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Abstract

The demand for high performance has driven acyclic
computation accelerators into extensive use in modern em-
bedded and desktop architectures. Accelerators that are
ideal from a software perspective, are difficult or impossi-
ble to integrate in many modern architectures, though, due
to area and timing requirements. This reality is coupled with
the observation that many application domains under-utilize
accelerator hardware, because of the narrow data they oper-
ate on and the nature of their computation.

In this work, we take advantage of these facts to design
accelerators capable of executing in modern architecturesby
narrowing datapath width and reducing interconnect. Novel
compiler techniques are developed in order to generate high-
quality code for the reduced-cost accelerators and prevent
performance loss to the extent possible. First, data width
profiling is used to statistically determine how wide pro-
gram data will be at run time. This information is used
by the subgraph mapping algorithm to optimally select sub-
graphs for execution on targeted narrow accelerators. Over-
all, our data-centric compilation techniques achieve on aver-
age 6.5%, and up to 12%, speed up over previous subgraph
mapping algorithms for 8-bit accelerators. We also show
that, with appropriate compiler support, the increase in the
total number of execution cycles in reduced-interconnect ac-
celerators is less than 1% of the fully-connected accelerator.

1. Introduction

Computational efficiency is one of the primary goals in
any processor design. Architects try to design processors
that execute applications as quickly as possible, while using
as few resources as possible (e.g., die area or energy con-
sumed). One common method for achieving computational
efficiency in processors is to add specialized hardware accel-
erators that are specifically designed for a small number of
applications. These application-specific integrated circuits,
or ASICs, often provide an order of magnitude improvement
in terms of performance and power efficiency.

The main drawback with using ASICs is that they have
very poor post-programmability. That is, a single ASIC

is excellent at improving the efficiency of one application,
but not effective across a range of applications. Because
of this drawback, many researchers have investigated accel-
erator designs that are more generalized. Some examples
of these programmable computation accelerators include 3-1
ALUs [13, 20], ALU pipelines [5], closed-loop ALUs [22],
andfunctionunits [24].

Each of these accelerators has shown that they are ef-
fective at increasing the efficiency of computation across a
range of applications. However, these accelerator designs
only target computation that is easily supported in hardware.
This leaves much room for improvement when looking at the
problem from the applications’ perspective. Work by Clark
et al. [8] took a slightly different approach, designing an ac-
celerator targeting important computation patterns, whether
or not they were easily supported in hardware. This acceler-
ator, termed a configurable compute accelerator (CCA), of-
fers the promise of more efficiency if the hardware can be
constructed.

The CCA is essentially a two dimensional array of func-
tion units, where input data comes into the top row, is pro-
cessed by each row, and exits through the bottom row. Each
element of the array contains combinational circuitry to per-
form common integer computations on the data, such as
ADD and XOR. Between rows of the array, there is a rich
interconnect, enabling any element from the previous row to
send data to any element of the subsequent row. As men-
tioned previously, this design was shown to effectively ac-
celerate the important computation across a wide range of
applications.

The problem with this design is that the hardware is dif-
ficult to build. The large number of function units and the
interconnect consume a great deal of die area. In some ap-
plications, the CCA primarily operates on 8-bit data types,
making the majority of the accelerator datapath unutilized.
Experiments have also shown that the rich interconnect is
underutilized in most applications. Beyond the die area over-
head, the wide function units and rich interconnect can also
have a negative effect on processor clock cycle.

This paper attempts to reconcile these problems. We
present a new accelerator design, based on the CCA. This
new accelerator has narrow function units and a reduced in-
terconnect in order to support as many computations as pos-
sible, while making it more feasible to build in hardware.
The narrow function units are coupled with logic that dynam-
ically detects when input data is too large to execute (e.g.,32-
bit data being processed on an 8-bit accelerator). This logic
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Figure 1. Sample pipeline with CCA.

emulates a wider accelerator by computing the wide results
through iteratively generating narrow results (e.g., comput-
ing a 32-bit ADD by generating four 8-bit ADDs). This de-
sign provides a way to accelerate many common computa-
tions, without all of the hardware implications of previously
proposed designs.

This new design has many implications for compiling ap-
plications targeting the accelerator. Generally speaking, the
main compilation challenge in generating code for accel-
erators is determining which portions of an application to
execute on the accelerator and which portions to leave on
the standard pipeline. Some researchers have looked into
this problem before, proposing greedy algorithms [5, 14],
exact methods with exponential runtimes [16, 17], or ex-
act methods in conjunction with heuristics to avoid degen-
erate cases [10]. Here, previously proposed compiler algo-
rithms are extended to take into account the reduced inter-
connect and the data-centric latency of the proposed accel-
erator design. Reduced interconnect makes it more difficult
for the compiler to determine which portions of the applica-
tion can execute on the accelerator. Narrow width function
units mean that the accelerator latency is a function of the
size of input data, complicating the compile-time decisionof
whether a computation is more efficient to execute on the ac-
celerator or on the baseline pipeline. These problems must
be taken into account to ensure high quality utilization of the
accelerator.

This paper demonstrates that narrowing function units and
reducing the interconnect makes accelerators more feasible
to build in hardware. It also shows how the compiler must be
modified to ensure high quality code generation when target-
ing such accelerators. To summarize, this paper makes the
following contributions:

• It presents the design of a novel computation acceler-
ator. This accelerator can execute the most common
computations across a wide range of applications, but
uses a fraction of the hardware cost of previously pro-
posed accelerators.

• It develops new compiler techniques to deal with the
proposed accelerator. This includes modifying the com-
piler to statistically handle data-dependent computation
latency, and take into account reduced interconnect.

• It evaluates the proposed accelerator with respect to the
previously proposed CCA design, and demonstrates the
effectiveness of the compiler algorithms.
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Figure 2. General CCA configuration.

