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ABSTRACT

Increasing demand for performance and efficiency has drithen
computer industry toward multicore systems. These systens
become the industry standard in almost all segments of the- co
puter market from high-end servers to handheld devices.rdero
to efficiently use these systems, an extensive amount afchsend
industry support has been devoted to developing explipéhallel
programming paradigms, such as streaming models, and new co
piler techniques.

One important challenge that arises in multicore systenthés
ability to dynamically adapt a running application to a tatgarchi-
tecture in the face of changes in resource availability .(eagmber
of cores, available memory or bandwidth). In this paper, aeuf
on the increasingly important area of streaming computing &n-
troduce Flextream as a flexible compilation framework thet dy-
namically adapt applications to the changing charactécsiof the
underlying architecture. We believe this is an importanmtcibu-
tion as software developers grapple with the details of faliam
in a rapidly changing architecture landscape. Flextreanhiages
its goals through a combination of static compilation andhaiyic
adaptation techniques. Our results indicate that Flextnéaap-
proach can achieve high-performance resource allocatibas are
within an average of 9% of the optimal solution with low oweat
for a wide range of streaming applications.

1. INTRODUCTION

Many-core processors provide a lot of flexibility in thatyhean
potentially speed up the execution of individual applicasi (be-
cause of increased parallelism), while also having thetalbd run
many applications at the same time. As the number of apjaitat
that can effectively use multiple cores increases, it wvatdime nec-
essary to develop strategies that can adequately managddba-
tion of resources between applications. Resource allmtatia chal-
lenging problem because application behavior (and hersmiree
requirements) can often vary in unpredictable ways, deipgnoin
factors that include dynamic workloads and variability imdeuser
scenarios. The issue is made more challenging by the nusaeiu
erogeneous architectural resources that are already exkposoft-
ware (e.g., the compiler). We believe that managing thecation
of resources effectively requires many non-trivial traftlecand we
introduce Flextream as a means to address this issue.

Specifically, we address the issue of provisioning an iuial
application to run on a heterogeneous architecture undginga
configurations of resource allotments. In doing so, appboa are
able to efficiently and effectively adapt, at runtime, to mes in
the number and kind of resources at their disposal. For ebeamp
consider a mobile device that serves as a multimedia playtaa
internet browser. If the user is running only one of the twpliza-
tions, then that application can potentially exploit altieé available
resources in the device. However, as soon as the user al$® sta
browsing the web, the resources available for the medizeplayst

2NVIDIA Corp.
Santa Clara, CA
mkudlur@raidom

3 IBM T.J. Watson Research Center
Hawtime, NY
rabbah@us.ibm.com

change to accommodate the new application. If either of ipi-a
cations is not properly provisioned to run on a varying nuntfe
resources, the end-user experience will almost surely looagne.

Static compilation approaches, in general, can genergtedu-
ality resource allocations offline. However, such solui@me of-
ten sensitive to runtime variations in resource availghilin other
words, any change in the underlying architecture’s pararegsuch
as available on-chip memory or the number of cores, willltésan
inefficient execution of a statically scheduled applicatio the best
case, or code that can not execute in the worst case.

One potential solution to this problem is to compile altéirea
versions of an application, and to dynamically switch betweger-
sions according to the resources that are available in thétecture.
For example, the media application running on an 8-corecedesén
be provisioned to run on either 1, 2, 4, or 8 cores. The obvious
deficiencies of this approach are three fold. First, thigtsgy can
lead to large amounts of code bloat. Second, it may be impehct
to statically consider a high number of architectural canfidions.
Lastly, the application may have to execute an inefficieittsafe
implementation (e.g., sequential) if the runtime scengietds a set
of resources that was not statically considered.

An alternative solution is dynamic compilation, where tipplé
cation is repeatedly compiled at runtime when resourceageha-
this can arise if the number of available cores, or the amoiumem-
ory that is available, or the available bandwidth varies.isTid a
promising approach because it can continuously adapt togeisan
resource availability, if only the costs of compilation aamhptation
can be made low enough to be practical. In order to keep ths cos
of compilation down, the runtime compiler is likely to be lted to
a small set of optimizations. Furthermore, if we considéohthe
resource ingredients that can vary at runtime, it will betejghal-
lenging to engineer an efficient solution that addressesfatiem
well.

In this work, we propose a compilation and runtime adaptatio
system called Flextream. It is aimed at addressing the eringis
described above in the context of streaming applicatiortseas-
ing is an increasingly important programming paradigm heeat
addresses the parallel programming challenges amongaseer
plication domains and tiers of the computing industry (frovobile
computing to high-end server farms).

In Flextream, a streaming application is represented asphgr
where the nodes encapsulate computation, and the edgesdnetw
nodes describe dataflow. A stream program (graph) is mappad t
many-core heterogeneous architecture by assigning nodasés,
and dataflow to communication channels between cores EMA
transfers between cores, or between main and local memofies
main innovation in Flextream is aadaptive stream graph modulo
schedulingalgorithm that combines the benefits of static scheduling
with the advantages of dynamic adaptation. This stratefgysing
an adaptive hybrid (static-dynamic) compilation approasn lead



to significantly better resource utilization, and can hedfivér the
promise of many-cores to end-users.

Flextream consists of two main components. The first part per
forms static compilation of an application to a virtualizedlticore
system using heuristics for controlling the amount of galiaim in
the graph, and an integer linear programming (ILP) forniorato
find the optimal mapping of nodes to resources (i.e., workitpar-
ing). The second part consists of a light-weight online @yit)
adaptation system that modifies the active schedule basdteon
available resources in the architecture. Dynamic adaptaton-
sists of several phases including finding a new processiyrasent,
stage assignment, and buffer allocation. The online phasede-
signed to be light-weight and yet produce efficient results.
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Figure 1: General architecture template

from the local stores independent of the cores. The slawesaan
only access the local store, so any sharing of data has torbe pe
formed through explicit DMA operations. The ability to pemn

