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ABSTRACT
VLIW architectures are popular in embedded systems because they
offer high-performance processing at low cost and energy. The
major problem with traditional VLIW designs is that they do not
scale efficiently due to bottlenecks that result from centralized re-
sources and global communication. Multicluster designs have been
proposed to solve the scaling problem of VLIW datapaths, while
much less work has been done on the control path. In this paper,
we propose a distributed control path architecture for VLIW pro-
cessors (DVLIW) to overcome the scalability problem of VLIW
control paths. The architecture simplifies the dispersal of complex
VLIW instructions and supports efficient distribution of instruc-
tions through a limited bandwidth interconnect, while supporting
compressed instruction encodings. DVLIW employs a multiclus-
ter design where each cluster contains a local instruction memory
that provides all intra-cluster control. All clusters have their own
program counter and instruction sequencing capabilities, thus in-
struction execution is completely decentralized. The architecture
executes multiple instruction streams at the same time, but these
streams collectively function as a single logical instruction stream.
Simulation results show that DVLIW processors reduce the number
of cross-chip control signals by approximately two orders of mag-
nitude while incurring a small performance overhead to explicitly
manage the instruction streams.

1. INTRODUCTION
Many embedded systems perform computationally demanding

processing of images, sound, video, or packet streams. VLIW ar-
chitectures are popular for such systems because they offer the po-
tential for high-performance processing at a relatively low cost and
energy usage. In comparison to ASIC solutions, VLIWs are pro-
grammable, and therefore can support multiple applications or soft-
ware changes. Several examples of VLIW designs include the TI
C6x series, Lx/ST200, and Philips TM1300.

A major challenge with traditional VLIW processors is that they
do not scale effectively or efficiently due to two major problems:
centralized resources and wire delay. Centralized resources, includ-
ing the register file and instruction decode logic, become the cost,
energy, and delay bottlenecks in a VLIW design as they are scaled
to support more function units (FUs). As feature sizes decrease,
wire delays are growing relative to gate delays. This has a serious
impact on processor designs as distributing control and data each
cycle takes more time and energy [22, 4, 32]. Wire delays are fur-
ther exacerbated when the processor width is scaled as the distance
between FUs, register files and caches increases, thereby forcing
the signals to travel further.

To support efficient scaling of VLIW datapaths, multicluster de-

signs have been proposed. In a multicluster design, the centralized
register file is broken down into several smaller register files. Each
of the smaller register files supplies operands to a subset of the FUs,
known as a cluster [12, 7]. A design can be efficiently scaled by
adding more clusters as the bottlenecks produced by the central-
ized register file are removed. The clustering approach can be sim-
ilarly applied to the data memory subsystem. Data caches can be
partitioned and distributed to each cluster in the form of hardware-
managed caches [25, 13] or software-managed buffers [14].

VLIW processors face a similar scaling problem with the con-
trol path where conventional designs utilize a centralized instruc-
tion memory or cache to store instructions. A centralized instruc-
tion fetch, decode, and distribution system issues control signals on
every clock cycle to all the FUs and storage elements in the datap-
ath to direct their operation. This centralized control system does
not scale well due to complexity, latency, and energy consumption.
As processor issue width is scaled, the number of instruction bits
grows accordingly, increasing hardware cost for instruction fetch,
decode, and distribution. Variable-length instruction encodings can
be used to reduce code size, but often make the problem worse
by increasing the complexity of the instruction alignment and dis-
tribution networks [3]. The distance separating FUs and storage
elements from the instruction memory also grows as the design is
scaled, thereby exposing the wire delay problem in the same man-
ner as in the datapath.

In this paper, we introduce a distributed control path architec-
ture for VLIW processors called distributed VLIW, or DVLIW,
to support scalable control path design. The architecture simpli-
fies the dispersal of complex VLIW instructions and supports effi-
cient distribution of instructions through local interconnects. These
goals are achieved without sacrificing the code size benefits of com-
pressed instruction encodings. The central idea is to distribute the
instruction fetch, decode, and distribution logic in the same man-
ner that the register file is distributed in a multicluster datapath.
DVLIW has a multicluster datapath consisting of an array of clus-
ters. Each cluster contains an instruction memory or cache com-
bined with fetch, decode, and distribution units that provide control
within a cluster. All clusters have their own program counter (PC)
and next PC generation hardware to facilitate distributed instruction
sequencing.

