Our results, however, show that the latter item includes a

very small percentage of instructions, and almost all the

instructions that do not belong to the calculated slice in the

benchmarks that only contain the load time could be treated

in a similar way to the benchmark containing both loading

and browsing the page.

V. RESULTS AND DISCUSSION

In this section, we present the output results of our

profiler regarding doing pixel-based slicing on the collected

instruction traces from different websites. Our results show

that slicing based on either pixels buffer or system calls leads

to almost the same slice. Hence, only results of pixel-based

slicing are presented and discussed.

A. Calculated Slice

Table II contains the statistics of the pixel-based slicing

approach. The results show that the pixels slice is, on aver-

age, composed of 45% of dynamically executed instructions

in the four different benchmarks, which is an interestingly

small percentage number. This implies that there is a good

opportunity to identify useless computations in more than

50% of instructions. Note that in the Amazon benchmarks,

the length of the trace in the mobile view (2.9 billion

instructions) is so much smaller than that of the trace in

the desktop view (6.2 billion instructions), which is because

the first view of the Amazon Web page is much simpler in

mobile displays as compared to desktop displays.

For the Bing benchmark, we also performed backward

slicing starting from the time when the page was completely

loaded back to the beginning time, which is composed of

1.7 billion instructions. The total slicing percentage for this

experiment is 49.8%. On the other hand, when slicing is

done starting from the end of the full trace, i.e., when the

browsing session is complete, 50.6% of instructions that

correspond to the load time are part of the calculated slice.

This implies that browsing the Web page only makes about

1% more instructions of load time become useful.

Table II also includes statistics of three important thread

types: main thread, compositor, and rasterizers. The main

thread is mainly responsible for processing HTML, CSS, and

JavaScript codes. The compositor thread handles the order

of the layers containing the elements of the Web page and is

also in charge of handling user inputs and animations. User

16

Table II: Slicing statistics of pixel-based approach for all instructions and important threads.

Threads
Amazon (desktop view): Load Amazon (mobile view): Load Google Maps: Load Bing: Load + Browse

Pixels
slice

Total
instructions

Pixels
slice

Total
instructions

Pixels
slice

Total
instructions

Pixels
slice

Total
instructions

All 46% 6,217 M 43% 2,861 M 47% 4,238 M 43% 10,494 M
Main 52% 2,173 M 59% 764 M 61% 1,382 M 44% 3,499 M

Compositor 34% 1,711 M 35% 1,135 M 35% 1,698 M 34% 3,702 M
Rasterizer 1 55% 199 M 14% 76 M 78% 32 M 71% 617 M
Rasterizer 2 60% 66 M 13% 88 M 74% 29 M 52% 345 M
Rasterizer 3 54% 191 M - - - - - -

inputs that do not cause any major change to the rendered

page, such as scrolling, are handled in the compositor thread,

but for other inputs, such as a mouse click to open a menu,

the compositor thread notifies the main thread to render the

changes. Moreover, the compositor thread also notifies the

main thread when a new animation frame must be rendered.

Chromium might launch a different number of rasterizer

threads for each website. These light-weight threads translate

graphical objects (e.g., lines and circles) into pixels. In our

benchmarks, Amazon with desktop view had three rasterizer

threads, while other benchmarks had only two rasterizers.

The slicing percentage of the compositor thread is almost

the same across all the benchmarks, while that of the main

and rasterizer threads varies and is website-specific. This

is reasonable because HTML, CSS, and JavaScript codes

of different websites, which are processed by the main

thread, are not the same, and what will finally be rasterized

and displayed on the screen completely depends on the

website content. On the other hand, the responsibilities of

the compositor thread are not dependent on the details of

the website content. Calculating the correct order of the

layers and determining whether or not they are visible;

handling user inputs and forwarding them to the main thread

if necessary; and notifying the main thread to render a

new animation frame are generic, website-independent tasks

performed by the compositor thread.

In the Amazon benchmark with mobile view, the slicing

percentage of the rasterizer threads is very small. Note that

for this benchmark, we emulated a mobile display using the

Developers Tool of Chromium. The emulated display has

a 360 × 640 resolution, which does not actually contain a

large number of pixels. Therefore, these threads’ effort to

rasterize the content seems to be not quite useful as it is

reflected on a few pixels.