In this paper, we mainly focus on heterogeneous systems with asynchronous DMA operations allows overlap of computatiod

distributed memory similar to the IBM Cell [9] processor.itgthe
proposed framework, an application is statically compftach con-
figuration of the architecture with the greatest number sbueces
which may include processing elements, on-chip storageband-
width. This results in high-quality solutions for a specifianfigu-
ration. The dynamic light-weight layer uses the result &f $tatic
compilation as a hint to quickly discover an efficient sautfor the
new system configuration. Our experiments show that asgistie
online adaptation phase with a static solution reducesmenbver-
head and greatly improves the quality of the solutions thabinline
phase discovers. Our approach eschews the need for reetiompil
when resources change, and thus enables software dewelojpzo-
duce adaptive and high-quality streaming applicationse @hline
adaptation phase uses a technique similar to [17] (calleltiddee
Streaming Layer or MSL) to stop the current schedule andilolige
the new schedule between the processors. More details giisut
technigue are mentioned in Section 2.2.
This paper makes the following contributions:

¢ An efficient framework for adaptive compilation of streamin
applications to heterogeneous multicore systems is pegpos

e A parallelism-tuning heuristic coupled with a scalable kvor
partitioning based on ILP formulation is proposed to find a
static software pipelined scheduling for streaming ajgpians.

e Highly efficient dynamic work redistribution and buffer @l
cation algorithms are introduced to adapt the softwardipipe
schedule dynamically to efficiently exploit the capabgitiof
the target platform.

The rest of the paper is organized as follows. In Section €, th
target architecture, input language, and multicore stiegiayer
are discussed. Then, the static compilation and onlinetatiap
layer of Flextream are discussed in Section 3. Finally, ictie 4,
the framework is evaluated. Section 5 discusses some oélheed
works that motivated this system.

2. BACKGROUND
2.1 Architecture

The compilation target in this paper is a streaming memorl mu
ticore architecture where on-chip memory structures adeesded
as local memory and are explicitly managed. Such architeqiro-
vides the compiler with a great deal of flexibility in termsasthes-
trating code and data locality, and managing communicajianu-
larity, frequency, and latency.

The target system is similar to the Cell processor in ternthef
high-level architecture. It consists of a more powerful teaproces-
sor and several slave processing elements. The masteisponds
similar to the PowerPC core in the Cell processor runningzti2
with 32KB L1 and 1MB L2 cache. Each slave core contains a local
memory for instruction and data, callémtal store and a memory
flow control (MFC) unit which can perform DMA operations tocan

communication, and is leveraged for efficient software |y of

stream graphs. The multicore system used during static itatiop

(Section 3.1) is similar to the processor in Figure 1 and Rasld®ve
cores. The actual physical processor used during onlinptaiian

(Section 3.2) also has the same architectural templat@euitmber
of slave cores varies in each experiment from 2 to 32.

2.2 Multicore Streaming Layer

We use the runtime system introduced in [17] to dynamicakyim
age resource allocations. The runtime system, callednthiécore
streaming layer (MSL supports loading and unloading of computa-
tion (e.g., streaming actors) on different cores, allozatocal and
global buffers, and managing DMA transfers for orchestigatiom-
munication. The MSL also consists of a set of commands theat th
online adaptation system can use to migrate from one sohénlah-
other by moving computation between cores, allocating neffels
in different regions of local or global memory, and so on.

In our implementation of the MSL, the master processor geasr
the commands that are necessary for adapting an extantuwehed
These commands are sent to the slave processors throughrynemo
mapped registers called mailboxes. Each slave processoarnery
light-weight manager that is able to receive the commanat® fts
input mailbox, decode the instructions, and act on them e8as
the commands, the slave processors can allocate bufférsiiidcal
stores, setup DMA transfers and run code for a desired durafihe
overhead of delivering the commands varies according tsigeeof
the command and the latency of mailbox transfers. The ietudit
are presented in latter parts of this paper show that weaehigery
low overhead when adapting to resource changes. This papsr d
not detail the design of the command system. The interestser
is referred to [17] and].

2.3 Stream Programming Model

Flextream is best suited for applications with an abundasfce
parallelism that is amenable for static scheduling. Thus fecus
on stream programming models that are based on synchromatas d
flow (SDF) models [13]. In SDF, computation is performed by ac
tors, which are autonomous and isolated computationad.uAittors
communicate through dataflow channels, often realized BO&:I
SDF and its many variations expose the input and output psig
rates of actors, and in turn this affords many optimizatippartuni-
ties that can lead to very efficient schedules (e.g., aliocatf actors
to cores, and FIFOs to local stores and DMAS).

We distinguish between stateful and stateless actors. tafsta
actor modifies its local state and maintains a persistetaryisf its
execution. For our purposes, we assume that all computtiain
is performed in an actor is largely embodied iar k method.
The work method run repeatedly as long as the actor has data to
consume on its input port. The amount of data that the workatet
consumes is called thmprate. Similarly, the amount of data each
work invocation produces is called tipeishrate. Some streaming
languages (e.g., Streamlt [15]) provide a non-destrucéae which
does not alter the state of the input channel. The amounttaftbat



is read in this manner is capture by theekrate. Unlike a stateful
actor, which restricts opportunities for parallelism, atstess actor
is data-parallel in that every invocation of the work metldogs not
depend on or mutate the actor state. The semantics of sataitors
thus allow us to replicate a stateless actor. This oppdytusiiquite
fruitful in scaling the amount of parallelism that an apption can
exploit, as past work has shown [5, 6].
We use the Streamlt programming language to implementstrea

ing programs. Streamlt is an architecture-independeefisting

language based on SDF. The language allows a programmer to al

gorithmically describe the computational graph. In Striaimc-
tors are known as filters. Filters can be organized hieraatlyi
into pipelines(i.e., sequential compositiorgplit-joins(i.e., parallel
composition), anfeedback loopé.e., cyclic composition). Streamit
is a convenient language for describing streaming algosttand its
accompanying static compilation technology makes it bigtdior
our work.

