Optimus: Efficient Realization of Streaming Applications
on FPGAs

Amir Hormati, Manjunath Kudlur, Scott
Mahlke
Advanced Computer Architecture Laboratory
University of Michigan - Ann Arbor, Ml
{hormati, kvman, mahlke}@umich.edu

ABSTRACT

In this paper, we introduce Optimus: an optimizing syntbesim-
piler for streaming applications. Optimus compiles progsawrit-

ten in a high level streaming language to either softwareand-h
ware implementations. The compiler uses a hierarchicalpiiem
tion strategy that separates concerns between macro- ard-mi
functional requirements. Macro-functional concerns addrhow
components (modules) are assembled to implement largee mor
complex applications. Micro-functional issues deal wighthesis
issues of the module internals. Optimus thus allows softvaa-
velopers who lack deep hardware design expertise to tramsiha
leverage the advantages of hardware customization wittross-

ing the semantic gap between high level languages and hegdwa
description languages. Optimus generates streaming haedivat
achieves on average 40x speedup over our baseline embedded p
cessor for a fraction of the energy. Additionally, our résidhow
that streaming-specific optimizations can further imprpesfor-

mance by 255% and reduce the area requirements by 16% in av-

erage. These designs are competitive with Handel-C impitarne
tions for some of the same benchmarks.

Categories and Subject Descriptors

B.5.1 [Register-transfer-level Implementatior]: Design—bData
Path DesignB.5.2 [Register-transfer-level Implementatiori: De-
sign Aids—Automatic synthesis

General Terms
Design, Performance

Keywords

Streaming, Compiler, FPGA, Optimization, Heterogenedtrs-
bedded System

1. INTRODUCTION

David Bacon, Rodric Rabbah
IBM T.J. Watson Research Center
Hawthorne, NY.

{bacon, rabbah}@us.ibm.com

that mobile computing devices with embedded processotsilti

mately change the industry much as laptops supplantedapesis
the primary commodity processing platform. However, thev@o
and frequency concerns that plague the microprocessostiryoef-

fectively mean architects have to find new ways to providesias-
ing performance since conventional frequency scaling oulo-

gies no longer apply. As a result, there is a significant ojpymity

to explore alternate architectures that can enable theaveidtion-
ary step in computing.

One significantly promising approach is to provide automati
customization of hardware according to the applicatiory ttun.

An application-customized architecture can offer extrigniegh
performance with very low power compared to a more general-
purpose design. Furthermore, the increasing availalifityecon-
figurable field-programmable gate arrays (FPGAS) as cogasars
and processing ingredients in heterogeneous systemszhipdl,

2] means emerging architectures can offer enormous fléyilihd
adaptability in the face of rapidly changing software stndd and
customer needs.

This paper describes a methodology and a set of complemen-
tary optimizations to efficiently realize stream graphsedily in
hardware. Our ultimate goal is to automatically refine a Heykel
stream program into either software or hardware. In the cafiee
former, a program can run on a conventional processor or &-mul
core architecture. Inthe case of the latter, the applinatoealized
as an efficient customized circuit design mapped onto FPGAs.

The emphasis on stream programs is self-evident as recarg ye
have witnessed the proliferation of embedded streamindjcapp
tions in many areas including digital signal processingpbics,
multimedia, network processing, and encryption. Theresaveral
new streaming languages and the area currently commands con
siderable attention from academia and industry. The strgam
gramming paradigm offers a promising approach for programgm
multicore architectures. Examples of relatively new smewy lan-
guages include Streamit [24], Brook [4], CUDA [20], SPUR]27
Cg [16], Baker [6], and Spidle [7].

We adopt a stream programming model where applications can

In the world of embedded systems, there are many devices thatbe naturally described as dataflow graphs where nodes embody

offer increasingly powerful computing capabilities. Itgsedicted

Permission to make digital or hard copies of all or part of thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycoiherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

CASES’080ctober 19-24, 2008, Atlanta, Georgia, USA.

Copyright 2008 ACM 978-1-60558-469-0/08/10 ...$5.00.

computation and edges imply communication. Such a streamin
model is attractive from a multicore perspective becauseaikes
the abundant parallelism inherent to streaming applinatiquite
explicit. As a result, compilers can more readily derive @an
rent implementations from high level applications, witkatevely
less effort compared to automatic parallelization starfiom im-
perative sequential languages such as C [23, 9, 14]. In tine sa
way, mapping a high-level stream program to hardware (EB-,
GAs) becomes more practical and productive—compared twusi
a hardware description language such as Verilog or VHDL,BtEH

derivatives of C such as SystemC or Handel-C—if a compiler ca
readily generate efficient hardware implementations froepro-
grams described in a streaming language.

The idea of mapping high level programs directly into hardwa
is not a new one. Indeed, there is a lot of work on automatith&n
sis of hardware starting from C and its many HDL-orientedwder
tives. This work differs from most existing work on the tot
high level synthesis (Section 2) by shifting the focus fronecno:
functional details to macro-functional ones. Specificailyr work
does not focus so much on how individual modules are syrzédsi
(i.e., micro-functional), but rather on how modules are posed
to assemble an overall design (i.e., macro-functional) aAssult,
we can synthesize entire applications into a hardware tbsand
not just individual loops and kernels as is the case with afleix-
isting work. Thus, our work is complementary to existing won
high level synthesis while offering new opportunities fdicent
assembly of streaming applications in hardware.

This paper describes Optimus, our optimizing synthesiséa
work for streaming applications. Optimus uses a canonitairi
mediate representation to describe streaming programsodygm
is comprised of interconnectditers, derived from the dataflow
graph representation of the program. Each filter is comgrise

ing applications. Profiling data provides a cheap and prakditer-
native to otherwise difficult and intractable optimizatiproblems.
The core optimizations are described in Section 4, and @e8tie-
scribes our overall stream-oriented synthesis framewatk laoth
macro- and micro-functional emphasis.