The slicing percentage of the compositor thread in all the

benchmarks is also small. As mentioned in Section II-B, in

the compositing algorithm of Chrome/Chromium, a backing

store/cache is specified to each layer, either when the layer

is visible or not, so that if the order of layers changes and

some layers become visible, the correct content is displayed

quickly. While this idea may bring performance, it may

also lead to useless computations in case of the backing

stores whose contents are never used because some layers

are fully or partially overlapped during the whole browsing

session. The low slicing percentage of the compositor thread

indicates that more smart compositing algorithms could

provide both performance and energy efficiency.

Figure 4 shows how the slicing percentage changes in the

backward pass for the pixel-based slicing criteria on different

benchmarks. The x-axis in these charts shows the progress

in the backward pass; therefore, the starting point on the x-

axis corresponds to the time when the Web page is loaded

or the browsing session is done, and the last point is related

to the time when the Web page URL is entered. The y-

axis shows the percentage of instructions of the slice for a

specific point on the x-axis (aggregated from the starting

point) in the instructions analyzed up to that point. The

results are shown both for the instructions of all threads

and also for the instructions of only the main thread. We

can see that the changes in the overall slicing percentage of

all threads in the backward pass is almost constant in large

intervals. This implies that the distribution of instructions

of the slices among all instructions is fairly even overall.

However, the range of changes in the slicing percentage of

the main thread is more in contrast to all threads. This means

that computation regions that do or do not contribute to the

pixel values are more conspicuous in the main thread as

compared to other threads. It is also interesting to notice

that for the main thread in the Bing benchmark (Figure 4h),

there are some points where the slicing percentage suddenly

increases (i.e., x = 400, x = 1100, and x = 1800), and then

there is a gradual decrease in it. These points correspond to

the user interactions that make the main thread render the

imposed changes, such as rolling the news pane. Moreover,

near the end of the chart (i.e., x = 3000), there is another

considerable increase in the slicing percentage, which is

related to loading the page. All in all, whenever rendering

or re-rendering happens, the overall slicing percentage in-

creases in that it leads to changes in the pixel values.

B. Categorization of Unnecessary Computations

Now that the slice of instructions that determine the

value of pixels is calculated, we categorize unnecessary

computations by analyzing the instructions that are not part

of the calculated slice (∼55% of all instructions). We closely

examined the functions that each dynamically executed

instruction belongs to using the symbol table stored in the

17

(a) Loading Amazon (desktop view): all threads (b) Loading Amazon (desktop view): main thread

(c) Loading Amazon (mobile view): all threads (d) Loading Amazon (mobile view): main thread

(e) Loading Google Maps: all threads (f) Loading Google Maps: main thread

(g) Loading and browsing Bing: all threads (h) Loading and browsing Bing: main thread

Figure 4: Changes of slicing percentage over the backward pass. x = 0 indicates the Web page is loaded or the browsing

session is done, and the last point on the x-axis corresponds to entering the Web page URL.

application binary and used the namespace of the functions

as the basis for categorization.

The categories of potentially unnecessary instructions by

this namespace analysis are: JavaScript, Debugging, Inter-

Process Communication (IPC), Multi-threading, Composit-

ing, Graphics, CSS, and Other. Note that when compiling

the Chromium source code, all debugging options were

turned off, and the Debugging category reflects the default

debugging mechanisms built in Chromium. IPC corresponds

to the communication of the tab process with browser’s main

process. In Chromium, there is a single main process which

manages the views of different tabs and other things such

as browser extensions. Each process in Chromium is multi-

threaded, and the Multi-threading category mainly consists

of PThread code, which enables thread communication and

synchronization. The Compositing category relates to the

operations of the compositor thread, which is also the last

stage shown in Figure 1. The Graphics category basically

corresponds to the Paint stage of the rendering pipeline

(Figure 1), and the CSS category is related to style and

layout calculation in the rendering pipeline. The Other

category mainly consists of event scheduling; note that all

18

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Amazon
(desktop view)

Amazon
(mobile view)

Google Maps Bing

Re
la

tiv
e S

ha
re

Other
CSS
Graphics
Compositing
Multi-threading
IPC
Debugging
JavaScript

Figure 5: Categorization of potentially unnecessary compu-

tations and their distribution through analysis of instructions

that do not belong to the pixel-based slice.

threads in Chromium are event-driven in nature, and event

scheduling deals with managing an event queue, which holds

events that should be executed.