2. Design of a Reduced CCA

In many processor designs, delay and area of certain ac-
celerators make them infeasible to use. The proposed narrow
accelerator is a suitable candidate whenever delay or area of
the wide accelerators is beyond the tolerable limit of a pro-
cessor. The new accelerator is also ideal for applications that
do not operate on 32-bit inputs, such as video compression
applications. CCA, as proposed in [8], is used as a baseline
accelerator in this work. In essence, CCA is combinational
acyclic accelerator consisting of a set of function units orga-
nized as a matrix.

This section begins with an overview of the pipeline orga-
nization necessary to support a CCA. Then, a narrow CCA
and CCA with sparse interconnect are presented. Finally, the
delay and die area effects of reducing CCA resources are ex-
plored.

2.1. Pipeline Organization

Architects have proposed many different styles of accel-
erator integration to merge accelerators into digital systems.
The focus of this work is accelerators tightly coupled with
the main pipeline of processor. This type of accelerator usu-
ally has direct access to register file and behaves as an ex-
tra function unit (FU) in the pipeline. In other words, this
type of accelerator can be treated as an addition to the execu-
tion stage in the main pipeline, but with more computational
power.

Figures 1 and 2 show a CCA, proposed in [8], and how it
is integrated into the pipeline from a high level. This extra
FU can execute dataflow subgraphs of instructions in one cy-
cle. A CCA-cognizant compiler identifies suitable parts of an
application to be executed on the accelerator and marks them
in the application binary. Whenever the processor shown
in Figure 1 fetches and decodes the first instructions of a
marked subgraph, it will send all of the instructions in that
subgraph to the CCA. In other words, fetching a new sub-
graph, hardware creates a complex operation for that sub-
graph. The created complex instruction would be executed
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Figure 3. Organization of a width-aware nar-
row CCA. An 8-bit design is shown.

on the CCA in one cycle. Details about how to fetch a sub-
graph and create a complex instruction are further discussed
in [9].

The CCA consists of number of FUs placed in a matrix.
Each element in the row can perform addition/subtraction
and/or bit-wise logical operations. The rows get their inputs
from the previous rows and can send their results to the next
row. Interconnect between rows determines the FU connec-
tivity. The CCA input and output connectivity also depends
on the interconnect. A sample CCA is shown in Figure 2. It
has 4 inputs, 2 outputs, 4 rows, and 15 FUs. The interconnect
between rows is full cross bar, which means each FU in row
i can send its result to any FU in rowi+1 .

2.2. Width-Aware Narrow CCA

As previously mentioned, this general CCA design has
a long critical path and significant die-area issues, making
it infeasible in many processor designs. The obvious solu-
tion to the critical path problem is pipelining the CCA. One
problem with pipelining is that it would make latency for all
subgraphs longer, significantly impacting performance gains
from the CCA. Previous work showed that moving from the
original CCA to 2-stage pipelined CCA eliminates around
30% of the performance improvement [8]. Another prob-
lem is that pipelining does not reduce the die area of CCA;
it would actually make the problem worse due to pipeline
registers.

A different strategy for tackling the CCA’s area and delay
issues is to reduce the datapath width of FUs. That is, only
provide a small 8 or 16-bit datapath instead of the full 32 or
64-bit datapath. This dramatically reduces the area require-
ments of the CCA, and also improves latency. The downside
of this change is that subgraphs that require the full datapath
cannot natively be run on the accelerator, reducing potential
performance improvements.

However, this performance penalty can be somewhat mit-
igated by emulating subgraphs that require a wider datapath
than what is supported by the CCA. To clarify, if a subgraph
is 8-bit, it can be executed in one cycle on an 8-bit CCA.
If a subgraph requires 16 or 32-bits of datapath, then it can

be executed in 2 or 4 cycles respectively by computing each
8-bit chunk of the result separately. The only additional hard-
ware needed to support wide subgraph emulation is a width
checker for operands and a carry register for each FU.

Comparing a width-aware CCA to a pipelined CCA, the
narrow, width-aware CCA has the advantage that its latency
is only as slow as the data requires it to be, where pipelin-
ing uniformly slows down all subgraphs. A pipelined CCA
is also much larger, in terms of die area, than the reduced
width CCA. Cost savings and its data-centric latency makes
the narrow, width-aware CCA a suitable choice for situations
where the original CCA is too large or too slow to implement.

As previously mentioned, the additional hardware re-
quired to emulate wider computation on a narrow datapath
is modest. First, each FU in the CCA needs to store extra
data from instructions that are not bit-wise. For example,
add/subtract instructions require at most one carry bit from
low order bits to emulate a wider datapath. Shift-left emula-
tion would require significantly more registers. These carry
bits keep the state of computation after each iteration. In ad-
dition to the carry bits, a width checker is needed in order to
determine the width of inputs. This dynamic width checker
is used in conjunction with the carry bits to determine if more
iterations of the datapath are needed to compute a final result.
If, for example, one of the inputs is 16-bit and the rest are 8-
bit, then an 8-bit CCA might need two or three iterations to
compute the results. Two iterations will be sufficient if there
is no carry-out after the second iteration. If there is a carry
out in any of FU nodes, an extra iteration is needed to get the
final outputs. This extra hardware enables the width-aware
CCA to emulate all of the wider operations that the general
CCA can perform with the exception of shift-right.

The design for a width-aware, 8-bit CCA is shown in Fig-
ure 3. Once data enters the accelerator, the width checker de-
termines the width of inputs. After that, the result of an OR
operation between width checker output and carry bits deter-
mines if more iterations are needed. In each iteration, input
and output registers get shifted to right. This ensures the first
8 bits of the input registers always contain the data for next
iteration. If the last 24 bits of all inputs are zero (for pos-
itive numbers) or one (for negative numbers), and there are
no carry bits set, then execution of subgraph is completed.
Two registers are used at the output in order to store and shift
the partial results. CCA subsystem indicates the end of com-
putation by setting the iterate signal to zero. At this point,
results are sent to the main pipeline for writeback. Synthe-
sis results in Section 2.4 show that the overhead of the width
checker and carry bits is small.