3. COMPILER FRAMEWORK

This section describes our method for scheduling a streaghgr

onto a heterogeneous streaming multicore system. Thettlgiés

to obtain a maximal throughput adaptive modulo schedulehef t
stream graph, taking computation/communication overhiaad mem-
ory requirements into account. The structure of the Flextreom-
pilation framework is shown in Figure 2. The compilation igided
into two separate phases, static compilation and onlime(ahjc)
adaptation. In the next two sections, the details of thdcstatd
online phases are discussed.
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Figure 2: General flow of the Flextream framework

Before talking about details of the compilation steps, itns
portant to understand how an application compiled by Féextr

behaves at runtime in the face of dynamic resource changes. F
ure 3 shows an example runtime scenario. At each point during

the execution, only one schedule is active. Execution staith

schedulel. If some of the currently-used resources become unavail-

able or new resources become free, an online reschedulenbeco
necessary. The new schedule is markeddhedule?2 in the figure.
The process of migrating frosrhedulel to schedule2 consists of
three main parts. First, the online adaptation phase hasrtergte

Figure 3: Overall execution flow at runtime in the case of resource gean

3.1 Static Compilation

The static phase’s goal is to find an optimal schedule for ta-vir
alized member of a family of streaming multicore processdnge
considering bandwidth, storage and the processing céiebdf the
system. This phase consists of two major sub-phases shokig-in
ure 2. First, a prepass replication is performed on therstggaph to
adjust the amount of parallelism for the target system biligaging
actors. Second, an ILP formulation is used to optimallyipartthe
work between the slave cores of the target system. The lirtuh
system used in this phase is generally the most powerfulegsm
of a streaming multicore family. For example, if a streamapgli-
cation should be compiled for the IBM cell processor familighw,
8, or 16 processors with local store size of 128KB or 256KB, 15
processor version with 256KB is chosen as the virtualizesiesy.
Selecting the virtualized system in this manner, incredsedree-
dom of the next phases to find a high quality schedule in case th
program is ported to another configuration with a more lichet
of resources or the availability of the resources changasitme.

Compared to [11], Flextream’s static phase takes a diffeapn
proach toward static modulo scheduling. The static phassisis of
a separate step to perform replication instead of integgatiwith
the ILP formulation. This greatly improves the scalabibfythe ILP
formulation and enables the inclusion of other crucial t@sts
about memory allocation and data transfer overheads. ilgmtirese
factors can have a significant negative impact on the runpientor-
mance in systems with low-bandwidth interconnects.

3.1.1 Prepass Replication

Figure 4 shows the theoretical speedup possible for a set-of u
modified stream programs for 2 to 64 processors. The actesept
in the programmer-conceived stream graph are assignedtegr
sors in an optimal fashion such that the maximal load (workjay
processor is minimized. Speedup is calculated by dividiegsingle
processor runtime by the load on the maximally loaded psmres
The programmer-conceived stream graph has ample pasailéhat
can be exploited on up to 8 processors. Beyond 8 proces$ars, t
speedup begins to level off.
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the new schedule and the necessary MSL commands using the so- bank mult

lution found by static phase. Second, the current schedadetd
be stopped(drained). The latency of this case is directhted to

Figure 4: Theoretical speedup in the absence of replication.

the number of stages in the module schedule and the work of the Most benchmarks just do not have enough actors to span all pro

maximally loaded processor. Third, the generated commhbads
to be sent to the active processors. In the experimentsosetkie
overhead of each of these phases and also the performandalbf a
runtime scenario are discussed.

cessors. For exampléft has onlyl17 actors in its stream graph,
therefore no speedup is possible beyond 17 processorshémeia-
son for the speedup limitation is that work is not evenlyritisited
across the actors. Even though the computation has beerinspli



multiple actors, the programmer has no accurate idea how don
actor’s work function will take to execute on a processor vbed-
ing the function. This leads to less scaling on 16 or moregssers.
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Figure 5: This figure shows an example stream graph and how replication
is performed. Part (a) shows the original graph and the \arsafter repli-
cation. In part (b), the partitions before and after repliman are shown.

Most of the stream benchmarks are completely statelessalle
actors are data parallel [6]. In fact, onflpeg2 has actors that are
stateful. Data parallel actors can be replicated any numbgmes
without changing the meaning of the program. Replicatirig gar-
allel actors not only allows work to span more processora)sid
allows work to be evenly distributed across processors biinga
the largest indivisible unit of work smaller.

To provide the next phases of the compilation flow with ample
opportunity to efficiently utilize the target system’s chjities, a
prepass replication is performed on the stream graph. Algorl
shows the general steps of this phase. The main task is testieur
cally replicate larger actors based on an estimate of thmaptvork
partitioning of the current graph. Maximally replicatingetlarger
actors may not always result in the best solution for the pbztse.
Excessive replication of actors is always discouragedatmse that
increases split/join overhead and overall code size. Towregraph
partitioning on the original stream graph is used to estntia¢ so-
lution of the work partitioning phase. The number of reqedgiar-
titions is set to the number of processors in the virtualizadet
processor.

Graph partitioning is fairly fast and produces a reasonaiste
mate of the optimal work distribution of the stream graph tfoe
virtualized target system without considering low-levehstraints
such as memory size, interconnect bandwidth, etc.. Eaclitires
partition corresponds to one of the cores in the multicorsesy.
This solution approximately reflects the quality of the ol solu-
tion if the current stream graph is used. Next, the replicatigo-
rithm tries to balance the partitions by replicating theyéeat actor
in the partition with the maximum amount of work and moving th
new replicas to the partition with minimum work. This proséds
repeated until the ratio between the maximum workload and-mi
mum workload is less than the balance factor specified agpan ia
the algorithm or no more replication is possible. The whiled in
Algorithm 1 performs the partition balancing task. Lines@eheck
the degree of imbalance between partitions. Lines 14-1€rahéte
how many replicas of the actor selected from the largesitjoert
should be created.

An example of the prepass replication algorithm is shownign F
ure 5. In this example, the virtualized target system hasr@sco
The original graph, shown in the left part of Figure 5(a), baty
6 nodes and clearly will not efficiently use all 8 cores. Thalioa-
tion algorithm performns an initial graph partitioning drist stream
graph and then tries to replicate nodes and balance thdiqasti
Thebalance factoffor this example is set to 1.5. Figure 5(b) shows

Algorithm 1 Prepass Replication Algorithm

Input: G:(V, E), #virtualProcessorsbalanceFactor
1 partitions«— Parti ti onG aph(G, #virtualProcessons
2 whiletrue do
3 Sort PartitionsByWei ght (partitions);

{ Find partitions with max and min weights. }
repeat
maxPartition«— Next MaxWei ght Par ti ti on(partitions);
until maxPartitionhas a dividable node
minPartition<— M nParti ti on\Wei ght (partitions);