With DVLIW, multiple instruction streams are executed at the
same time. These streams collectively function as a single logical
stream on a conventional VLIW processor. Although clusters fetch
independently, they execute operations in the same logical position
each cycle and branch to the same logical location. Procedures, ba-
sic blocks, and instruction words are vertically sliced and stored in
different locations in the instruction memory hierarchy. The logical



organization is maintained by the compiler to ensure proper execu-
tion. The DVLIW architecture can be viewed as a special chip
multiprocessor system that, through compiler orchestration, collec-
tively executes a single program exploiting ILP. A DVLIW archi-
tecture can also dynamically repartition itself to support concurrent
execution of multiple instruction streams. Thus, applications with
both large degrees of parallelism as well as those with limited but
thread-level parallelism can be efficiently executed on the DVLIW.

The DVLIW architecture derives its roots from the Multiflow
TRACE and XIMD architectures [7, 33]. The Multiflow TRACE/500
VLIW architecture contains two replicated sequencers, one for each
14-wide cluster. The two clusters can execute independently (sep-
arate threads) or rejoin to execute a single program. The XIMD
architecture generalized and formalized this concept. An XIMD
processor has multiple control units. Several control units can op-
erate identically, emulating a VLIW processor, or can partition the
processor resources to support the concurrent execution of multi-
ple instruction streams. Partitioning can vary dynamically to allow
for efficient execution of parallel loops [23]. Both the Multiflow
TRACE/500 and XIMD can execute one or more programs con-
currently with distributed control. These machines use a combined
software/hardware strategy that emulates a VLIW using a common
but replicated program counter for all clusters. When no instruc-
tion compression is utilized, programs within each cluster take an
identical amount of space. This allows simple branch strategies that
synchronize program counters across clusters.

The net effect of replicating a centralized PC is that it inherently
limits the use of any form of compressed instructions, particularly
variable length encodings. Each instruction sequencer must behave
identically, thus each cluster must have a constant instruction rate.
NOPs must be inserted to ensure the instruction words are fully
expanded and of constant size. Further, variable length encodings
for different operation types (e.g., move versus add, or the use of
different literal sizes) cannot be used. One of the central contribu-
tions of DVLIW is the combination of architectural and compiler
support to distribute the PC while supporting flexible instruction
compression technology in order to provide efficient usage of the
instruction memory.

2. BACKGROUND AND RELATED WORK
A large body of prior work exists in the area of VLIW proces-

sor design and architectures for supporting distributed execution.
We focus the discussion on the two areas most related to DVLIW:
architecture models for distributed ILP processing and VLIW in-
struction memory systems.

Distributed Architecture Models. DVLIW is built directly upon
prior multicluster VLIW processor designs, including Multiflow
TRACE [7], XIMD [33], and MultiVLIW [25]. The clustered reg-
ister file was first introduced in the Multiflow processor to facil-
itate wide-issue design. MultiVLIW has expanded this work by
focusing on alternative architecture/compiler strategies for design-
ing scalable distributed data memory subsystems. Interleaved data
caches [13] or compiler-managed L0 buffers [14] independently
supply memory data to each cluster. DVLIW extends these works
in an orthogonal direction by focusing on fully distributing the con-
trol path.

There are a number of parallels between DVLIW and the Raw
architecture [31]. Raw is a general-purpose architecture that effec-
tively supports instruction, data, and thread-level parallelism. In
Raw, all processor resources are fully distributed in the form of
a two dimensional grid of identical tiles. Further, all processor
resources are software-controlled and managed by the compiler.
Scalar operand networks are used to effectively route intermedi-

ate register values from producer to consumer tiles [30]. Our work
shares the central concept of software-controlled distributed ILP
processing. However, the primary difference is that Raw is orga-
nized more like a CMP. All tiles run independently and commu-
nicate through message queues and routers. This organization is
inherently more adaptable, but with a higher hardware cost. Con-
versely, DVLIW is more geared to embedded systems. It supports
fewer, but wider clusters with all clusters executing in lock step,
thereby creating a more energy-efficient design.

Distributed processing has also been investigated in the context
of superscalar processors including Multiscalar [28], Instruction
Level Distributed Processing (ILDP) [16] and TRIPS [26].