In order to better illustrate how a narrow CCA works, an
example using a 4-bit CCA is illustrated in Figure 4. The
target CCA, shown in Figure 4a, has three 4-bit FUs. Each
of these FUs can perform basic ALU operations. The small
circle beside each unit of this CCA is the carry register for
that unit. These carry register hold the state of computa-
tion between iterations. In this example, we want to perform
[(0x1D + 0x0C) + (0x20 OR 0x08)] on this CCA.

Figure 4b shows the CCA after assignment of operations
to units. The 4-bit CCA requires at least two iterations to
execute this computation, because maximum input width is
8-bits. Figure 4c shows the first iteration. The first four bits
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Figure 4. (a) A sample width-aware 4-bit CCA with 4 inputs and 1 output. (b) The initial configuration
of the CCA before starting computation. (c) First iteration of an 8-bit computation. (d) Second iteration
of an 8-bit computation.

of all input numbers are used as input to the FUs. This iter-
ation computes the first four bits of the output and the carry
bits needed for the next iteration. The second iteration oper-
ates on the most significant four bits of the inputs. Figure 4d
shows the state and the outputs generated after the second
iteration. At this point, because all of the bits of the input
numbers are consumed and there are no carry bits set in FUs,
the CCA subsystem writes results back to the main pipeline.

Using a narrow datapath CCA provides significant die
area savings over the original CCA design, however, it also
has a significant impact on the compiler. The narrow datap-
ath means that the size of the inputs will affect the execution
latency. This makes determining what portions of an appli-
cation to execute on the CCA much more difficult. Section 3
will discuss how to effectively account for this data-centric
latency.

2.3. Sparse Interconnect CCA

Besides datapath width, another way to reduce the area
and delay in CCAs is by making the interconnect more
sparse. The original CCA design had a full crossbar inter-
connect between rows. First of all, this interconnect impacts
the delay and increases the overall area. Second, our exper-
iments show that most of the subgraphs can be executed on
far sparser interconnects.

Figure 5 shows a CCA with sparse interconnect. The only
difference in this CCA, compared to the original one in Fig-
ure 2, is the interconnect. In order to find a good design point
for sparse CCA, we measured the utilization of each point-to-
point connection in each row. Connections that are underuti-
lized (i.e., used less than 2% of the time) have been removed
from the interconnect network. The sparse interconnect CCA
in Figure 3 is able to run more than 91% percent of important
subgraphs identified in targeted applications, which made it
a good design point from our experiments.

Sparse interconnect does not affect how subgraphs exe-
cute, but it does make the compilation problem more diffi-
cult. The sparse interconnect makes it harder to determine
whether or not the CCA can support a given computation.
In the CCA with full interconnect, it is fairly easy to find an
assignment of nodes to execute a computation (or to prove
that no such assignment exists), because each node within a
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Figure 5. CCA with sparse interconnect.

row is identical. Sparse interconnect changes that, though.
Again, Section 3 will discuss what the compiler must do to
handle this new situation.

2.4. Hardware Synthesis Results

In order to clearly understand effects of narrowing the dat-
apath and making the interconnect more sparse, we synthe-
sized different accelerator configurations using a Synopsys
synthesis tool chain and a 90nm standard cell library. Ta-
ble 1 shows these results. The trend that jumps out of the
table is that narrowing the datapath has a very significant ef-
fect on both latency and area of the CCA. The latency of
8-bit CCA with full interconnect is 30% less than the latency
of 32-bit CCA with full interconnect. The 8-bit CCA was
also nearly four times smaller than 32-bit CCA.

Pruning the CCA interconnect did not have quite as dras-
tic effect on the latency and area, but still offered solid im-
provement over the CCA with a full crossbar. Table 1 also
shows that width checker has a very small area and delay
comparing to the CCA itself. This is important so that the
benefits of reduced datapath width are not overshadowed by
the costs of the checker. Overall, this table shows that reduc-
ing datapath width and pruning interconnect meets the goal
of making CCAs easier to integrate into a high-performance
pipeline.



Accelerator Configuration Latency(ns) Area(mm2)
32-bit CCA with Full Interconnect 3.30 0.301
32-bit CCA with Sparse Interconnect 2.95 0.270
16-bit CCA with Full Interconnect 2.88 0.168
16-bit CCA with Sparse Interconnect 2.55 0.140
8-bit CCA with Full Interconnect 2.56 0.080
8-bit CCA with Sparse Interconnect 2.00 0.070
Width Checker 0.39 0.002

Table 1. Delay and area of different accelerator
configurations.

3. Compilation for CCA

Compiling an application to make use of computation ac-
celerators boils down to two steps:enumeratingportions of
the application’s dataflow graph (DFG) that can be executed
on the accelerator, andselectingwhich portions to accelerate.

Enumeration consists of generating a set of subgraphs
from a given DFG, and determining if they can run on an ac-
celerator. Generating a set of subgraphs is difficult because
the number of possible subgraphs grows exponentially with
the size of the DFG. Determining if the subgraphs can run
on an accelerator, i.e., determining if they perform the same
computation, is essentially equivalence checking, which is
NP-complete [12]. The problem is further complicated if the
accelerators perform a superset of the desired computation
(e.g., an accelerator for dot-products could also accelerate
multiply-accumulates in an application).

Selecting which subgraphs to accelerate is also difficult.
Typically, the selection problem is formulated to push as
much computation as possible onto the accelerators, while
minimizing overlap between subgraphs. That is, given a
set of enumerated subgraphs, find the group that covers the
largest portion of the DFG while minimizing the number of
nodes appearing in multiple subgraphs. This problem is also
NP-complete and is quite similar to the well known tech-
nology mapping problem in VLSI design. Clearly, mapping
applications onto accelerators is a challenging compilation
problem. Reducing the interconnect and narrowing the FUs
only complicates things.