~ o a &

{ Check the overall balance of the partitions.}
8 if (W\ei ght (maxPartitior) < Wei ght ( minPartitior) * balanceFactoythen
9 Finish;
10 end if

{Find an actor in the max partition that can be replicated.}
11 repeat
12 actor — Next Lar gest Fi | t er (maxPartition);
13 until (actor can be replicated)

{ Find out how many times the actor should be replicated.}

14 replicationFactor «—  Work(actor) / (Wi ght (maxPartitior)
Wei ght (minPartition));

15 replicationFactor— Max (replicationFactor 2);

16 newFilters[ ] <— Spl i t (actor, replicationFacto);

{Modify the min and max partitions.}
17 AddTo(minPartition, newFilters[1]);
18 RenoveFr om{maxPartition actor);
19 AddTo(maxPartition newFilters[2..replicationFactor);
20 end while

the partitions before and after replication. At the end,réié be-
tween maximum weight (P1) and minimum wight (P2) is 1.3. The
modified graph is illustrated in the right part of Figure 5(a)

3.1.2 Work Partitioning

Consider a dataflow grapghl = (V, E) corresponding to a stream
program. Let|V| = N be the number of actors. Let the basic
repetition vector be,, wherer; specifies the number of times is
executed in the steady state. The rest of the section assyrags
ecutions ofv; as the basic schedulable unit. Givénprocessors,

a software pipeline needs some assignment of the actorsatad d
transfer operations to the processors. The throughputeosdfii-
ware pipeline is determined by the load on the maximally éabd
processor. For each actor and DMA transfer in the streamhgrap
the following ILP formulation finds a valid assignment basedhe
computational power of processors, bandwidth of the intemect,
and amount of on-chip memory.

In the formulation, maximization of throughput is the maio- o
jective. We borrow the terminology from operation centriodulo
scheduling used in compiler backends, and use the ternatioiti
Interval (1) to denote the inverse of the throughput. A sedd
integer variables is introduced to find the processor assegm for
actors and data transfer operations. These variable alaiexg be-
low:

e a;; = {0,1}: Indicates if actor i is running on processor j

e bii,; = {0,1} : This variable will be 1 if connected actors
(producer-consumet) andi, are both assigned to processor j

Assuming that there are actors in the stream graph andpro-
cessors in the target systemis betweern) and (n — 1) andj is
between0 and (m — 1). A set of constraints are designed to find
a valid actor and DMA assignment under memory, bandwidth and
performance characteristics of the target system. Theviallg con-
straint ensures that each actor is assigned to exactly ocegsor.

P
Zaij = 1, Vi

j=0

1)



Theb;, :,; indicator variables serve two purposes. First, they are Algorithm 2 Algorithm for Partition Refinement

necessary to ensure that a DMA transfer is not introduceadset
two connected actors if they are on the same processor. Geben
b variables help in buffer allocation constraints becausesihe of
the buffers between a pair of connected actors varies basaden
they start execution and whether they are on the same powc@se
following inequalities are used for setting theariables.

biin; < as;; Vconnected actor paiis,io 2
biie; < aip,; VY connected actor paiig,iz
biinj > Gi,;+ai; —1  Vconnected actor paits,io

The throughput is decided based on the workload of the maxi-
mally loaded processor which is the maximum of the companati
workload and the data transfer workload across all procssso
the schedule, it is always assumed that the DMA transfer dumtw
a pair of connected actors is located on the processor orhvitic
destination actor is running. The following two inequaidenote
the relation betweehl and the workload of each processor.

N
D (ayxWi) < IV ®3)
1=0

El

> ((@izs = biyins) X Diyiy) < 1T Vj 4

(i1 i2)

W; in Equation 3 indicates the work estimate of agton processor

j- Di, i, show the data transfer cost between a pair of connected ac-

torsi; andiz. Equation 4 uses;, ;, to ensure that a DMA transfer
between actors is only added if they are assigned to diff@reces-
sors.

As it will be discussed later, the amount buffering betweea t
connected actors depends on both where they are running fzaid w
stage they are in. Since stage assignment is a phase of tihe onl
adaptation layer, the ILP formulation can only have an estinof
the actual memory consumption of the current mapping. Taiobt
this estimate, it is assumed that two connected actors wilhlzon-
secutive stages if they are not on the same processor; afeetivey
are in the same stage. Based on the results of the stagerassign
phase, this is a practical overestimate of the actual buffage. The
following set of inequalities is added to the formation floe purpose
of buffer allocation.

|E|
D [(2ai,5+2ai,5 — 3biyiz;) X Buf f(ir,i2)] < Memy,

(i1,i2)

Vi

®)

For each pair of connected actaisandi. and a processat, there
are four possible values far, ; anda;,;. In each of these cases, the
amount of necessary buffering differs. Equation 5 is anrest of
the actual memory requirement. Sections 3.2.2 and 3.X8 ahlout
the mechanics of buffer allocation at runtime in more detail

Figure 6(a) illustrates the result of the ILP-based workipan-
ing on the graph shown in Figure 5(a). Since the cores in aiegy
are able to perform DMAs and run computation at the same timee,
workload of each processor would be the maximum of the coaput
tion and data transfer workloads. The Il of this system iseined
by the maximally loaded processor, PO. Comparing the aediév
of 184 with the single core performance of the graph (sumldhal
weights in the original graph) reveals that a 6.8x speedapligved
on 8 cores.

3.2 Online Adaptation

After static compilation is performed, the generated caale loe
efficiently executed on a system that matches the virtuatiSpa-
tion used during the static compilation. As mentioned befdue to
the desire for porting software within members of a stregnmitul-

Input: processorMap(processor:actorf]}#physicalProcessors

Output: newProcessorMap

{Assign one workload from the current processor map to e&gfsipal processor}

Sor t ByNunber O Fi | t er sAscendi ng(processorMap

for i < 1to #physicalProcessomo
(processor:actor[])«<— RenmpveNext Pai r (processorMajy
AddTo(newProcessorMagprocessor:actor[]);

end for

S NN VR

{Prioritize the remaining actors and the chosen processokloads}
remainingFilters < Al | Fi | t er s| n(processorMaj

Sort Fi | t er sByWei ght Ascendi ng(remainingFilters;

Sor t ByWor kAssi gnrent Descendi ng(newProcessorMgp

© N o

{Distribute the remaining actors between the chosen psmresorkloads}
weightThreshold < Tot al Rermai ni ng\Wei ght (remainingFilters) / #physi-
calProcessors
repeat
actor — RenpveNext Fi | t er (remainingFilters;
currentWeight— Wei ght (actor);
AddTo(currentList actor);
if (currentWeight> weightThresholjithen
processork— Next Physi cal Pr ocessor (newProcessorMgp
AddTo(newProcessorMagprocessor:currentLigt
Cl ear (currentLis);
18 currentWeight— 0;
19 endif
20 until remainingFiltersis not empty

©
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ticore family and also for efficiently tolerating resourceiability
changes at runtime, online adaptation is crucial for safvdgvelop-
ers. In this section, we talk about various phases of the-lighight
online adaptation layer in the Flextream framework.