VLIW Instruction Memory Systems. The second area of prior
work is the design of VLIW instruction memory systems. The de-
sign space is taxonomized on two independent axes: binary encod-
ing style and degree of centralization.

The first characteristic that differentiates VLIW instruction mem-
ory systems is the binary encoding style. VLIW instructions can
be encoded using either an uncompressed or compressed repre-
sentation. Although many hybrid compression strategies involv-
ing NOPs and variable width operations are possible, only the two
extremes of NOP compression are considered here to simplify the
discussion. An uncompressed encoding is one that explicitly stores
NOPs for a particular FU when it is idle in a cycle. Conversely,
compressed encodings avoid explicitly storing NOPs to reduce code
size. NOPs in the code can be compressed both horizontally and
vertically. Horizontal compression reduces NOPs within a VLIW
instruction, while vertical compression removes entire cycles of
NOPs between instructions.

Several compressed encodings for VLIW processors have been
proposed. The TINKER encoding accomplishes horizontal com-
pression by using Head and Tail bits within an operation to de-
lineate the beginning and end of an instruction [8]. Every oper-
ation also contains a Pause field to indicate the number of empty
instructions after this instruction, thereby accomplishing vertical
compression. The Cydra 5 [24], PICO VLIW [3], and the Intel
Itanium employ multiple instruction templates to accomplish hor-
izontal compression. Each template provides operation slots for a
subset of the FUs; the compiler selects the closest template to re-
move the majority of NOPs. In addition, many techniques not only
avoid explicit NOPs but also reduce the size of useful operations.
For example, data compression methods are used to compress code
in embedded systems [17, 21, 34]. Larin and Conte presented tech-
niques for reducing VLIW code size by Huffman compression or
tailored encoding of the instruction set [18].

The second characteristic that differentiates VLIW instruction
memory systems is whether a centralized or distributed instruction
memory is utilized. A centralized instruction memory stores oper-
ations for all FUs. Conversely, with the distributed approach, mul-
tiple instruction memories are created with each storing operations
for a subset (cluster) of the FUs.

The cross product of both characteristics defines four high-level
VLIW instruction memory configurations: centralized/uncompress-
ed, centralized/compressed, distributed/uncompressed, and distri-
buted/compressed as shown in Figure 1. Centralized/uncompressed,
Figure 1(a), provides the simplest organization in that the instruc-
tion word length and the position of operations for each FU are
fixed, thus the mapping from I-cache to instruction register (IR) is
trivial. However, for a wide issue processor, the I-cache utilization
can be extremely low. To remove the NOPs, centralized/compressed,
Figure 1(b), increases the complexity of the fetch unit as it needs
to partially decode the instruction to determine the boundary of the
instruction word and correctly expand the compressed instruction
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Figure 1: Instruction memory organizations: (a) Centralized
instruction cache, uncompressed encoding; (b) Centralized in-
struction cache, compressed encoding; (c) Distributed I-cache,
centralized PC, uncompressed encoding; (d) Distributed I-
cache, distributed PC, compressed encoding.

into the IR.
The scalability problem of centralized I-caches can be overcome

by utilizing distributed caches. With a distributed approach in a
multicluster processor, each cluster has its own I-cache to supply
instructions. Assuming each cluster is homogeneous, all operations
are the same size, and no compression, all clusters execute the same
cache entry each cycle. Thus, the distributed/uncompressed (Fig-
ure 1(c)) can utilize a common PC to index into each I-cache. The
use of a common PC relies on each cluster having a constant in-
struction rate during the execution. Most previous research on dis-
tributed instruction memories falls into this category as they rely
on a single PC or multiple identical PCs to index the memories
when a single program is executed. Since XIMD has no I-cache,
a more sophisticated compiler may be able to remove this restric-
tion [33]. Another approach, the Silo cache [8], partitions the in-
struction cache into silos, where each silo holds operations for a
particular set of FUs. All silos are indexed by a single PC. Al-
though instructions must be uncompressed, multiple instructions
can coexist at the same address across silos.

Distributed/compressed, Figure 1(d), is the proposed DVLIW in-
struction memory organization. To support compressed encodings
with a distributed I-cache, the PC must also be distributed as in-
struction sizes for each cluster must be allowed to vary. All the
clusters fetch independently from different PCs and compute their
own next PCs. The DVLIW architecture and its operation are dis-
cussed in detail in the following sections.