Distribution of the categories of potentially unnecessary

instructions through the namespace analysis is illustrated

in Figure 5. Note that through this methodology, not all

instructions could be categorized because not all functions

have a specific namespace. The results shown in this figure

include 74%, 59%, 53%, and 61% of the Amazon in desktop

view, Amazon in mobile view, Google Maps, and Bing

benchmarks respectively.

Figure 5 shows that most of the potentially unnecessary

instructions belong to the first three categories, which are

JavaScript, Debugging, and IPC. Presence of JavaScript in

this list is not surprising. Also, it is reasonable that debug-

ging codes are detected as unnecessary in that their execution

has nothing to do with what is displayed on the screen.

However, the IPC category needs more inspection because

execution of instructions belonging to this category might

have useful effect on the browser’s main process; this is left

as future work. It is interesting that in the Bing benchmark,

which includes both loading and browsing the page, the

JavaScript category has a smaller share as compared to

other benchmarks, which only include loading the page. This

implies that, generally, loading is the most intensive time in

terms of processing JavaScript codes, not all of which are

useful in a browsing session. Therefore, deferring processing

of JavaScript codes to a time when they are really needed

could provide better performance in Web applications. It

is also worth mentioning that because of the noticeable

presence of the Multi-threading category in Figure 5, and

also because the share of the Other category, which mainly

has to do with event scheduling, increases by browsing the

page, assignment of tasks to different threads and scheduling

mechanism of Chromium need reconsideration.

VI. RELATED WORK

A. Workload Characterization of Web Applications

Prior work on characterization of Web applications mainly

focused on JavaScript [32], [34], [35]. In contrast, in this

work, we essentially characterize the whole JavaScript and

rendering engines and determine computations that are use-

ful for users. [32] and [34] characterize dynamic behavior

of JavaScript workloads in terms of functions and objects,

events and event handlers, and memory allocation. [32]

concludes that JavaScript behavior of real Web applications

and available benchmarks differ, and the benchmarks are

not representative of real-world websites. [34] points out

common misunderstandings of the behavior of JavaScript

programs mainly caused by the available benchmarks. As a

result, benchmarks inspired by real user actions have been

developed [12], [33].

B. Performance Optimization of Web Applications

Many techniques have been proposed in prior work to

improve performance of Web applications targeting various

components of them. These techniques mainly enhance the

JavaScript engine or improve the load time of Web pages.

JavaScript. Much prior work has focused on improving

the JavaScript JIT compiler and execution engine. [18]

enhances object type prediction of a JavaScript compiler by

decoupling prototypes and method bindings from the object

type. [25] uses server-side profiling to reduce deoptimiza-

tions done at client-side JavaScript engines. WebAssembly

[24] is low-level, high-performance code compiled from

C/C++ which could be utilized in Web applications through

specific JavaScript APIs. Prior work also tried to bring paral-

lelization to the JavaScript engine. [29] proposes offloading

runtime checks of the JavaScript JIT compiler to a separate

thread. [28] tries to parallelize loops in compute-intensive

JavaScript applications.

Web page load time. The load time of Web pages has

also received lots of attention in prior work due to its high

impact on user experience. [27] proposes a coupled design

of a server, which decomposes Web pages into sub pages on-

the-fly, and a Web browser, that processes the sub pages in

parallel. [26] leverages a machine learning model to predict

future Web accesses of a user and prefetch the Web content.

[30] decreases the load time of Web pages by caching and

re-using JavaScript objects across browsing sessions. [20]

and [39] dynamically reprioritize the content of a Web page

to improve the load time of the Web page and sooner deliver

resources that are critical to user experience.

C. Energy-efficient Mobile Web Applications

Energy efficiency of Web applications is a critical mat-

ter in mobile devices such as smartphones. Prior work

mainly focused on frequency/voltage scaling of heteroge-

neous multiprocessors [31], [36], [41], [42], [44]. In [42],

statistical models are achieved to estimate the time and

19

energy consumption of loading Web pages based on their

characteristics–such as, number of HTML tags, number of

CSS rules, and content size. Based on these models, proper

frequency/voltage of Arm big.LITTLE cores [1] are found

after parsing the Web page. [31] characterizes the energy

consumed in different processes and threads of a Web

browser and proposes several power management policies

on heterogeneous multiprocessor platforms. [41] and [44]

propose energy-efficient schedulers of a heterogeneous mo-

bile architecture based on the QoS requirements of users,

which is, respectively, determined by automatic reasoning

based on intensity and latency, and two novel CSS language

extensions provided for Web developers.