Online adaptation, is mainly designed to perform lightgteiadap-
tation of modulo scheduling solutions at runtime for therent ac-
tive configuration. As shown in Figure 2, this part consigtthoee
main stepsPartition RefinemenStage AssignmerandBuffer Allo-
cation The first step tries to change the mapping of actors to proces
sors based on the number of available processors to relealsor&
assignment and memory consumption on each core. The golutio
specifies how actor executions are overlapped across gasen
space). The stage assignment step determines how the ierscut
are overlapped in time by specifying the starting order efdhtors
and DMAs. The last step of the online adaptation, buffercaltion,
tries to efficiently fit the buffers in the available storagets.

3.2.1 Partition Refinement

The virtual multicore system used in static compilationligag's
a superset of the actual physical system meaning that it loae m
cores, more memory, etc.. Therefore, the runtime configurat
which Flextream has to target, will always have more limited
sources. Partition refinement is a general step that, ahrantunes
the actor-processor mapping to the real configuration o§yiseem.
The algorithm discussed here for performing the refinementen-
trates only on the computation workload of each core in asiieg
multicore system, but the heurisitics can be extended towatdor
memory and bandwidth.

Assume that the virtualized system hadlave cores (humber of
virtual cores) and the real system hascores (number of physical
cores).m is less tham because the real system is a less powerful
member of the multicore family or some of the cores in systéth w
n cores have to be used to perform more critical tasks. The main
objective here is to reassign the actorsrit@ores with low overhead
at runtime.

As shown in Algorithm 2, the general idea is to choeseoro-
cessor assignments from the origimahssignments created by the
static phase. Then, take all the actors in the— m) remaining
partitions and try to evenly distribute them between thesehaon
partitions. Since solving this problem based on anotherftitPu-
lation or graph partitioning will have significant overhest@untime,

a heuristic-based approach is taken.
In the algorithm, lines 1-5 choose the work assignments with



the least number of actors from the original The reason the as-
signments with least number of actors are chosen first iscrease
the freedom of the second phase of the algorithm to eventsitalise
the remaining actors. Then, inlines 6-8, the remainingracnod the
m chosen assignments are prioritized. The remaining acterala
put in one list and sorted by work estimate (weight) in asoend
order. The chosen assignments are sorted based on the &oghltw
of each assignment in descending order. Line 9 calculatethel
ideal situation, what fraction of the remaining actors il to each
of the chosen assignments. Lines 10-20 walk through theinémga
actors(sorted by ascending weight) and assigns them taithently
chosen processors(sorted by descending weight) based aeifht
threshold calculated in line 9.
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Figure 6: Part (a) shows the solution of the work partitioning onto 8e=
for the example shown in Figure 5(a). Part (b) illustratege golution of the
partition refinement if number of cores changes to 5. Therachbaded in
black exist in the related processors in the original s@ofg) as well as final
solution(b).

Figure 6(b) shows the refinement solution for the exampldgn F
ure 5(a) when the number of cores is reduced from eight to five.
In this figure, the five processors are the processors thathasen
from the original work assignment shown in Figure 6(a). Tlghh
lighted nodes denote the nodes that were originally asditmthese
processors. The rest of the nodes are mapped to these necass
a result of the refinement pass. The text above each procg#ssos
the name of the processor in the original work assignmert tiag
computation workload followed by the data transfer workllodn
the new work assignment, the 1l is 289 determined by P3. Thie op
mal static solution for the 5-core problem will have Il of 28Bich
is about 3% faster than the solution shown here.

Although the algorithm in this section ignores memory regui
ments, it is sufficient to modify the heuristics used herediasider
memory requirements of the assignments. Prioritizatiothefre-
maining nodes after the initial selection can be done basedno
affinity function that estimates the extra necessary merfi@armode
is added to a chosen processor. This type of priority fundtielps
to keep the memory usage of each assignment under control.

3.2.2 Stage Assignment

The processor assignment obtained by the method described i
the previous section provides only partial informationdasoftware
pipeline. Namely, it specifies how actor executions arelapped
across processors, but it does not specify how they areapyat

in time. The only goal of the processor assignment step iedd |
balance, therefore it assigns actors to different processihout
taking any data precedence constraints into considera#ignac-
tor assigned to a processor could have its producer assignad
different processor, and have its consumer assigned tongther
processor. To honor data dependence constraints andestiilze
the throughput obtained from processor assignment, tloe age-
cutions corresponding to a single iteration of the entireast graph
are grouped intstages Within a single processor, no stages are
active at the beginning of execution. During the initial few itera-
tions, stages are activated sequentially, thus filling wppipeline
and enabling executions of data dependent actors belongiegr-
lier iterations concurrently with actors from later itéogus. In steady
state, all stages are active on a processor, thus realtzngptough-
put obtained from processor assignment. The pipeline iselizby
deactivating stages during the final few iterations.