2. RELATED WORK

C is closely linked to the Von Neumann processor model, in
which variables correspond to memory locations and fundtivo-
cations reside on stacks. C lets users manipulate poirdenein-
ory and to functions, which does not make sense in an FPGAitirc
model. Thus, any attempt to compile C to FPGA configurations
would encounter problems that derive purely from the C laugy
not from the the application itself. Several projects havedtto
address the inadequacies of C with different techniques.

As a result of an extensive amount of research in the area of
high-level synthesis, researchers have introduced desemapiler
systems and abstraction languages [13, 18, 21, 17, 12, 8,3, 1
10] each of which has some unique capabilities. ROCCC [10] is
a C to hardware compilation project whose objective is th& AP
based acceleration of frequently executed loop nests.cbinigpiler

blocksthat contain statements. The blocks are themselves inter- Performs extensive compile-time transformations to maaénvar-
connected based on control and dataflow dependences. Our sefous forms of parallelism and minimize the number of off-F°G

of optimizations that deal with inter-filter details addsemacro-
functional concerns. Similarly, our micro-functional opizations
address synthesis issues that arise from dataflow depezglbee
tween blocks. The Optimus model allows us to leverage daoafde
classic compiler research studied by others in their wodeteerate
high-quality circuits, while also offering the ability tgply macro-
functional optimizations that are specifically targetedstvbeaming
applications. Macro-functional optimizations, which asis how
filters (modules) are assembled to implement an applicétiot to
be tedious and time-consuming to perform manually, andirequ
expertise in hardware design. An important example of a oacr
functional optimization is deciding on how much bufferiroglow
between a pair of communicating modules: if too little briffg is
provided, then throughput decreases as modules stall @ @en
receive data; whereas too much buffering incurs substesypice
overheads. Macro-functional optimizations require aalrebnsid-
eration of area and performance tradeoffs to judiciouslyximae
application throughput at the lowest costs.

Our results (Section 5) using eight streaming benchmarks, i
cluding FFT, DCT, DES, sorting, and matrix multiplicatisshow
that we can achieve significant performance advantages aeap
to an embedded processor for a fraction of the energy. Itis no
surprising that a custom hardware design is better than argen
purpose processor. We also found that Optimus-generatedgre
are performance-competitive and incur small area overfreeaim-

memory accesses. Circuits generated by ROCCC can be used by
Optimus as IP blocks to accelerate the execution of loosnési-
other C to hardware compiler is SPARK [11], which takes a stibs
of C as input and outputs synthesizable VHDL. Its optimizagi
include code motion, variable renaming, FSM state minitnza
etc. Streams-C [8] relies on a CSP model for communication be
tween processes and can meet relatively high-density aorgf
quirements. Researchers in academia and industry havalelso
signed various high-level abstraction languages such a€ 4],
Handel-C [5], SystemC [22], etc., to make designing harevess-
tems easier for average software developers. SA-C helppitann
exploit data reuse because of its special constructs eirgdpws)
and it functional nature. Handel-C is a low level hardwaotigare
construction language with C syntax that supports behalvibe-
scriptions and uses a CSP-style communication model.

Although all these systems and abstraction languages haved
useful in various domains, they have different shortcomingARP,
Streams-C, and SPARK do not support accesses to two-diomahsi
arrays, so image processing applications must be mapped-man
ally. ROCCC accepts only perfectly nested and constant doun
loops operating on arrays with affine index expressions.ddeer,
all arrays are assumed to be located in the memory and no local
data is allowed. The previous systems and languages do pet su
port the stream-oriented optimizations that we discuskiggaper.
They also do not provide some of the constructs that are #aken

parison to some of the benchmarks that we also implemented in fOr Stream programming such as peeking.

Handel-C.

The primary emphasis of this paper is on the salient macrd- an
micro-functional optimizations for streaming programs.e \ise
the Streamlt programming language as our input languabetagh
other languages that embody the same streaming model aallyequ
applicable. Optimus compiles Streamlt programs to Veriloge
then use standard synthesis tools to generate FPGA degigtis.
mus uses its own hardware models to characterize spacertide:
offs, and performs many optimizations including criticatip bal-
ancing and memory allocation. It is built on top of the Trimuar
compiler [25], and hence it inherits a rich suite of ILP optiax
tions (for micro-functional efficiency). The compiler alsgmits
profile-guided optimizations to simplify circuit modelsrfstream-

3. FROM STREAMIT TO HARDWARE

Optimus is a compiler and synthesizer that takes as inputarst
ing application and generates an efficient FPGA (hardware) i
plementation. We designed a hardware template capablepef re
resenting fairly optimized circuits for streaming apptioas. The
template captures the salient properties of streamings;ad is
malleable enough that it can be used in many different diidex
signs we generate. This section details our approach usimgpe
example illustrated in Figure 1.

3.1 Input Language

We use the Streamlt language as the input language to the com-

void->void pipeline Minimal {
add Source();

add AddSplitter(8, 4);

add Printer();

void->int filter Source() {

inti;

inta[16] = {0, 1, ..., 16};

init{i=0;}

work push 1 {
push(a[i]);

I

>

int->int 2 i
split roundrobin(pFactor);
for (inti = 0; i < pFactor; i++)

add AdderFilter(addSize);

(int int pFactor) {

join roundrobin(1);

int->int filter Adder(int addSize) {
work pop addSize push 1 {
int sum = 0;
for (inti = 0; i < addSize; i++)

i=(i==15)?20:(i+1); [

Adder 2

[Adder 1]

[Adder 3

[Adder 4]

f

sum+ = pop();

push(sum);

>
int->void filter Printer() {

work pop 1 { printin(pop()); > ¢
>

S 1
[Round-Robin Joiner(1,1,1,1)
J

Figure 1: A sample Streamlt program is shown on the left. The orresponding stream graph with all the filters instantiatedis shown

on the right.

piler. Streamlt is an architecture-independent programgman-
guage for high-performance streaming applications [2ddgRams
in Streamlt are represented as graphs where nodes, filkbeslen-
capsulate computation, and edges represent FIFO comntionica
Streamltis based on the synchronous dataflow (SDF) [15] hodde
computation. Each filter consists ofwerk function that repeatedly
executes when sufficient data is available on its input Fig@ye).
The work function reads data from its input queue uging oper-
ations, and writes data to its output queue uginghoperations.
The work function can also inspect input without removingrth
from the FIFO using geekoperation. Peek operations are crit-
ical for exposing data parallelism in sliding-window filsefe.qg.,
FIR filters), as they elide the need for internal filter steB&eamit
provides three hierarchical stream primitives for compgdilters
into larger stream graphgipeling splitjoin, andfeedback loopA
pipeline connects streams sequentially. A splitjoin siesitask
or data parallel streams that diverge from a common splétet
merge into a common joiner. A feedback loop creates a cydleein
dataflow graph.