The new compilation algorithms presented here are an ex-
tension of previous work on this problem described in [10].
The algorithm from prior work was termed FEU, for Full
Enumeration - Unate covering. The remainder of this section
will briefly describe this algorithm, and then discuss exten-
sions needed to support effective compilation for the reduced
accelerators proposed in Section 2.

3.1. Full Enumeration - Unate Covering Sub-
graph Mapping

As mentioned at the beginning of this section, mapping
portions of an application onto accelerators is a difficult
problem. Because of this, greedy subgraph mapping algo-
rithms are the most widely used strategy in compilers today.
Greedy algorithms are attractive because of their fast run-
times. However, they are also suboptimal in many cases [16].
The FEU algorithm uses more thorough solution-space ex-
ploration techniques, while employing intelligent heuristics

to avoid exponential runtime that can occur in any NP-
complete problem.

The FEU algorithm performs subgraph mapping one ba-
sic (or super) block at a time, and consists of four phases:
subgraph enumeration, pruning, unate covering, and group-
ing.

The first step, enumeration, generates the set of all con-
nected subgraphs within a block that can potentially be ex-
ecuted by the target accelerator. At first glance, this seems
an intractable problem: in the most general sense, each op-
eration in a DFG could either be included or excluded in
a potential subgraph candidate, yielding2N potential sub-
graphs. However, very fast techniques for enumerating con-
nected subgraphs for acceleration have been developed in the
past few years, e.g., [3, 4]. The FEU algorithm takes advan-
tage of these techniques to quickly generate candidate sub-
graphs. These candidates could potentially not be executable
on the accelerator; enumeration simply generates candidates
subject to the input/output constraints of the accelerator.

After full enumeration, FEU prunes away invalid candi-
date subgraphs using more detailed checks that are hard to
incorporate into enumeration. The purpose of pruning is to
ensure that candidates can actually be executed on the accel-
erator. This takes into account functionality and connectivity
issues that were ignored during enumeration. The method
employed to determine that subgraphs can execute on an ac-
celerator is based on subgraph isomorphism. Loosely stated,
subgraph isomorphism determines whether or not a subset of
the nodes in a particular graph are equivalent to a separate
graph. In this case, a graph representing the hardware struc-
ture is constructed, and we attempt to find a subset of hard-
ware vertices that can create a computation equivalent to the
subgraph discovered in enumeration. If we find such a sub-
set, then the dataflow subgraph is capable of being executed
on the accelerator.

Once a set of subgraphs thatcanexecute on the accelera-
tor is developed, unate covering selects which subgraphsto
execute on the accelerator. Informally speaking, unate cov-
ering problems operate on a Boolean matrix,M , where the
rows represent vertices in a DFG, and the columns represent
subgraphs; if the value ofMi,j is True, this means that oper-
ationi occurs in subgraphj. The goal of unate covering is to
find a set of columns (or subgraphs) with minimal cost, such
that each operation is covered at least once. In this formula-
tion, the cost of a subgraph could be a variety of things, such
as the number of cycles needed to execute on a particular
accelerator or the power consumed by a subgraph.

After unate covering selects a set of subgraphs to execute
on the accelerator, a grouping phase combines subgraphs
that can be executed in parallel. Recall that enumeration
only creates connected dataflow subgraphs. Often, if the se-
lected subgraphs are small, multiple disjoint subgraphs can
execute on an accelerator simultaneously. FEU iteratively
groups selected subgraphs until no more combining is fea-
sible, thereby maximizing the size of accelerated subgraphs.
Once grouping completes, subgraphs are marked for execu-
tion on the accelerator and compilation continues as normal.

To summarize, the FEU algorithm uses more thorough
solution-space exploration to identify portions of an appli-
cation suitable for acceleration than traditional greedy meth-
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Figure 6. Sample DFG with potential sub-
graphs marked following full enumeration.

ods. FEU was also shown to have runtimes that were reason-
able, thus providing a good basis for our modifications.

3.2. FEU Example

In order to clarify the FEU algorithm, we will walk
through a simplified example using the basic block shown
in Figure 6. The first step in the algorithm is to enumerate
all connected subgraphs in the DFG, subject to input/output
constraints. This will create candidate subgraphs, such as
instructions 1 and 2, 3-4, 3-5-6, 6-7-8, etc., until all con-
nected subgraphs are enumerated. Using I/O constraints and
removing disconnected subgraphs is essential for keeping the
enumeration process tractable.

Once the connected subgraphs are generated, subgraph
isomorphism is used to remove candidates that are not sup-
ported by the targeted accelerator. This happens by first con-
structing a graph that represents the computation supported
by the targeted accelerator. Isomorphism then tries to find a
subset of nodes in this graph that can execute the computa-
tion requested by the subgraph. This takes into account both
the functionality offered by the hardware substrate, as well as
the connectivity between FUs in the accelerator. If the can-
didate subgraph does map onto a subset of nodes in the ac-
celerator’s representative graph, then the acceleratorcanex-
ecute the desired computation. For the illustrative purposes,
assume that the DFG in Figure 6 represents the algorithm’s
progress up to this point: the circled regions are the only sub-
graphs that were enumerated and supported by the targeted
accelerator.

These subgraphs are placed into a unate covering matrix
(shown in Table 2) to select which subgraphs to execute on
the accelerator. In this table, columns represent candidate
subgraphs, rows represent operations, and a 1 in elementi,j

signifies that operationi is part of subgraphj (for the moment,
disregard the width column and cost rows on the left and bot-
tom, respectively). Unate covering selects a set of subgraphs
such that each operation is covered by at least one subgraph
and the total number of subgraphs is minimized. In this for-

Width Op ID A B C D E G H I ... O
24 1 1 1 ...
8 2 1 1 ...
24 3 1 1 1 ...
8 4 1 1 ...
32 5 1 1 ...
32 6 1 1 ...
8 7 1 1 ...
8 8 1 1 ... 1

Cost 3 4 3 1 4 4 1 1 ... -
Benefit -1 -1 -1 1 -1 -1 0 0 ... 0

Table 2. Unate covering matrix. Rows rep-
resent operations, columns represent sub-
graphs. The first column shows the width
of each operation, and the bottom two rows
show the cost/benefit for each subgraph us-
ing Equation 1.

mulation, each operation is individually added to the sub-
graph list to ensure a solution can be found (subgraphs H -
O in the table). The solution to the unate covering problem
in Table 2 will be subgraphs A, E, and G, which totals 3 sub-
graphs. In the initial CCA work, the number of subgraphs
was equivalent to the number of cycles needed to perform
the targeted computation.