Algorithm 3 Actor Stage Assignment Algorithm

Input: G:(V, E), processorMap(processor:actor([])
Output: actorStageMafactor:int)
1 for all (actorfl in G in topological orderflo
2 maxStage— 0; flag < false
for all actorf2 in parents1 do
if (St age(actorStageMapf2) > maxStaggthen
maxStage— St age (actorStageMapf2);
if (Pr ocessor (processorMagl) != Pr ocessor (processorMag2))
then
7 flag < true;
end if
9 end if
10 end for
11 if (flag) then
12 stage<— maxStage- 2;
13 else
14 stage<— maxStage
15 end if
16 AddTo(actorStageMapfl:stage
17 end for

(SIS N

The main goal of the stage assignment step is to overlap @l da
communication (DMAs) between actors. To achieve this, thges
assignment step considers the DMAs as schedulable unitsoriar
data dependences and ensure DMAs can be overlapped with acto
executions, certain properties are enforced on the stagbens of
actors. Consider a stream grapgh= (V, E'). The stage to which
an actori is assigned is denoted k8. In addition, the processor
to whichi is assigned is denoted hy. The following rules enforce
data dependence and ensure DMA overlap.

o (i1,i2) € E = S;, > Sy, i.e., the stage number of a con-
suming actor should come after the producing actor. This is t
preserve data dependence.

e If (i1,i2) € F andp;, # pi,, then a DMA operation has to
be performed to transfer the data frgm to p;,. The DMA
operation is given a separate stage num®gr;a. The in-
equalityS;; < Spma < Si, is enforced between the stages
of the different actors and the DMA operation. The DMA op-
eration is separated from the producer by at least one stage,
and similarly, the consumer is separated from the DMA oper-
ation by one stage. This ensures decoupling, and allows the
overlap of the producer and the DMA, as well as the DMA
and the consumer.

As shown in Algorithm 3, a topological traversal of the strea
graph is necessary to assign stages to actors. For each thetor
maximum stage of its parents is found and a flag is set if therpar
with maximum stage is not on the same processor as the attisr. T
part of the algorithm is done in lines 3-10. For each actdhefpar-
ent with maximum stage number is on a different processereth
will be a two stage gap between the parent and the child. @tber



Figure 7: The example shown in 5(a) after stage assignment is illtestrim part (a). The number in the gray boxes show the stagéeuof the actors marked
by the dashed lines. Part (b) demonstrates the executidredirst 6 stages of the schedule found by Flextream.

P1 P1

DMA P1-P3(0)

DMA P3-P2(3)

BG1-Spill

Figure 8: Different approaches to buffer allocation for a produce&msumer pair is demonstrated in this figure. In (a), the ordgiarrangement of buffers before
performing buffer allocation is shown. In parts (b) and (tyo approaches that Flextream could take and their effeatshe overall schedule and memory

consumption is illustrated.

the child actor can be placed in the same stage as the parént wi operation) assigned to stagg feeding a consumer(actor to DMA

maximum stage (lines 11-16). The result of the stage assghin
illustrated in Figure 7(a). There are total of 18 stages is $bhed-
ule. One interesting point in this figure is that act®/8 and D1 are
not in the same stage. This is becaus3e is located on the same
processor as'1. This figure does not show the stages for DMA op-
erations for the sake of figure readability. Figure 7(b) shbaw the
schedule runs based on the work assignment and stage aesignm
In this figure, DMAs are shown as shaded boxes. This figure demo
strates how stage assignment specifies the ordering bewoters

in time and work partitioning (and partition refinement) atetines
actor-to-processor (space) assignment.

3.2.3 Buffer Allocation

Buffer allocation tries to efficiently fit the storage rearitents
of the schedule, found by the previous phases, into the ablail
memory units. In the software pipelined schedule, conkeate
tors communicate through a set of buffers. The number ofssecyg
buffers for a producer-consumer pair varies depending ertithe
they start (stage mapping). In this section, the set of baiffetween
a producer-consumer pair is callebutfer group Based on its stage
number, a producer actor could be executed multiple timéwrde
one of its consumers is ever executed. The number of buffeas i
buffer group needed to store the output of a producer (actoiMA

operation) on stagé. can be calculated & — S, + 1. For exam-
ple, in Figure 7(b), the number of buffers necessary betvestor
S0 and DMA operationS0-C1 is 2 because they are in stages 4
and 5, respectively. All the phases before buffer allocatissume
that the buffers between a producer actor and a DMA operatien
stored in thdocal memoryof the processor on which the producer
is running. Symmetrically, the buffers between a DMA operat
and a consuming actor are stored on the local store of theioung
processor.

In the work partitioning, partition refinement and stageigrss
ment, it is assumed that all the buffer groups will fit in thedb
stores of the cores on which the corresponding actors aréngin
Therefore all the DMAs are from local store to local storeséme
situations, based on the stage map and amount of bufferatgsh
needed between a pair of actors, the local store may not ge lar
enough to fit all the buffers. In those cases, in order to haaehad-
ule that can actually run on the target system, some of thierbuf
groups have to be spilled to other local stores that haveyespgice
or main memory. Spilling buffer groups will result in chasga the
schedule. Basically, after moving a buffer group to anotterage
unit, new DMASs have to be added to the schedule. These DMAs are
needed to ship the data between the local store of the prarsess
which the related actor is running and the new memory unite Th



Algorithm 4 Buffer Allocation Algorithm

Input: procMap(processor:actor[])stageMayactor:int)
{Compute memory usage per local store based on work and atsignment}
1 memoryUsage[processor:long} Updat e(procMap stageMayp,

{Find the processors that their local store needs spilling}
2 (victimProcs[], nonVictimProcs[) < Fi ndVi ct i ms(memoryUsage
3 Sort ByWor kLoadDescendi ng(victimProcg;

{Find victim buffers}
4 for all Processop in victimProcsdo
savings= 0;
6 BufferGroupbuffs[] = Buf f er Gr oups(p);
7 Sor t By Spi | | Si zeDescendi ng(buffs;
8 for all BufferGroupbgin buffsdo
9 savings— savingst+ Spi | | Si ze(bg);

10 if (memoryUsade] - savings< Local St or eSi ze(p)) then
11 break;

12 end if

13 add(victimBuffers bg);

14 end for

15 end for

{Find target location for the victim buffers and fix the schés}
16 for all BufferGroupbgin victimBuffersdo
17 target=fi ndTar get (bg, memoryUsagenonVictimProck
18 MoveBuf f er To(bg, targed;
19 newDMA[] = Cr eat NewDMA(bg);
20 Updat eSt ageMap(newDMA);
21 Updat e(memoryUsage
22 end for

addition of the DMAs can increase the workload of the prooess
resulting in an increase of Il. Since the cost of a DMA to araihfr
main memory is significantly higher than the cost of a tranbfe
tween local stores, it is desirable to first exploit the frpace in the
local stores before utilizing the main memory.