3. DVLIW ARCHITECTURE

3.1 Overview
The DVLIW architecture completely decentralizes the instruc-

tion memory to facilitate distributed instruction fetch, alignment,
decode, distribution, and sequencing. Together with other cluster-
ing techniques, the distributed instruction memory allows opera-
tions to be fetched and executed locally within a cluster. The pri-
mary advantage of this design is that it is both more scalable and
hardware efficient, since the bottleneck of the traditional central-
ized instruction memory is removed. Furthermore, full support for

compressed encodings in all levels of memory hierarchy is pro-
vided by the architecture to maintain small code size. Thus, the
architectural model is particularly appropriate for embedded sys-
tems.

Figure 2 presents a block diagram of a four cluster DVLIW pro-
cessor. Clusters are organized in a one or two dimensional array,
surrounded by a banked L2 cache. Such an organization is similar
to tiled architectures, such as Raw [31]. Inter-cluster data commu-
nication is handled via connections between neighboring clusters.
The latency of inter-cluster communication is exposed to the com-
piler, which schedules explicit ICMOVE (inter-cluster move) op-
erations to transfer data between clusters. A one-bit bus connect-
ing all clusters is used for propagating stall signals. This globally
propagated stall signal maintains synchronization among DVLIW
clusters. A second bus is used for broadcasting branch conditions
and will be described later in this section.

The datapath of each cluster is similar to that of a conventional
multicluster VLIW, with each cluster having its own FUs, general
purpose register file (GPR), predicate register file (PR), branch tar-
get register file (BTR), and floating point register file (FPR), and
a inter-cluster move unit to transfer data between neighbor clus-
ters. Each cluster also has its own data cache; a bus-based snoop-
ing protocol is assumed to maintain coherence among data caches.
The DVLIW architecture does not limit the way in which data
caches are organized—any hardware or software coherence proto-
col will suffice. In addition, the control path is fully partitioned as
each cluster has its own program counter (PC), instruction cache,
shift/align network, and instruction register (IR). In every cycle,
each cluster fetches operations from its I-cache according to its own
PC. All clusters execute synchronously and the execution order of
operations is the same as that of a traditional VLIW architecture.
All operations in a logical instruction word are fetched and exe-
cuted at the same cycle in different clusters. If any cluster incurs a
cache miss, all clusters must stall.

Within each cluster’s instruction cache, there are no restrictions
on the code compression techniques that may be used. Compres-
sion schemes, such as TINKER, instruction templates, or Huffman
code based techniques as described in Section 2, may be used to
preserve small code size while distributing the instructions. The
compressed instructions are decompressed as they move from the
I-cache to the IR in each cluster via the shift/align network.

The code organization in all levels of the memory hierarchy is
changed for DVLIW. In conventional architectures with a central-
ized PC, all operations within the same instruction word are placed
sequentially in memory, as shown in Figure 3(a). Thus, operations
for different clusters, e.g. A0 and A1, are placed next to each other.
With such a code organization, distributing the I-cache is difficult
because the actual distribution of instruction bits must occur during
program execution by the hardware. This generally precludes any
instruction compression schemes as the run-time distribution algo-
rithm must be very simple. In the DVLIW architecture, the oper-
ations for each cluster are grouped together, and code for different
clusters is placed separately in the memory (or in separate mem-
ories), as shown in Figure 3(b). This organization of code allows
a cluster to compute its own next PC without knowing the size of
operations in other clusters, thus allowing all clusters to fetch and
execute independently.

3.2 Branch Mechanism
A major challenge that arises for the DVLIW architecture is

branch execution. A valid single thread of execution must be main-
tained using multiple instruction streams. Therefore, each instruc-
tion stream must execute instructions from the same logical instruc-
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tion word each cycle and branch to the same logical target at the
same time. As shown in Figure 3(b), operations in a logical in-
struction word are stored in separate locations. Thus, every cluster
has a different branch target for each branch operation. Special ar-
chitectural and compiler support is proposed to solve this problem.