After unate covering, grouping will attempt to combine
A, E, and G to form larger subgraphs. This reduces the num-
ber of subgraphs needed to cover the operations, and ulti-
mately improves performance. Assume in this example that
the only combinable subgraphs are A and C. If this was the
case, then grouping would be a null step, since none of the
candidates chosen by unate covering are groupable. Perform-
ing the grouping after unate-covering essentially precludes
certain disconnected subgraphs from being selected, and is
a weakness of the FEU algorithm. However, this did not
adversely affect results when targeting the original CCA de-
sign.

Once grouping finishes, FEU has generated a set of sub-
graphs for execution on the targeted accelerator. The com-
piler marks the selected subgraphs for execution on the ac-
celerator, and the application is effectively retargeted.The
remainder of this section describes how this algorithm must
be modified to handle the reduced CCA described in Sec-
tion 2.

3.3. Extensions for Sparse Interconnect

The original proposed CCA, shown in Figure 1a, had a
very rich interconnect. We demonstrated in Section 2 that
by pruning this interconnect to only include the paths most
commonly used, it is possible to reduce the area and critical
path of the CCA.

The problem with reducing the interconnect is that it puts
more onus on the pruning used in FEU to ensure that sub-
graphs can be executable. Recall that subgraph isomorphism
is used to perform subgraph pruning. That is, a graph repre-
senting the accelerator is constructed, and the pruner tries to
identify a set of nodes in the hardware graph that are capable
of executing the candidate subgraph.



In the CCA from Figure 1a, with full interconnect and
identical functionality within a row, the subgraph isomor-
phism problem degenerates to only having to identify which
row each operation in the candidate subgraph is placed in. To
rephrase, since all hardware graph nodes within a row have
identical functionality and identical interconnect, it does not
matter which node an operation from the candidate subgraph
is assigned, only which row. This makes pruning invalid can-
didates much easier, as it greatly limits the number of poten-
tial solutions isomorphism must examine.

As an example, assume the compiler wanted to determine
if the subgraph fora = (x + y) ⊕ (z&w) was executable on
a CCA. With the CCA from Figure 1a, isomorphism would
identify that the ADD and AND can be supported in row 1
of the CCA, the XOR is supported by row 2 of the CCA, and
therefore this subgraph can be executed on the CCA. How-
ever, if the compiler is targeting the CCA in Figure 5, it needs
to identify that the ADD is supported on node A, the AND
on node B, the XOR on node G, and that there is sufficient
interconnect between all these nodes.

Essentially, this means that the FEU algorithm must
model much more of the hardware during pruning, and can-
not leverage the special-case characteristics that made the
fully-connected unate covering problem easier to solve. Us-
ing established algorithms for subgraph isomorphism [15,
23], we found that this more complicated pruning did not
significantly affect algorithm runtime.

Note that this more complicated pruning technique is an
enabling technology, meaning that it must be done to cor-
rectly compile targeting the proposed family of accelerators.
It does not affect performance of the resulting code.

3.4. Extensions for Width-Sensitive Latency

Like pruned interconnect, reducing the width of the data-
path in a CCA reduces the area and cycle time. The down-
side is that subgraphs that use the entire datapath now have a
longer latency. From the compiler’s perspective, this makes
selecting subgraphs to execute on the accelerator more dif-
ficult, because the latency depends on the dynamic width of
the data being processed. There are two places in FEU that
this impacts: the cost function used in unate covering, and
the phase ordering of the FEU algorithm.

First we will detail the cost function. Unate covering, as
described above, tries to minimize the number of subgraphs
needed to cover every operation in a block. The cost function
is simply 1 for each subgraph. This is equivalent to speedup
in a single-issue in-order processor, since each covered node
is replaced by an accelerator instruction that takes one cycle.
However, this latency assumption is no longer true with data-
dependent accelerator latency. Many of the subgraphs that
would be selected with the old cost function might not be
beneficial if they are small and frequently use the full 32-bit
datapath.

The first step in designing a new algorithm, termed the
data-centric algorithm, is designing an appropriate cost func-
tion that takes into account data width. The factors that affect
benefit of a subgraph for a width-aware CCA is the number
of instructions in the subgraph and maximum width of in-
struction inputs and outputs. Maximum width determines

the number of iterations needed to perform computation in a
subgraph. In order to get the width for all of the computation
instructions in a program, we performed width profiling. For
each operation, we recorded the percentage of time its inputs
and outputs widths were less than or equal 8 bits, larger than
8 bits but less than or equal 16 bits, larger than 16 bits but
less than or equal 24 bits, and finally larger than 24 bits (as-
suming the target processor is a 32-bit processor and that the
accelerator has an 8-bit datapath). These data give an esti-
mate for how many iterations will likely be needed for each
operation on a width-aware CCA. The cost function uses the
profile information and size of subgraph to estimate benefit
of each subgraph, and it can be formulated as:

W
i,j

k
= Percentage of time that

i < (Width inst k) ≤ j,

Ak = (W 0,8

k
× 1 + W

9,16

k
× 2 + W

17,24

k
× 3 +

W
25,32

k
× 4), (1)

Cost(S) = max(Ak) ∀ instruction k ∈ subgraph S,

Benefit(S) = Number of instructions(S) − Cost(S)

The Cost function in Equation 1, for subgraph S com-
putes the expected number of cycles for the width-aware
CCA to execute the subgraph. If theBenefit for a particu-
lar subgraph is greater than zero, this subgraph is better exe-
cuted on the width-aware CCA. For example, for a subgraph
consists of three 8-bit instructions, cost function and benefit
function would return 1 and 2, respectively. This means ex-
ecuting the subgraph on width-aware 8-bit CCA would take
1 cycle and save 2 cycles compared to executing the three
instructions on the main pipeline. Benefit is used to remove
subgraphs from the unate covering formulation that would
not lead to effective solutions in narrow CCAs.