The buffer allocation algorithm is shown in Algorithm 4. &ir
the memory usage of the current schedule is calculated ot
processor and stage assignments (Line 1). Then, the listtifiv
(overcommitted) processors is formed. This list contalhpraces-
sors that exceed the size of their local stores (Line 2) aadrigd in
descending order by the amount of work that is assigned togae
cessor (Line 3). The victim processors are given the chanoeake
use of other local stores with priority given to processoith\wmore
work. It is more beneficial to spill the buffers into the presers
with more work first, because these spilled buffers are miketylto
fit in other processors’ local stores, resulting in less DM#&rhead.
Then, in lines 4 to 15, the list of buffer groups that do nottittie
corresponding local stores is extracted. This part trieptibas few
buffer groups as possible (by spilling the largest oneg fiosteduce
the overhead of DMA transfers. At the end(lines 16-22), tige-a
rithm goes through the selected buffer groups and tries te@rtieem
to other local stores first and then main memory. After findimeg
target (local store, main memory), for each spilled buffeugp, new
DMAs are added to the schedule and the current stage assigisne
updated.

The function,UpdateStageMapin line 20 of Algorithm 4 can
take two different approaches for updating the stage assghand
adding the new DMAs. These approaches are illustrated ir€ig.
The first part of the figure shows the stage and processomassig
for a pair of actors. Actorsl andB are mapped’1 and P2 and start
at stages 0 and 5. A DMA located df2 in stage 3 transfers data
betweenA and B. The buffer groups and their placement before
running the buffer allocation are shown in Figure 8(a). Assuhat
out of the 4 buffers in buffer group 18G1), 2 will not fit in P1's
local store. P3 is a candidate for spilling in this buffer group. In
Figure 8(b), the first possible solution to buffer allocatie shown.
In this case, the buffer group is moved®3'’s local store and a new
DMA is added toP1 in stage 0. The original DMA betweednl and
P2 is modified to read fron®3’s local store. The number of buffers

the workload of P1. The second approach, shown in Figure 8(c),
tries to place the new DMA (betwedPl and P3) 2 stage afteid’s
stage (1 in this example). In this case, the number of buffeesled

in P3 decreases to 3, but 1 more buffer from buffer group 1 remains
in P1's local store. The benefit of this approach is that the new DMA
can be executed in parallel with, eliminating the possibility of
increasing the workload dP1. Each of these approaches has its own
benefit(tmemory usage vs. performance) and the buffer aitoca
algorithm chooses between them based on the size of theskncab
and workload of each victim processor.

4. EXPERIMENTS

We evaluated Flextream using a heterogeneous multicordaim
tor that we have built. We also leveraged the Streamlit campib
a starting point for implementing our heuristics and usedi$/&0]
for graph partitioning. For the evaluation and results, ineutated a
multicore system with 32 slave cores and one master corerriBise
ter core is similar to a PowerPC processor running at 2GHE wit
32KB L1 and a 1MB L2 cache. Each slave core includes a loceg sto
for instructions and data, and a memory flow control (MFC} tht
performs DMA operations to and from the local stores indejpen
of the slave cores.

Performance Comparison: We first compare the performance
achieved using Flextream to that achieved using online @pobgram
graph partitioning. The graph partitioner uses the workrese of
the actors as the node weights, and the communication cosie a
edge weights. We perform prepass replication for both aajtres.

In this experiment, we measure the performance degradedigsed
by either strategy, compared to the optimal schedule. Wéeseh-
marks drawn from the StreamlIt benchmark suite. Each bermhma
is run 31 times, and in each rin< ¢ < 32, the total number of pro-
cessors starts at 32 cores, and is subsequently reducedriallars
number of cores equal to The average slowdown per benchmark
is shown in Figure 9. Flextream is 9% worse than then the perfo
mance achieved using an optimal schedule, but 8% betteafhan-
ing graph partitioning at runtime. The main reason for Fieain’s
performance edge is that Flextream leverages the optirhatisting
solution found by the static compilation phase.

Performance Comparison

BGraph Partitioning Approach
BFlextream Approach
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Figure 9: This graph shows performance degradation when online adapt
tion is carried out using two different strategies.

Figure 10 compares the average time that Flextream’s iparti-
finement step needs to generate a new processor mappingitoé¢he
taken by the graph partitioning approach. On average, fielaxt’s
approach is 50%(3ms) faster than the graph partitioningomb.
The results suggest that Flextream is a superior strateggpeurti-
tioning, considering that the scheduling solutions arévddrfaster
and yield better performance. It is also worthy to note thatrun-
time overheads are likely to be very high in the absence ofigoo
starting solutions. The combination of static compilat{tltP and

on P1’s local store is reduced to 1. Since the new DMA (between prepass fission) and dynamic adaptation is an attractivéic@tion

P1andP3)isinstage 0 and there is only 1 buffer between this DMA
and A, the DMA has to run sequentially after is done, increasing

that combines the benefits of static and dynamic paradigms.
Overhead: We measured the overhead associated with each Flex-
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Figure 10: This graph illustrates the amount of time Flextream’s aoti
refinement takes and compares it with the graph partitior@ipgroach.

tream phase. Figure 11 illustrates the relative and alssghlties of
the times taken by each phase. We exclude from this graplntlee t
taken to perform work partitioning since it can take severalutes
for the work partitioning to find a valid ILP solution. Each tfe
bars in the figure include a label that represents the atestiae (in
milliseconds) taken by that phase. The prepass replicatiguires
1283ms and is significantly longer than the time taken by thero
3 online phases (notice that the Y-axis starts at 90%). Among the
online phases, stage assignment is the longest, followesliffgr
allocation and work refinement. Most of the overhead for estagr
signment is due to the topological traversal of the graple rEsults
indicate that the time spent in prepass replication is pitopwal to
the size of the application (graph). Overall, this experitrsupports
the hypothesis that performing online adaptation usingtFéam is
an efficient endeavor.

Overhead Comparison
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Figure 11: Flextream overhead categorized by phases. Each bar hastd, par
showing the relative (Y-axis) and absolute (labels withmbars) times spent
in each of the static and online phases. Note that the Y-&itssat 90%.