A simple Streamlt program and its corresponding streamigrap
are illustrated in Figure 1. This example consists of fiveatns:

M ni mal , Sour ce, AddSplitter, Adder, andPrinter.

M ni mal is a top level pipeline with three-stages. The middle
stage AddSpl i t t er, consists of a splitter, 4 parall@dder fil-
ters, and a joiner. The splitter distributes data to eachso€an-
nected filters in a roundrobin fashion. Eagtider receives eight
data elements at a time. Streamlt allows stream graphs t@-be d
scribed programmatically, and affords the compiler thditgbio
fully elaborate the graph at compile time by instantiating @on-
necting instances of the filters.

Filters in Streamlt are self-contained, and can only actiesis
locally declared variables and fields. Hence, data exchéege
tween filters is accomplished using explicit transfers ssrmter-
filter FIFOs (queues) using the push and pop operationsai@tte
filters may be either stateful or stateless. In Figure 1,Sber ce
filter is stateful; all the other filters are stateleSeur ce is stateful
because the field carries a dependence from one execution of the
work function to the next. In addition to the work functioritdrs
may also define aimit function to initialize local fields.

match for realizing streaming code in hardware. We leveragay
of the language features during compilation for FPGAs.

3.2 Synthesizing a Stream Graph

Optimus uses a specialized filter template to synthesizdilthe
ters that appear in the input stream graph. The templateoisrsh
in Figure 2(a). The template consists of five main components
input queues, output queues, memories, the filter itsel, the
controller. Input and output queues are used to send and/eece
data. The template supports an arbitrary number of inputoarted
put queues to implement splitters and joiners. Memory mesiul
are used to store the state for stateful filters. Each filter loa
connected to several memory components. All the memory mod-
ules are local to each filter. For each memory module, theze ar
dedicated read and write buses between the module and tfee cor
sponding filter. The buses are shared between the acces$gshes o
memory in the filter. The hardware block implementing theefilt
consists of the work module and an optional init module. Boih
and work modules will be connected to a memory module in case
that module needs initialization. The controller make&ghat the
init function gets executed only once before the first intimraof
the work function. Depending on the way that the circuit isest:
uled, the controller may have other responsibilities tchestrate
the execution.

After instantiating the template for all filters in a streamajgh,
the next step is to connect them. This step is straightfahwased
on the stream graph and the way data flows through the graph.
Whenever Optimus connects the template for two filters togret
it merges their input and output queues together. In othedsyo
those two filters will share one FIFO queue for transferrirgad
between them. Figure 2(b) shows the top-level hardwareher t
stream graph in Figure 1. As itis illustrated, the only siatélter
with memory components is ttf@our ce filter. TheSour ce filter
also is the only filter with an init component.

3.3 Synthesizing Filters

Each filter is organized as a control flow graph (CFG) with an
overlayed data flow graph (DFG). Basic blocks (BBs) of instru
tions are used as the core building units for each filter. Eme-t

The structured nature of Streamlt programs make them a good plate for the BBs is shown in Figure 3(a). Each BB module has

four sets of input/output signals. The first set includesadetrol

18]]013U0 D)

(Round -Robin Splitter(8,8,8,8)
Work

B C D E
Adder 1 Adder 2 Adder 3 Adder 4

Work } Work

[[

18]|013U0 D)
18]|011U0 D)
_

13]|013U0 D

= =

Filter

18]]043U0D

Oo
(a) Specialized filter template

Op Om

E/ J3[011U0Y)

=
==

[{
\'ﬁ

18]]013U0 D)

(b) Hardware structure for the example in Figure 1

Figure 2: (a) The specialized template used for synthesizinfilters. (b) The complete hardware for the stream graph show in

Figure 1.

signals. All BBs have oneontrol inputsignal and one or more
control outputsignals. A control input signal will activate a BB
as long as the signal is active. A control output signal wélldon-
nected to the inputs of the other BBs in order to activate thetine
right order. Connecting these control signals is done basetthe
edges in the corresponding CFG. The second set of inputitautp
consist of data signals which carry operand values. Optinses

a DFG for connecting these signals. The third set of inpapiaiu
signals help each module to communicate with external ressu
such as queues, memories, and other types of IP (intellguinja-
erty) cores. These signals provide a unified interface irctviainy
IP core can be connected to the hardware. The last set ofisigna
marked asAckin Figure 3(a), is meant for flow control. The Ack
signals are useful when a BB cannot perform its operatiorikén
associated clock cycle and needs to wait one or more cyclkis. T

to BB 2. Based on the DFG, a data signal is needed for traig§err
the value for the variablsumfrom BB 1 to BB 3 through BB 2.
All the control flow signals in the figure are connected basethe
CFG for theAdder filter. Since BB 2 is the target of two branches
(the fall through from BB 1 and the loop target from BB 3), a MUX
is added to its inputs for selecting the appropriate corgighal.
The execution of thédder filter will take 18 cycles (2 cycles for
each of the 8 iterations, and 2 cycles for the rest of BBs).

The only remaining task is to generate hardware to fill each BB
module based on the operations of that BB. Optimus genesates
function unit (FU), similar to Figure 4(a), for each opeositi Each
FU can have multiple inputs and outputs and one predicatg.inp
If a BB has a conditional branch operation, Optimus will gene
ate a comparator FU to compute thentrol outputsignals. The
data flow graph in each BB determines how the FUs should be con-

mainly happens when a BB accesses an external resource (e.g.nected to each other. At the end of each BBg¢datrol inputsignal

memory) and the resource is not ready to respond within tiresa
cycle.