Upon initial experimentation, we were surprised how ef-
fective using the average width of an operation was as a
means of predicting the latency of subgraphs. If the width
of an operation had changed a lot during execution, then this
estimate could potentially hurt compilation results. Consider
the case of two operations each with an average datapath us-
age of 16 bits. If the first operation always used 16 bits, but
the second operation used 28 bits half the time and 4 bits the
other half of the time, then creating a subgraph with these
two operations would unnecessarily penalize the operation
that always used 16 bits, since occasionally it would be run
for four iterations.

Figure 7 shows why using the proposed cost function is
sufficient, though. The x-axis of this figure lists a number of
benchmarks that were width profiled using a training input.
The y-axis lists the variance of the data size on a per oper-
ation basis in all of the enumerated subgraphs. A value of
1 for a benchmark means that the data width of every oper-
ation in the application never changed throughout execution
of the training run. To rephrase, this graph shows that static
operations that require only an 8-bit datapath in one dynamic
execution, rarely require more than 8 bits of datapath in a dif-
ferent execution. Likewise, operations that require 24 bits of
datapath, will probably require 24 bits of datapath for each
dynamic execution.

Note that every benchmark had variance above 85%. The
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Figure 7. Variance of the data width of operations for a numbe r of applications. A value of 1 signifies
that the data width remained in the same range (0 to 8, 9 to 16, 1 7 to 24 or 25 to 32), on a per operation
basis, throughout execution of the program.

majority of the benchmarks were well above 90%. The im-
plication of this is thatAk, the average latency of an instruc-
tion on a narrow CCA, is an effective measure of the dynamic
width. Because of this, more complicated heuristics tracking
data width correlation between operations are unnecessary
for the benchmarks examined.

Now that a new cost function is defined, we reexamine the
phase ordering of the FEU algorithm. Recall from the FEU
example above that grouping performed after selection can
result in finding suboptimal solutions for width-aware nar-
row CCA. We found that, unlike the original CCA, grouping
after selection significantly affects the quality of solutions
when targeting reduced datapath CCAs.

To overcome this shortcoming, we propose generating all
possible disconnected subgraphs, through grouping, priorto
unate covering selection. This exposes all potential candi-
date subgraphs to the selection engine ensuring that the best
possible solution is discovered. The downside of this is that
it can greatly increase the size of the unate covering matrix,
potentially impacting compile time. Experiments show that
the impact is not significant, though.

3.5. Data-centric Algorithm Example

To illustrate the benefits of the proposed algorithm
changes, this section revisits the example from Figure 6. In
the unate covering table for this example (Table 2), the bot-
tom rows contain the cost and benefit of the executing of each
subgraph using Equation 1. Again, this cost represents the
number of execution cycles a subgraph would need to exe-
cute on CCA. Subgraphs H - O contain only a single opera-
tion, and thus their cost is 1, since they will never be run on
the accelerator (these exist only to ensure a solution in the

unate covering). All of the subgraphs with negative benefits
are removed from the table before the unate covering, but
after grouping because they will not definitely be part of an
optimal solution.

It is clear that the new cost function is necessary to prevent
subgraphs from hurting performance. For example, using the
old cost function, subgraphs C and D (in Table 2) could both
potentially be selected, since they reduce the number of sub-
graphs selected in the application. However, taking width
into account, neither of them would be selected, as they hurt
performance in the average case.

To demonstrate the importance of grouping before selec-
tion, consider the FEU solution in Table 2. Without knowl-
edge of subgraphs that can be grouped, unate covering se-
lected subgraphs A, E, and G as the final solution. This
precluded the disconnected subgraph A+C from being dis-
covered (assuming A and C can be grouped together), and
resulted in an expected execution time of 11 cycles in this
block.

Now consider the unate covering matrix shown in Table 3,
which contains all disconnected pre-grouped subgraphs as
well. After grouping, all subgraphs that are expected to hurt
performance are removed from the table. Each individual in-
struction is still part of the table with cost 1 to ensure that
a feasible solution exists. The unate coverer does a better
job minimizing cost, because A+C is visible to it, where it
had no idea this was possible in the previously proposed al-
gorithm. Ultimately, the modified FEU algorithm will dis-
cover the better solution of subgraphs A+C, D, L and M,
yielding an execution time of 6 cycles per block instead of
11 cycles. This example demonstrates the benefits of using
width-cognizant cost function, and the importance of group-
ing before selection.
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Figure 8. Runtime of the FEU algorithm with proposed extensi ons. Each dot represents one block from
a targeted application.

Width Op ID D A+C H I ... O
24 1 1 1 ...
8 2 1 1 ...
24 3 1 ...
8 4 1 ...
32 5 ...
32 6 ...
8 7 1 ...
8 8 1 ... 1

Cost 1 3 1 1 ... 1
Benefit 1 1 0 0 ... 0

Table 3. Unate covering matrix with grouping
prior to selection. Dominated columns were
removed for clarity.

3.6. Algorithm Runtime

There are clearly benefits in compilation quality by using
the FEU algorithmic improvements that we have proposed
for narrow-datapath accelerators. The major concern is that
the proposed improvements do not make compilation times
intractable. This is an issue because pruning has become
more complex, and grouping prior to unate covering makes
the unate covering matrix much larger. Figure 8 demon-
strates that compilation times are indeed reasonable.