Buffer Allocation: Buffer allocation is the last Flextream phase.
This step can lead to new DMA requests and can increase the pro
cessor workloads. Buffer allocation attempts to maximieeuse of
the local store in order to avoid the long latencies assediatith
accessing main memory. The graph in Figure 12 shows how this
optimization impacts overall performance. For this expent the
number of processors is changed at runtime from 32 cores\tée8.
gradually decrease the size of the local store, startindaat Mem
which is large enough to ensure that no spilling occurs. ERfger-
iment shows the effectiveness of the buffer allocation r@lgm in
using local stores. As expected, the performance degrales the
size of the local store is reduced. The buffer allocator tisesocal
stores until it exhausts their capacity, at which point & baly one
recourse, and that is to use main memory. For some benchmerks
ducing the local store capacity has negligible impact (epeg2)

because new DMA requests are added to the processors that hav

less work according to the original schedule (before budfrca-

tion). In other words, the overhead of the new DMA operatidas
not increase the size of the maximum workload.

Effect of Buffer Allocation on Performance
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Figure 12: Effect of buffer allocation on benchmark throughput. Foclea
benchmark, the amount of memory is increased from a minirnuannax-
imum capacity. Throughput is recorded for 6 uniformly dimited memory
sizes per benchmark.

A Full Runtime Scenario: We also carried out an experiment to
demonstrate how Flextream might perform in a real scenahnieras
resource availability changes multiple times at runtimeclEtime
the the number of available cores changes, a new scheduaés-g
ated using the online adaptation mechanism. The extantiskehis
drained and the new schedule is communicated to the slagegro
sors using the multicore stream layer (see section 2.2).atlapta-
tion overhead therefore is the sum of the time taken by eatese
steps. Among all of the benchmarks, the maximum overhead for
sending commands is 11 micro seconds. This assumes thesaderh
for sending each command is 20 cycles.

Drain(ms) | Adaptation(ms)| 1K sec-Flextream| 1K sec-Static
bitonic sort 6.14 89.42 350M 356M
dct 0.79 42.80 380 M 452 M
des 32.39 113.80 148 M 150 M
fit 2.37 142.95 222 M 230 M
filter bank 0.44 142.95 448 M 490 M
fm 2.16 65.71 133 M 143 M
matrix mult. 3.07 37.19 62 M 71M
mpeg2 4619 43 156 K 177K
serpent 81.11 79.09 52M 54 M
tde 780 66.08 1.2M 1.3M

Table 1. Performance comparison between Flextream and optimal fana
time scenario in which number of cores varies in this orde2; 36, 10, 6.
Each configuration runs for 250 seconds.

Table 1 compares the performance of our approach with the the
oretical optimal in a scenario where the number of availabies
at runtime changes from 32 to 16, then to 10, and finally to 6. We
assume each configuration runs for 250 seconds, for a tatetps-
ing time of 1000 seconds. The theoretical optimal solutiongach
runtime configuration, uses a schedule found by the statiseh
The first column shows the total time needed to drain the sched
ules. The overhead of the online adaptation is shown in tberse
column. The last two columns show how many iterations of each
stream graph can be executed using Flextream versus thaabpti
approaches. The largest difference between the last twonrd
occurs indct which loses 16% of its throughput when using Flex-
tream. The best performing benchmarks lare¢ oni ¢ sort and
ser pent, losing only 3% of their throughput compared to opti-
mal. Overall, these results imply that solutions found bgxEeam,
in real execution scenarios, can perform close to the@adatigtimal
solutions.

5. RELATED WORK



There is a large body of literature that deals with explgitpar-
allelism in streaming codes for better performance. Thet mezent
and relevant works include compilation of new streamingjleages
such as Streamlt, Brook, StreamC/KernelC, and Cg to muéscor
data-parallel architectures. For example, Gordon et dlafdl [6]
perform stream graph refinements to statically determieehist

mapping of a Streamlt program to a multicore like the one we co

sider in this paper. Kudlur and Mahlke apply modulo schedyli
to an unrefined stream graph to maximize throughput [11]o leia
al. apply classic affine partitioning techniques to exppuitperties
of stream operators [16]. There is also a rich history of dalirg
and resource allocation techniques developed in Ptoleatyntlake
fundamental contributions to stream-scheduling (e.gt, 81). Flex-
tream is unique relative to these past contributions inttityato dy-
namically adapt a static schedule and resource allocaiiohanges
in available resource at runtime. Viewed in this way, Fleatn is
complimentary to some static scheduling techniques, andeap-
plied more generally as long as we can extract a graph-reiason
of the streaming computation.

In contrast to static compilation techniques, there are alany
existing ideas related to compilation for multicores. I fhe au-
thors dynamically map an abstract representation of arst@a-
gram [12] to threads that can execute in parallel on a gepearpbse
multiprocessor. In CellSs [1], computation is expresseftiastions

that may be composed to form a dataflow graph. A runtime sched-

uler treats this graph in the same way a superscalar pracesats
operations, and schedules these functions onto the Celt esrsoon
as their inputs are ready. In [2], the authors describe alicapipn-
specific parallelization strategy that they applied magualhey
were able to target for various configurations of the Celhiec-
ture, which varied the number of cores in each configuratioor
work is distinctly different from these works in that we usstatic
compile-time schedule to automatically perform dynamitirojza-
tions that lead to new and efficient resource allocations.
Adaptive compilation to a virtualized system is not an efyir

new idea. Recent examples include Veal [4] and Liquid SIMP [3
The authors in these works take similar approaches to therone

this work but in very different domains than the one we adslies
this work. In [4], adaptive loop modulo scheduling is penfied for

a virtualized loop accelerator system. The authors in [8ppse
hybrid compilation techniques for mapping a vectorizabiegpam

to SIMD engines that have different vector lengths.

6. CONCLUSION

In this work, we focus on the increasingly important area@fam-
ing computing and introduce Flextream as a flexible comipifat
framework that can dynamically adapt applications to thenging
characteristics of the underlying architecture. This igraportant
contribution as software developers grapple with the tetdiparal-
lelism in a rapidly changing architecture landscape. Tharimao-
vation in Flextream is an adaptive stream graph modulo sdimegd
algorithm that combines the benefits of static scheduling wie
advantages of dynamic adaptation. Our results indicateRlex-
tream’s approach can achieve high-performance resolomatbns
that are within an average of 9% compared the optimal saigtiath
low overhead.
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