Generally, each BB ends with one or more registers to steee li
out data and control signals. In the baseline design, itssrasd
that all the live-out values are registered to control theevatency
in the final design. Since all the live values are latched ebisic
block outputs, one clock cycle is needed to transfer data fooe

is used to enable the register module. Figure 4(b) illussréte FU
and the necessary connectivities for BB 3 of Bukler filter. This
figure does not show all the details of computing control aign
and setting the Ack signal.

3.4 Hardware Orchestration
The final issue is the orchestration of execution for therenti

BB to its successors. In other words, the execution of each BB streaming circuit. We focus on two ways of scheduling thefilt

takes at least one cycle.

executions:Staticand Greedy In a static schedule, the compiler

After the hardware module for each BB is generated, Optimus dictates the number of executions of each filter, such theorit
will connect the modules based on the CFG and DFG for each work sumes alll of its input data and produces sufficient data $ozon-

or init function. Connecting the control signals is basedtloa
CFG. The control outputs of all BBs are connected to the obntr
inputs of the immediate successor BBs. In case a BB has mame th
one control input signal, MUXes are used to select the rightrol
input signal. The DFG is used for connecting the data sigsalsh
that the live-out signals of each BB are connected to theitigeof

sumers. In this model, the compiler guarantees that a filtenave
a sufficient number of input data available. Hence the exataif
the filter work function will not block on reads (i.e., pops$im-
ilarly, the compiler also asserts that the output queue faofifter
is sufficiently empty so that all the writes (i.e., pushespatuc-
ceed without blocking the filter. In this type of schedulidguble

the immediate successor. MUXes are again used in case a valueuffering is used between pairs of filters to provide comroation-

can reach a BB from two different paths.

We will use theAdder filter as an example to clarify the main
points. Figure 3(b) shows the CFG and DFGAaider . The solid
lines show the control flow and the dashed lines show the data fl

computation concurrency. This allows the producer and woes

to run independent of each other. The size of each indiviquate

is typically set to the least common multiple of the pop rate a
push rate of the consumer and procedure filters. We referigo th

for sum This graph has four BBs and there is a backedge from BB 3 form of scheduling and FIFO sizing as “rate-matched”.

p oSl BB 1 b
i=0
H Register
n Control Token
-' :
! 2
1 g
- v | temp = pop() BB 2 !
Control in E \ FIFO Read i <
H & \\ Register 4
z % S -~ ‘\ss Control Tolian T§ {} é
3 ~o 7 N =
E ,sum =$um + temp N bb3 i
= 1.
Io} Basic Block lisi+ BB 3) Register
\] -
2 ,~ | Branch bb2 ifi < 8 J g 5
3 Register ! < ~J s Iz 2
@ [= Seao DR Py S Ay ~—g
§ ST g &
g : \1/: -
5 v FIFO Write] bb4
° push(sum) BB 4 :
Ack Control outs =3 Register

(a) Specialized BBtemmpIate (b) Control and (partial) data flow (c) Hardware structure for the
graphs for theAdder filter Adder filter

Figure 3: (a) The template used for synthesizing basic block (b) Control flow graph and partial data flow graph for the Adder
filter. (c) The complete hardware generated for theAdder filter.

A greedy schedule takes a different approach and does not try attractive because they promote productive and portaldgram-
to statically rate-match filters. In this approach, filtexeaute ea- ming.
gerly, and block when they attempt to read from an empty queue
or write to a full queue. Since all queue accesses are blgadkin ;
this approach, the size of the queue throttles the execuofidhe 4.1 Queue Allocation
stream graph. This allows for a tradeoff between the sizéhef t
queue and the overall circuit throughput. Smaller queuks tg
less area, but may not be optimal. In our benchmarks, we ebder

that it is common that a queue size of one element is suffiéoent !
correct execution that is also as efficient as a rate-matetatit cal arrays and other data structures_ used by the filters. , Thus
scheduled. The queue sizing is further discussed in theviiailg large stream graphs, the SRAM quickly becomes the bottlenec
section. resource. The scheduling strategy used to orchestratextdwie

Optimus is capable of generating the necessary hardware fortion.of thg filtle.rs can significantlyimpgct the storage reguients.
both schedulers. This choice has implications on the retsteo€ir- Optimus judiciously calculates the size of each queue trate
cuit in terms of queue sizes, power consumption, executio,t between filters in order to better utilize the SRAM and mamta

and allowed hardware sharing. In this paper, the greedydsiée the high throughput achieved by a rate-matched static sibed

is used for all designs. The comparison between the two soéred The idea behind our approach is to recognize that a slot in the
is left for future work. qgueue may be reused if the value that previously occupiedldte

is already consumed. Thus, we can reduce the total storggaee
ment for the inter-filter FIFOs if we can determine the maximu
number of overlapping lifetimes for the values exchangewvben

The queues that connect hardware filters are implemented usi
the SRAM structures on the FPGA. FPGAs have limited SRAM
capacity, ranging from 4 KB on the low-end FPGAs to 128 KB on
the high-end ones. The SRAM is also used to implement the lo-

4. STREAM OPTIMIZATIONS filters.

Streaming languages allow programmers to focus on degignin ~ Figure 5 shows the cycle-by-cycle schedule of a pair of commu
their applications. Specifically, programmers describeirthom- nicating filters. Only the push and pop operations are shdine.
putation programmatically and algorithmically, and do meted schedule shows all the cycles in the steady state execudfche
to commit to specific implementation details related to seitiag, producer-consumer pair. Suppose the producer pushiteims per
buffering, synchronization, or the underlying data trasrspnech- execution of its work function, and the consumer poppédtems
anisms in their target platforms. This programming practeads from the queue every time its work function executes. Forfilhe
to code that is easy to maintain and port, but places a bundémeo ters to be rate-matched, the producer must run its work fonct
compiler to derive high-performing implementations. LOMMN) times, and the consuméEMALN) times. We deter-

Optimus applies many of the classical optimizations usquén mine the maximum number of overlapping lifetimes by simnigt
vious works, and introduces a set of new macro-functionai-op the rate-matched schedule. We use double-buffering dugiimg
mizations that specifically target streaming programs. €hm- ulation to provide communication-computation concursenthe
piler focus is on improving communication latency and redgc simulation needs to only cover one steady-state execufidheo
memory storage requirements (i.e., area). Communicagitamty filters. In the case a filter peeks at more data than it pops)itial+
can be optimized by sending larger chunks of data betweensfilt ization schedule is run to prime all the FIFOs.