D. Architectural Support for Web Applications
Due to widespread use of Web applications, prior work

also proposed specialized hardware and architectures for

them. [43] identifies fine-grained parallelism in applying

styles to HTML elements and proposes a specialized hard-

ware unit for it. It also proposes a specific cache for the

document object model tree since its content is heavily re-

used while rendering a Web page. In [21], a specialized

prefetcher is designed that takes advantage of long latency

cache misses to bring to cache data and instructions required

for future events that are in the event queue. [22] accelerates

JavaScript object accesses through a hardware table similar

to a branch target buffer.

VII. CONCLUSION

The performance of today’s Web applications is often

unsatisfactory to users, and in this work, we argued one of

the reasons for it is that there are unnecessary computations

occurring in Web applications which could be avoided or

scheduled in a better way. We designed a profiler that

effectively identifies computations that are important to the

user. To the best of our knowledge, this is the first work

that quantitatively characterizes unnecessary computations

of Web applications. The profiler detects instructions con-

tributing to what is shown to the user on the device display

during rendering a Web page. We showed that only 45% of

dynamically executed instructions in the rendering process

of the browser under test are useful for calculating the value

of the pixels displayed to the user on average. By analyzing

the rest of the instructions, we revealed inefficiencies of the

Web browser (e.g., the compositing algorithm) and provided

a categorization of computations that are either completely

wasted or could be deferred to a more appropriate time

(e.g., compiling a piece of JavaScript code when it is

really needed), thereby providing opportunities for higher

performance or reduced energy consumption.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for

their comments and feedback. We also appreciate Salar Lat-
ifi’s assistance during this work. This research was supported

by the National Science Foundation grant SHF-1527301.

REFERENCES

[1] “Arm big.LITTLE technology,”
https://developer.arm.com/technologies/big-little.

[2] “Bootstrap,” http://getbootstrap.com/.

[3] “Compositing in Blink/Webcore,”
https://tinyurl.com/yd5nwmy3.

[4] “Firefox’s Hardware Acceleration,”
https://support.mozilla.org/en-US/kb/performance-settings.

[5] “GPU Accelerated Compositing in Chrome,”
https://tinyurl.com/no64sem.

[6] “Intel’s Pin,” https://software.intel.com/en-us/articles/pin-a-
dynamic-binary-instrumentation-tool.

[7] “jQuery,” https://jquery.com/.

[8] “Measure Performance with the RAIL Model,”
https://developers.google.com/web/fundamentals/performance/rail.

[9] “Multi-threaded Rasterization in Chrome,”
https://tinyurl.com/yaksfwz8.

[10] “React,” https://reactjs.org/.

[11] “Speculative Parsing,” https://tinyurl.com/yxta9zyu.

[12] “Speedometer 2.0,”
https://browserbench.org/Speedometer2.0/.

[13] “The Chromium Web Browser,” https://www.chromium.org/.

[14] “The need for mobile speed (DoubleClick by Google),”
https://bit.ly/2eqaC8z.

[15] “Using Request Idle Callback,” https://tinyurl.com/ybyseoo5.

[16] “Vue.js: The Progressive JavaScript Framework,”
https://vuejs.org/.

[17] “Webpack: Build System and Module Bundler,”
https://webpack.js.org/.

[18] W. Ahn, J. Choi, T. Shull, M. J. Garzarán, and J. Torrellas,
“Improving javascript performance by deconstructing the
type system,” in PLDI, 2014, pp. 496–507.

[19] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers:
Principles, Techniques, and Tools. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 1986.

[20] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and
V. Sekar, “Klotski: Reprioritizing web content to improve
user experience on mobile devices,” in USENIX NSDI,
2015, pp. 439–453.

[21] G. Chadha, S. Mahlke, and S. Narayanasamy, “Accelerating
asynchronous programs through event sneak peek,” in ISCA,
2015, pp. 642–654.