Each point in this graphs represents the algorithm run-
time of a basic block from MediaBench and MiBench appli-
cations. The data was collected on a Core 2 DUO machine
with 2 GB of RAM. Applications were compiled to target an
8-bit accelerator with 4 inputs, 2 outputs, and a maximum
dependence height of 4 (shown in Figure 5). Overall, more

than 85.7% of blocks took less than 0.1 second to compile.
98.8% of basic blocks took less than 1 seconds total.

The worst case block (by an order-of-magnitude) out of
the 23 applications took around 30 minutes for all phases.
This was primarily because of a degenerate case in the unate
covering phase. Several techniques can be used in order to
reduce this time, such as giving the algorithm an artificial
timeout or partitioning the problem into covering multiple
smaller portions of that particular block. Both of these tech-
niques could hinder achieved speedups, but ultimately pro-
vide tractable runtimes without affecting the vast majority of
applications. We leave exploration of these techniques for
future work. In conclusion, Figure 8 demonstrates that, in
the common case, our algorithm finds the optimal solution in
less than 1 second for a majority of applications.

4. Experiments

In order to evaluate the proposed hardware and compiler
algorithms, an experimental framework was built using the
Trimaran research compiler and SimpleScalar ARM simula-
tor. Trimaran was re-targeted for the ARM instruction set and
subgraphs to be accelerated were marked in the binary. Af-
ter compilation, the simulator recognized the subgraphs and
modeled them as if an accelerator was present. SimpleScalar
was configured to represent an ARM-926EJ-S [2], a popular
embedded core.

Several benchmarks from the MediaBench and MiBench
suites are used to demonstrate different aspects of the pro-
posed algorithm and hardware. Omitted benchmarks are due
to issues in compiler infrastructure and simulator, not lim-
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Figure 9. Comparison of the speedup for original FEU algorit hm, FEU algorithm with the width-aware
cost function and data-centric algorithm containing both w idth-aware cost and pre-selection grouping.
Compilation targeted a width-aware 8-bit CCA.

itations of the algorithms. Three different experiments are
performed in this section. First, the speedups due to use
of FEU algorithm and data-centric algorithm are compared
to illustrate the effectiveness of the new data-centric algo-
rithm. Second, the speedup for different accelerator widths
is studied. Finally, the data-centric algorithm is used to jux-
tapose the performance results between full-interconnectand
sparse-interconnect CCAs.

Compilation Algorithm Comparison: In order to illus-
trate the effectiveness of the data-centric algorithm for width-
aware narrow CCAs, all of the benchmarks were compiled
with the original FEU algorithm, the FEU algorithm with
our new cost function, and the data-centric algorithm. The
results of this experiment are shown in Figure 9.

Overall, the data-centric algorithm achieves more than
6.5% performance improvement over the original FEU al-
gorithm. The data-centric algorithm also improves perfor-
mance more than 2.5% over the FEU algorithm with the new
cost function. Encryption benchmarks, such as SHA, 3DES,
and MD5, show large performance improvement when the
compilation algorithm is changed from the original FEU to
the data-centric. This trend is expected, because encryption
application primarily operate on effectively random data,
making the width of subgraphs very large. In this type of
application, selection and grouping without considering the
width of subgraphs, leads to very small speedup or even per-
formance loss. In RC4, all of the algorithms nearly perform
the same because execution time of RC4 is mostly spent in
a small for-loop that does calculations on 8-bit data. There-
fore, it is not difficult for the FEU algorithm with or with-
out width-aware cost function to select beneficial subgraphs.

Rawdaudio has a mix of 8-bit and 32-bit computation in its
main loop. The FEU algorithm with the width-aware cost
function causes 4% less performance improvement than the
data-centric algorithm. This difference is expected in any
benchmark with mixed narrow and wide computations.

Effectiveness of Data-Centric Algorithm for Different
CCA widths: Now that the effectiveness of the new com-
piler algorithm has been established, we can evaluate the
performance for the proposed CCA architecture changes. In
the first experiment, we compare speedup of a 32-bit 1-cycle
CCA, a width-aware 16-bit and a width-aware 8-bit CCA us-
ing the data-centric compilation technique. The results are
shown in Figure 10. Note that this graph compares the num-
ber of clock cycles each benchmark takes and not the total
execution time (i.e., the data does not account for the clock
speed).

As would be expected 32-bit CCA has the highest per-
formance and width-aware 8-bit CCA has the lowest perfor-
mance. In a number of the benchmarks, such as RC4 and
Rawcaudio, the total execution cycles is the same for width-
aware 16-bit and 32-bit CCA. The same trend can be seen
in dijkstra large when an 8-bit CCA is used instead of a 16-
bit CCA. On average, reducing the CCA datapath from 32
to 16 and 8 bits increases the total number of cycles by 10%
and 21% comparing to the 32-bit CCA. If we assume the
CCA constitutes the processor’s critical path, however, then
the 16-bit and 8-bit CCA will perform 7% and 9% better,
respectively, than the 32-bit version, because of the lesser
impact on clock cycle. Therefore, it can be concluded that,
using the data-centric algorithm, the 8-bit CCA is the most
benficial accelerator among all three CCAs.
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Figure 10. Speedup using the data-centric algorithm for var ious width CCAs. Each CCA had 1-cycle
assumed latency, regardless of clock cycle reported in Tabl e 1.

CCA Interconnect Comparison: As discussed in Sec-
tion 2, making CCA interconnection sparse can be an effec-
tive way to reduce CCA area and delay. The downside is
that it could also preclude important subgraphs from being
executed and hurt performance. Figure 11 shows the effect
of changing full-interconnect to sparse-interconnect on the
32-bit 1 cycle CCA.