Storage can be optimized by intelligently sizing queuesvbeh A causally correct schedule is obtained by shifting the poed
filters, and allocating output registers to increase spagisse. Itis schedule to occur at time 0, and shifting the consumer s¢dedu
not uncommon in today’s synthesis frameworks to apply m&ny o down such that all pops appear at least one cycle after tbeir ¢
these optimizations manually, either directly in the seurode or responding pushes. Figure 5 shows an example schedule.aSuch
after the circuit is generated. This process can be timstooimg, schedule reveals the lifetime of every entry in the queusvben
error-prone, and complex for large benchmarks. It alsoatsfthe the producer and the consumer. The lifetime extends frontyhe

purpose of using elegant and practical streaming languhgésre cle at which an entry is pushed and the cycle at which the éstry

\ ./

@)

i 1 temp sum

L1
/L

CMP

predicate

temp

=

Control out 4l lControI out3

Control in [

Register

(b)

Figure 4: (a) Template for synthesizing operations. (b) Simli-
fied hardware structure for BB 3 in Figure 3(b).

Producer Consumer

push

pop

push -

push -

push L[pop

push T
=

-/2-- pop
i

= pop
/

T
1 pop
Max overlap = 3

Figure 5: Overlapped producer-consumer schedules showing
maximum number of overlapping lifetimes.

push

we can realize variable vector lengths between producestaoer
filter pairs. Loop unrolling is applied to loops with queueroem-
ory operations to expose the operations to the code motiasgoh
Optimus needs to consider area constraints while it is paifagy
the unrolling because unrolling may result in area expansiod
cause the design to overflow the target FPGA. The next step, is
cluster memory and queue operations via aggressive codermot
The end result is a several clusters of memory and queuetapesa
with no other intervening operations. Each cluster of ofiena is
assigned a vector length according to the number of opeasatio
the cluster. Subsequently, the compiler determines aesivegttor
length for the filter by calculating the greatest common stiviof
each cluster’s vector length. For example, if the vectogtbs of
the clusters are 8, 12, and 16, then the filter's vector lersgth
Figure 6 shows this optimization applied to a filter and atspli
ter from Figure 1. For theéddder filter in Figure 6(a), the loop

popped. The maximum number of queue entries whose lifetimes js ynrolled 4 times and a vector length of 4 is chosen for fusio

overlap can be easily calculated from the schedule. In Ei§uthe
maximum number of overlapping lifetimes is 3. Setting thewg
size to a value less than this maximum will stall the filtershese

The loop is not fully unrolled because of area constraintse Uin-
optimizedAdder filter will take 18 cycles to finish (assuming the
value of AddSi ze is 8), but the optimized one will take only 6

one of the pushes at the producer cannot succeed as it would apcycles. Figure 6(b) illustrates the effectiveness of thsidi op-

pear before the pop of the previous queue entry. Conversetiyng

the queue size to a value more than this maximum would not im-
prove the schedule. Thus, the minimum queue size for a perduc
consumer pair that retains the throughput of the staticcudees
obtained by calculating the maximum number of overlappifey |
times of a rate-matched schedule.

4.2 Queue Access Fusion
A critical factor in streaming applications is sustainetbtigh-

timization for the splitter filter. The unoptimized splitteeeds 9
cycles to read 8 data values from its input queue and push them
the input queue oAdder 1. During these 9 cycles, the next filter
in the splitjoin @Adder 2) would be idle while it awaits its input
data to arrive. In this case, the access fusion optimizatidine-
duce the filter's idle time to 2 cycles. The optimization imgeal
reduces the critical path of computation and can reduceutixsc
time. If the optimization is successful in finding large ¢trs of
accesses and fusing them, it will also significantly redineetbtal

put. One of the key issues that can have negative effect on thearea of the design. If the optimization is not successfid, Ittop

throughput of a streaming circuit is communication laterey
tween different filters. This issue arises from the fact thath
gueue or memory access, regardless of data width, takessit le
one cycle. The one cycle access time would have a directtaffec
on the latency of the longest path in filters. It can also lithi&
filter-level parallelism in splitters and joiners. To overge these
bottlenecks, we consider bundling similar queue accessggsher
to create a single wide access usiugeue access fusiorThis is
conceptually similar to creating SIMD loads and stores. Qifrse,
to support fused queue accesses, the basic queue striejuiges
modifications.

Code motion and loop unrolling are applied to find opportuni-
ties for fusing queue accesses and shortening the longést jpa
a filter. Automatic SIMDization techniques use a similar@ggh
with one difference: the vector length is known a priori, \ndees

unrolling would result in area expansion. However, an ligeht
compiler would reverse the unrolling when it is not profitbl

One of the restrictions imposed by the our generated harmwar
is that the vector length for all accesses from a filter to aibige
gueue has to be the same, although vector lengths to the 4&@e F
from different filters may differ. This is realized by incremting
and decrementing read and write pointers using differenstzmt
offsets. For example, if the read vector length is 1 and thisewr
vector length is 8, the queue can be viewed as an 8x8 matrix wit
the write pointer pointing to the rows and the read pointenpo
ing to individual elements of the matrix. Figure 7 illus&atthe
possible configurations.