20

[22] J. Choi, T. Shull, M. J. Garzaran, and J. Torrellas,
“Shortcut: Architectural support for fast object access in
scripting languages,” in ISCA, 2017, pp. 494–506.

[23] J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Trans.
Program. Lang. Syst., vol. 9, no. 3, pp. 319–349, Jul. 1987.

[24] A. Haas, A. Rossberg, D. L. Schuff, B. L. Titzer,
M. Holman, D. Gohman, L. Wagner, A. Zakai, and
J. Bastien, “Bringing the web up to speed with
webassembly,” in PLDI, 2017, pp. 185–200.

[25] M. N. Kedlaya, B. Robatmili, and B. Hardekopf,
“Server-side type profiling for optimizing client-side
javascript engines,” in DLS, 2015, pp. 140–153.

[26] D. Lymberopoulos, O. Riva, K. Strauss, A. Mittal, and
A. Ntoulas, “Pocketweb: Instant web browsing for mobile
devices,” in ASPLOS, 2012, pp. 1–12.

[27] H. Mai, S. Tang, S. T. King, C. Cascaval, and
P. Montesinos, “A case for parallelizing web pages,” in
USENIX HotPar, 2012.

[28] M. Mehrara, P. Hsu, M. Samadi, and S. Mahlke, “Dynamic
parallelization of javascript applications using an
ultra-lightweight speculation mechanism,” in HPCA, Feb
2011, pp. 87–98.

[29] M. Mehrara and S. Mahlke, “Dynamically accelerating
client-side web applications through decoupled execution,”
in CGO, 2011, pp. 74–84.

[30] J. Oh and S. Moon, “Snapshot-based loading-time
acceleration for web applications,” in CGO, Feb 2015, pp.
179–189.

[31] N. Peters, S. Park, S. Chakraborty, B. Meurer, H. Payer, and
D. Clifford, “Web browser workload characterization for
power management on hmp platforms,” in CODES, 2016,
pp. 26:1–26:10.

[32] P. Ratanaworabhan, B. Livshits, and B. G. Zorn, “Jsmeter:
Comparing the behavior of javascript benchmarks with real
web applications,” in USENIX WebApps, 2010.

[33] G. Richards, A. Gal, B. Eich, and J. Vitek, “Automated
construction of javascript benchmarks,” in OOPSLA, 2011,
pp. 677–694.

[34] G. Richards, S. Lebresne, B. Burg, and J. Vitek, “An
analysis of the dynamic behavior of javascript programs,” in
PLDI, 2010, pp. 1–12.

[35] K. Sen, S. Kalasapur, T. Brutch, and S. Gibbs, “Jalangi: A
selective record-replay and dynamic analysis framework for
javascript,” in ESEC/FSE, 2013, pp. 488–498.

[36] D. Shingari, A. Arunkumar, B. Gaudette, S. Vrudhula, and
C. Wu, “Dora: Optimizing smartphone energy efficiency and
web browser performance under interference,” in ISPASS,
April 2018, pp. 64–75.

[37] G. Southern and J. Renau, “Overhead of deoptimization
checks in the v8 javascript engine,” in IISWC, Sept 2016,
pp. 1–10.

[38] F. Tip, “A survey of program slicing techniques.”
Amsterdam, The Netherlands, Tech. Rep., 1994.

[39] X. S. Wang, A. Krishnamurthy, and D. Wetherall, “Speeding
up web page loads with shandian,” in USENIX NSDI, 2016,
pp. 109–122.

[40] J. Ye, C. Zhang, L. Ma, H. Yu, and J. Zhao, “Efficient and
precise dynamic slicing for client-side javascript programs,”
in SANER, March 2016, pp. 449–459.

[41] Y. Zhu, M. Halpern, and V. J. Reddi, “Event-based
scheduling for energy-efficient qos (eqos) in mobile web
applications,” in HPCA, Feb 2015, pp. 137–149.

[42] Y. Zhu and V. J. Reddi, “High-performance and
energy-efficient mobile web browsing on big/little systems,”
in HPCA, Feb 2013, pp. 13–24.

[43] ——, “Webcore: Architectural support for mobileweb
browsing,” in ISCA, 2014, pp. 541–552.

[44] ——, “Greenweb: Language extensions for energy-efficient
mobile web computing,” in PLDI, 2016.

21