Overall, we found that changing the interconnect from full
crossbar to relatively sparse caused nearly no performance
loss (if we assume equal clock speeds) in any of the bench-
marks. The reason for this negligible performance loss is that
the sparse-interconnect CCA in Figure 5 can support most of
the important subgraphs that original CCA supports. In cases
where an important subgraph cannot be executed because of
sparse interconnect, enumeration ensures that slightly modi-
fied subgraphs are selected, picking up any available slack.If
we again assume that the CCA is the processor’s critical path,
then the sparse CCA actually performs 14% better than the
CCA with full crossbar. This experiment demonstrates that
with the aid of a compiler, the cost and delay of the CCA can
definitely be reduced without affecting the performance.

5. Related Work

Compiling an application to make use of computation ac-
celerators boils down to two steps:enumeratingportions of
the application’s dataflow graph (DFG) that can be executed
on the accelerator, andselectingwhich portions to accelerate.

The vast majority of previous work relies on hand coding

or greedy heuristics. Work by Hu [14] is typical of the greedy
solutions: a seed node is selected in the DFG and is grown
along dataflow edges. The compiler then replaces that sub-
graph and repeats the process. Here, enumeration consists of
finding a seed and growing it, while selection is implicit (any
subgraph enumerated is automatically selected). Other pre-
vious work [22] performs more thorough enumeration, but
still uses greedy selection.

More thorough, traditional code generation methods for
tackling subgraph mapping use a tree covering approach [1].
In this approach, all computation subgraphs potentially sup-
ported by the accelerator must be constructed a priori. Dur-
ing compilation, the DFG is split into several trees. The
trees are then covered by the computation subgraphs using
an algorithm that minimizes the number of computation sub-
graphs used. The purpose behind splitting the DFG into trees
first is that there are linear time algorithms to optimally cover
trees, making the process very quick.

The major problem with this method is that many DFGs
and accelerators are not trees. It is shown in [16] that tree
covering methods can yield suboptimal results, particularly
in the presence of irregular computation commonly targeted
by embedded systems. To overcome this, [16] proposes split-
ting all instructions into “register-transfer” primitives and re-
combining the primitives in an optimal manner using integer
programming. Work by Liao [17] attacked the same problem
and developed an optimal solution for DFG covering by aug-
menting a binate covering formulation. While both of these
solutions are optimal, they also have worst case exponential
runtime and do not report how long their algorithms take.
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Figure 11. Comparison of 32-bit full interconnect and spars e interconnect CCAs using the data-centric
algorithm.

Another major problem with previously mentioned ap-
proaches is that they also require permissible acceleratorsub-
graphs to be enumerated a priori. If an accelerator supports
a wide range of computations, such as an ALU pipeline, this
can cause an explosion in runtime.

Research in [19] describes a different way to look at the
accelerator mapping problem. In this work, an application
is initially decomposed into an algebraic polynomial expres-
sion that is functionally equivalent to the original application.
Next, the polynomial is manipulated symbolically in an at-
tempt to use accelerators as best as possible. For example, a
polynomial could be expanded using function identities (e.g.,
adding 0 to a value) to better fit an accelerator. This enables
the algorithm to utilize subgraphs where the accelerator per-
forms a superset of the desired computation. As with pre-
vious solutions, though, this technique also has exponential
worst-case runtime. Additionally, handling bit-wise opera-
tions, such as XOR, is difficult using polynomials. Rearrang-
ing application to better fit a targeted accelerator, such as[19]
proposes, is an interesting area of future work, though.

The main differentiator between this paper and prior work
is that no previous work on accelerator mapping has taken
into account dynamic data width before. We also extend pre-
vious work to explore a larger solution space (through pre-
selection grouping) without adversely affecting compilation
time.

Datapath width on the architectural side has been exten-
sively studied for different reasons, such as increasing per-
formance or reducing energy consumption. Work in [7] pro-
poses operand gating for improving processor energy effi-
ciency by gating off the sections of data path that are un-
needed by narrow operands. In this work, the instruction

set architecture is enhanced to include opcodes that specify
operand widths. A compiler or binary translator uses stat-
ically available information to determine value ranges and
generate efficient code. Research in [21] evaluates managing
the processor’s datapath width at the compiler level by means
of exploiting dynamic narrow-width operands.

Several dynamic approaches have also been proposed to
make use of narrow data computations in different applica-
tion domains. Authors in [11] propose register packing to re-
duce register file pressure. This approach packs multiple re-
sults that have fewer significant bits than full width of a regis-
ter into a single register. Work by Loh [18] investigates data-
width locality. In this research, a Multi-Bit-Width (MBW)
microarchitecture is proposed that that can increase the ef-
fective issue width of a superscalar by simultaneously exe-
cuting several narrow-width computations. Very low power
pipelines using significance compression is proposed in [6].
In this work, data, address, and instructions are compressed
by maintaining only significant bytes with two or three ex-
tension bits appended to indicate significance byte positions.
Their approach to significance compression is similar to our
approach for detecting input widths.

This work harnesses previous work on narrow datapaths
and dynamic width detection to make the CCA feasible to
build in hardware.

6. Conclusion

Computation accelerators provide an effective way to im-
prove the performance and efficiency of processor designs.
However, many styles of accelerator are expensive in terms



of area and delay. This paper presents two effective tech-
niques to make accelerators smaller and faster: narrowing
the function unit datapath and reducing the interconnect.
We demonstrate that accelerators with narrow datapaths and
sparse interconnect can be constructed 64% faster, using only
20% of the die area of a full accelerator.

These reduced accelerators require new compilation tech-
niques to utilize them, though. To accomplish this, we pro-
pose three extensions to a previously proposed algorithm:
modeling interconnect using subgraph isomorphism, an im-
proved cost function that considers operand size, and a
phase-ordering change that exposes more disconnected sub-
graphs to the selection algorithm. Experiments show that the
new data-centric compilation algorithm performs on average
6.5% better and up to 12% better than previous algorithms
for width-aware 8-bit accelerators. Using this new algorithm,
accelerators with narrow datapaths and sparse interconnect
perform better than full datapaths and interconnect, but with-
out the associated hardware costs.
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