4.3 Flip-flop Elimination

As it was discussed in Section 3, all live-out data signaldpid-

int->int filter Adder(int addSize) { int->int filter Adder(int addSize) {

work pop addSize push 1 { work pop addSize push 1 { leaving pop operation in BB 2 that can change the status afighe
et =% § < addsize; i+4) i 6, g w queue. Note that if the control flows to the right instead &ifaéter
sum+ = pop(); — printi=0ii<addSize/s; i) BB 1, then no register is needed because there are no pogiopera
push(sum); (t1, £2, t3, t4) = pop4(); along that path. The register for T also cannot be removedusex
bs sum+ = t1 + t2 + t3 + t4;
¥ b T is both live-in and live-out along the backedge going frot B
push(sum); to itself.
}} An issue with flip-flop elimination is the possibility of ineas-
(a) Adder ing the critical path length. In general, Optimus tries ttabae the

length of the combinational paths by splitting the largeé®biocks
and adding registers to the end of each BB. Optimus has an inte
nal model of the target FPGAs to assess the latency of differe
combinational operations. If removing any of the regisiarthe
flip-flop elimination optimization lengthens the criticaath, then
that register is left in place.

t1 = pop(A)

t2.= pop(A)
push(t1, B)

t2 = pop(A)

1= pop(A)
push(t2, B)

t2= pop(A)

18 = pop(A)

push(t1, B
t, ..., 8) = pop8(A)
1= pop(A) o 5. EXPERIMENTS
- We compiled and simulated various applications from déffer
oy domains. Our target platform is a Xilinx Virtex-4 (XC4VLX2)

FPGA [26]. ISE Foundation was used for synthesizing the HDL

: : generated by Optimus. Xilinx Xpower is used to measure the en

2= pon(A) ergy and power consumption of our circuits. For comparisea,
push((1, B) * used a 300 mW 300 MHZ embedded PowerPC 405 processor. We

, compare our FPGA results to the benchmarks compiled and ex-

: ecuted on the PowerPC. We use the Streamlt compiler, and the
: same Streamlt source code for the benchmarks, to generae bi
ries that run on the PowerPC processor. Our benchmarks are FF

(fast Fourier transform), parallel adder (the example shawthe
Figure 6: An example of access fusion using the stream pro- paper), bubble sort and merge sort, integer inverse DCTretis

t1= pop(A)
push(t2, B)

(b) Splitter

gram in Figure 1. cosine transform), DES (data encryption standard), maitikiply

and its blocked variant. In the case of DES, we used a referénc
ing pass-through live signals, are registered at the endaif basic implementation of the benchmark instead of the StreamBiwar
block to bound wire delays. The output of memory and queue-ope for the PowerPC measurements. This is because DES performs a
ations cannot be registered in the block that issues thosatipns lot of bit-level operations, and tuned implementation chaverly

because memory (and queues) needs one cycle to respone- Ther carry out the operations in parallel using word-wide madkghe
fore, the results of those operations are registered imtineadiate case of the FPGA, we compile the Streamlt version of DES down
successors of the issuing basic block, as well as along atkbl to HDL.

that transmit the values along to their destinations. Th& @i Performance and Energy Consumption: Figure 9(a) shows
Figure 8(a) illustrates the registers added for variousames as the performance of streaming hardware compared with Po@erP
rounded-edge rectangles attached to the basic blocks. tNate for various benchmarks. In this experiment, none of theastiag-

live operands are saved at the end of each basic block regardf specific optimizations are used. Speedup varies from 1.58%0
whether they are passing through or generated in that bidhis for different benchmarks. Bubble sort achieves the highesedup

register assignment ensures that the critical path in a GH®f because it heavily exploits pipeline-level and instructievel par-
greater than the maximum of delays through the basic blocks. allelism. Parallel adder has the lowest speedup over thelibas
Many of these flip-flops are unnecessary and can be removedbecause the communication to computation ratio is high is th
without affecting the clock speed. In order to keep the dirtunc- benchmark. Figure 9(b) illustrates the energy consumptfatme
tional, a subset of registers must be maintained. Therevaretain circuits generated by Optimus as a fraction of the PowerRaEgsn
situations where flip-flops cannot be removed. First, if aerapd usage. On average, these benchmarks consume 0.7x of the Pow-
is both live-in and live-out along a backedge, it has to bésteged erPC energy. The only benchmarks which use more energy on the

before or after the backedge to prevent formation of a combin FPGA are parallel adder and DES. This again happens dueg® lar
tional loop. The second case is more complex. If an operatittis ~ communication to computation ratio in case of the paraltielea
result of a queue or memory read, it does not have to be registe In DES, the higher energy consumption is due to the inabdfty
because the hardware for the queue and memory hold its cagput Optimus to efficiently take advantage of the bit-level patem in
long as no other operation has changed its read status. ada r the stream graph. Considering the fact that the baselineepsor
operation from a queue, a status change occurs when anafhés p is a 300mW core, these results show that the hardware geddmat
issued. In a memory structure, status changes when a staeswr the Optimus system is suitable for low-power embedded syste

to the same address as a read. When the compiler can determinéerms of both performance and energy consumption.

that no intervening pops or read/write conflicts occursnthean Queue Allocation: In the designs generated by Optimus, one of

elide the corresponding registers. the main components that uses the on-chip memory is the queue
Figure 8 shows a sample CFG and all the data registers beforestructure. The queue allocation optimization tries to &ffitly re-

and after the flip-flop optimization. Based on the rules fqr-flop duce the sizes of the queues without affecting the perfocmanhe

elimination and ignoring clock cycle constraints, all tlemisters Streamlt compiler generally uses rate matching betweefiltaes
can be removed except X-register in BB 2 and the T-register in to calculate queue sizes. We used the rate matched queseasize
BB 5. The X-Register cannot be removed because there isamn int the baseline and show the savings due to the queue alloadtion

=«

e frfr|rfr —r w
w

Write Mult. =1 Write Mult. =1 Write Mult. = 8

Read Mult. = 8 Read Mult. =1 Read Mult. =1

Figure 7: Various configuration of queues used by queue acce$usion optimization.

2 Y = pop() X 3| A = load(mem , 0) h

XYTA

5 T=veT XYTA

v
6 Y=Y+1
X=X+A

(@) Sample control flow graph before
flip-flop elimination

[T
2| Y = pop() b@

3| A = load(mem , 0) |

(b) After flip-flop elimination

Figure 8: An example of flip-flop elimination.

gorithm in Figure 10(a). As shown in the figure, this optintiaa

on the number of pops and loads and their arrangement in each

reduces the queue sizes by an average of nearly 50%. Addition benchmark.

ally, after reducing the queue sizes to the new values, nfoiper

Comparison to Handel-C: We compared our generated circuits

mance loss was observed in any of these benchmarks. These reto those generated using Handel-C and its compilation badhc

sults demonstrate that the queue allocation optimizatied by
Optimus is quiet effective in saving the on-chip memory teses.
Queue Access Fusion:As discussed in Section 4.2, the goal
of queue access fusion is to increase the throughput ofrsinga
circuits by fusing multiple queue operations into a singlédér)
operation. Figure 10(b) illustrates the effect of this opgation on

Handel-C is a variant of the C programming language. It issaim
toward synthesizing hardware from C code. We implemente8 DE
and DCT in Handel-C and generated their hardware designs. Th
Handel-C implementations preserved the overall strearsing-
ture of the benchmarks. Our area and performance comparison
show that the Optimus-generated circuits are an average/wof 5

various benchmarks in terms of performance. We limit the max faster and 66% larger. Using our stream-specific optimizrative
imum vector length to 8. This means that the maximum speedup can further improve the performance of the Optimus-gererair-
achievable is 8x. As shown in the figure, the average speexiup i cuits so that they are 12x faster, although the designs aoeS8i%

3.2%, and 7.2x in the best case. In some benchmarks, no gpeedu larger than the Handel-C designs.

is achieved because there was not any opportunity to fussses
in the slowest filters. The slowdowns are typically due to feet
that the wider queues are marginally slower than normal esieu
In order to understand the area and performance tradeoffelest
different queue configurations, we synthesized three cueuth
the same size but different read/write widths. As the resulfTa-
ble 1 show, the wider queues are slightly larger than theiomzer
counterparts.

Flip-flop Elimination: The goal of this optimization is to iden-
tify and eliminate redundant registers such that the distili func-
tions properly and the critical path length does not changkee
results of this optimization are shown in Figure 10(c). FHlgp
elimination reduces flip-flop utilization by 30% and slicélint-
tion by 16%. As shown in the figure, the improvement in flip-flop
use is always greater than slice utilization. This meansttiee
are many slices used only for latching purposes and not fgic lo
computation. The area savings due to this optimization kased

There are several important factors that make the Handed-C d
signs inefficient in terms of performance. First, Handelsthot
able to automatically perform the same kind of macro-leyai-o
mizations that Optimus carries out. Second, Handel-C doés n
try to balance the critical paths between flip-flops to achieigher
frequency designs. The lack of these optimizations andtoama-
tions is the main reason the Handel-C designs lag in perfocma
compared to the Optimus-generated ones. The optimizatambe
done manually in the Handel-C code, but that requires mom& wo
for the programmer, and it would obfuscate the streamingreaif
the code.

In terms of area comparisons, the designs in Handel-C are mor
area-efficient for two main reasons. First, Handel-C treesttlize
resources (IPs) that are unique to various families of FRG}es
signs generated in this way are usually more area-efficietond,
Handel-C performs some low-level netlist optimizationattim-
prove the area by a large factor. We believe netlist-levéihtipa-

~ 58x

~3

o
B

Fraction of PowerPC Energy

-

o
~

o
>

FFT

Parallel Adder D

DES D

Bubble Sort
Merge Sort
Discrete Cosine
Transfrom
Matrix Multiply
Matrix Block
Multiply

(a) Performance Comparison

Figure 9: Figure 9(a) illustrates the speedup comparison kween t

FFT
DES

Parallel Adder
Bubble Sort
Merge Sort

Discrete Cosine
Transfrom

Matrix Multiply

Matrix Block
Multiply

(b) Energy Consumption Comparison

he hardware designs and a 300 mW PowerPC 405 running at

300 MHZ. Figure 9(b) shows the energy consumption of the FPGAs a fraction of PowerPC energy use for various benchmarks.

Queue Configuration Total number of bits | Number of Slices | Clock (MHZ)
(read width = 128, write width = 16 4096 70 >300
(read width = 16, write width = 16) 4096 56 >300
(read width = 16, write width = 128 4096 95 >300

Table 1: Area and delay for different queue configurations

tions should be implemented in the low-level hardware sgsith
tool and not in a high-level compiler. Therefore, Optimugsiaot
implement any of the low-level optimizations that Handepé€r-
forms to improve the area efficiency.

6. CONCLUSION

Streaming applications are important to embedded systems d
velopers. Improving the performance of these applicationan
embedded setting is typically accomplished via speciappse
processors and ASICs that are inflexible and invariably egjye
to design. An alternate approach is to use configurable rew
fabrics such as FPGAs that provide a performance- and power-
competitive platform for their cost. In addition, FPGAs arereas-
ing available as components in heterogeneous systemshaind t
versatility makes them attractive platforms in a domain retsoft-
ware and consumer requirements change rapidly. Unforélyat
the complexity of programming FPGAs has limited their besefi
as only system engineers with hardware design expertisatdee
to effectively map software down to hardware circuits.

The goal of our work is enable the efficient realization oéam-
ing programs directly in hardware, when appropriate. Oui®ps
compilation methodology allows for streaming programsrezped
in a high-level streaming language such as Streamit to be aut
matically refined to hardware and realized as circuits in BBG
The Optimus compiler uses a hierarchical compilation sgyathat
separates concerns between macro- and micro-functiogaires
ments. Macro-functional optimization are geared to effitieas-
sembly filter module into larger applications. These optiamions
affect space (area) and time (throughput) characterisfitise ap-
plication circuits. Our goal in this regard is to provide thighest
performance for the lowest area cost. Comparing our geeerat
designs to an industry-strength compiler shows that we are p
formance and area competitive although we believe thereushm
more to be gained in our framework. Our results are largely en
abled by stream-specific considerations and optimizatibfisro-
functional optimizations are designed to improve the edficy of

the filter modules themselves. Our stream-aware optintizatn-
prove performance an average of 255% and reduce the araeerequ
ments by 16% compared to our baseline results.

7. ACKNOWLEDGMENTS

We thank Andrei Hagiescu for providing us with the Handel-
C implementations of DES and DCT. Stephen Neuendorffer from
Xilinx also helped us in using and understanding the XilipnS
thesis tools. We also extend our thanks to the anonymouswevs
who provided excellent comments.

8. REFERENCES

[1] AMD torrenza architecture, 2008.
http://enterprise.amd.com/us-en/AMD-
Business/Technology-Home/Torrenza.aspx.

Intel quickassist technology, 2008.
http://www.intel.com/technology/platforms
/quickassist/index.htm.

K. Bondalapati et al. DEFACTO: A design environment for
adaptive computing technology. Rroc. RAW pages
570-578, Apr. 1999.

I. Buck et al. Brook for GPUs: Stream computing on
graphics hardwaréACM Trans. Gr, 23(3):777-786, Aug.
2004.

Celoxica. Handel-C language overview, 1996.
http://www.celoxica.com.

M. Chen, X. Li, R. Lian, J. Lin, L. Liu, T. Liu, and R. Ju.
Shangri-la: Achieving high performance from compiled
network applications while enabling ease of programming.
In Proc. 05 PLDI, pages 224-236, June 2005.

C. Consel et al. Spidle: A DSL approach to specifying
streaming applications. IRroc. 2nd GPCEpages 1-17,
2003.

[8] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski.

(2]

(3]

(4]

(5]

(6]

(7]

9]

[10]

[11]

[12]

[13]
[14]

[15]

[16]

[17]

°
@

@

°
Q3

~

°
o

°
@«

°
IS

°
Py

Relative Queue Size After Optimization
°
»

°

Speedup (x100%)
S

w

o

@

~

[l

i

°
FFT
Parallel Adder
Bubble Sort
Merge Sort
te Cosine
Transfrom
DES
Matrix Multiply
Matrix Block
Multiply
Average

iscre:

a

(a) Queue Allocation Optimization

°

-
w
w

te Cosine
DES
Average

Transfrom

Bubble Sort :]

Parallel Adder
Merge Sort
Matrix Multiply
Matrix Block
Multiply

iscre:

(b) Queue Access Fusion Optimization

60

=]

Improvement in Slice Usage
-flop Usage

Himprovement in Flj

@
)

»
k3

Percent Improvment
w
g

N
5

)

o

-
w
w

Parallel Adder
Bubble Sort
Merge Sort

iscrete Cosine
Transfrom

DES
Matrix Multiply
Matrix Block
Multiply
Average

(¢) Flip-flop Elimination

Figure 10: Performance improvements and area savings due wifferent optimizations performed by Optimus.

Stream-oriented FPGA computing in the Streams-C high
level language. IfProc. 8th FCCM pages 49-56, Apr. 2000.
M. I. Gordon, W. Thies, and S. Amarasinghe. Exploiting
coarse-grained task, data, and pipeline parallelism eastr
programs. Inl2th ASPLOSpages 151-162, 2006.

Z. Guo, B. Buyukkurt, W. Najjar, and K. Vissers. Optirai
generation of data-path from ¢ codes for fpgasPtac. 2005
DATE, pages 112-117, Washington, DC, USA, 2005. IEEE
Computer Society.

S. Gupta, N. Dutt, R. Gupta, and A. Nicolau. SPARK: A
high-level synthesis framework for applying paralleligin
compiler transformations. IRroc. 16th Intl. Conf. on VLSI
Design pages 461-466, Jan. 2003.

J. R. Hauser and J. Wawrzynek. GARP: A MIPS processor
with a reconfigurable coprocessor.Pmoc. 5th FCCM pages
12-21, Apr. 1997.

Impulse-CoDeveloper. http://www.impulsec.com/.

M. Kudlur and S. Mahlke. Orchestrating the execution of
stream programs on multicore platforms.Rroc. '08 PLD|,
pages 114-124, June 2008.

E. Lee and D. Messerschmitt. Synchronous data fivec.
IEEE, 75(9):1235-1245, 1987.

W. Mark, R. Glanville, K. Akeley, and J. Kilgard. Cg: A
system for programming graphics hardware in a C-like
language. IrProc. 30th SIGGRAPHages 893-907, July
2003.

O. Mencer, H. Hubert, M. Morf, and M. J. Flynn. Stream:
Object-oriented programming of stream architecturesgisin
pam-blox. InProc. 10th FPL pages 595-604, London, UK,
2000. Springer-Verlag.

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]
[26]

[27]

Mentor. Catapult C. http://www.mentor.com/produets/
high_level_synthesis/catapult_synthesis/.

W. A. Najjar, W. Bohm, B. A. Draper, J. Hammes, R. Rinker,
J. R. Beveridge, M. Chawathe, and C. Ross. High-level
language abstraction for reconfigurable computlid:E
Computer 36(8):63—-69, 2003.

J. Nickolls and I. Buck. NVIDIA CUDA software and GPU
parallel computing architecture. May 2007.

S. Sirowy, G. Stitt, and F. Vahid. C is for circuits: caghg
fpga circuits as sequential code for portability.Rroc. 16th
FPGA pages 117-126, New York, NY, USA, 2008. ACM.
SystemC-Consortuim. SystemC language overview, 2000
http://www.systemc.org.

M. Taylor et al. Evaluation of the Raw microprocesson A
exposed-wire-delay architecture for ILP and streams. In
Proc. 31st ISCApages 2-13, June 2004.

W. Thies, M. Karczmarek, and S. P. Amarasinghe. Streaml|
A language for streaming applications.Pmoc. 02 CC

pages 179-196, 2002.

Trimaran. An infrastructure for research in ILP, 2000.
http://www.trimaran.org/.

Xilinx. Virtex-4 data sheets, 2004.
http://www.xilinx.com/support/documentation/virtexhtm.

D. Zhang, Z. Li, H. Song, and L. Liu. A programming model
for an embedded media processing architecture. volume
3553 ofLecture Notes in Computer Scienpages 251-261,
July 2005.