The proposed branch mechanism is based on the unbundled branch
architecture in HPL-PD [15]. The unbundled branch architecture
separately specifies each portion of the branch: target address, con-
dition, and control transfer point. In this manner, each portion of a
branch can be specified as soon as it becomes available to reduce
the latency associated with branches. For example, the branch tar-
get is static and can be specified well in advance of the branch to
permit instruction prefetching. In the HPL-PD architecture, each
portion of the branch is performed by a separate operation. The
operations involved in branches are as follows:

Branch target address specification. Prepare-to-branch (PBR)
operations are used to specify the target address and a static pre-
diction for a branch ahead of a branch point, typically initiating
instruction prefetch when the prediction bit is set to taken.

Branch condition computation. Compare-to-predicate (CMPP)
operations are used to compute branch conditions, which are stored
in the PR file.

Control transfer. The actual branch operations test the branch
condition and perform the transfer of control to the target address.
Control transfer operations include branch-if-condition-true (BRCT)
and branch unconditionally (BRU).

There is no dependence between the computation of the branch
target address and the computation of the branch condition, so the

order of the first two steps is not restricted. An unconditional
branch does not need the computation of the branch condition, and
thus consists of only the first and last steps.

In a DVLIW architecture with unbundled branches, branch tar-
gets must be computed separately for each cluster. The idea of an
external branch is introduced to represent the implementation of a
branch on another cluster. For each original branch scheduled on a
cluster, an external branch on all other clusters must be created by
compiler to ensure that proper control flow is maintained in each
instruction stream. As a result, the HPL-PD unbundled branch pro-
cess becomes slightly more complex. Four steps are required as
follows:

Branch target address specification. To specify a separate branch
target for each cluster, a separate PBR operation must be issued for
each cluster. A conventional PBR operation is used for the cluster
with the original branch, and an external PBR (EPBR) is created
for each of the other clusters. Both the PBR and EPBRs behave
identically to the original PBR, storing the branch target in a BTR
register and initiating a prefetch if the prediction bit is set. The ex-
ternal distinction is only a logical one. The targets of the PBR and
EPBRs correspond to the same logical block. The actual physical
address for each is filled in by subsequent assembling and linking
after all of the code is fully bound.

Branch condition computation. There is no change in the branch
condition computation. A single CMPP operation is issued on a
cluster and the result is stored in the predicate register file. Unlike
the branch target address which is different for each cluster, the
branch condition is the same for all clusters.

Branch condition distribution. In the DVLIW architecture,
each cluster containing an external branch must be informed of the
branch condition. A broadcast operation, BCAST, is executed by
the cluster where the branch condition was computed. This opera-
tion is an inter-cluster move with one source and multiple destina-
tions; it copies the branch condition bit from the predicate register
file where it was computed to the predicate register files of the other
clusters. In order to save encoding size, the multiple destinations
have the same register number. (Alternately, the compiler can insert
a branch condition receive operation in all clusters with an external
branch, thereby broadcasting the condition bit to arbitrary register
locations in each cluster).
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Figure 4: Example code segment for a two cluster processor: (a) Traditional VLIW, (b) DVLIW. The leftmost operand is the desti-
nation for each assembly operation.

Control transfer. If the branch condition is taken, each clus-
ter transfers control to its individual branch target. All of these
branch targets correspond to the same logical block. In the cluster
with the original branch, a conventional HPL-PD branch operation
is used. New branch operations, called external branches (EBR),
are used on the other clusters. EBRs behave exactly as BRCT op-
erations (again the naming is for logical purposes only) using the
broadcast condition. A conservative approach is that the control
transfers must all be scheduled at the same cycle to guarantee cor-
rect execution order and enforcement of dependences, as together
they implement one branch in a traditional VLIW.

Special support is provided in DVLIW for efficient distributed
execution of software-pipelined loops. In HPL-PD, two special
registers, the loop count (LC) and the epilogue stage count (ESC),
are used to control loop execution. The LC register automatically
decreases by one in every loop iteration until it reaches zero, then
the ESC is decremented to drain the pipeline. The loop execution
condition is determined solely by testing the LC and ESC. With
DVLIW, the LC and ESC are replicated in every cluster and ini-
tialized in the preloop. Once execution starts, each cluster updates
its own LC and ESC. As a result, the cluster control is completely
decoupled during the execution of software pipelined loops. Note
that inter-cluster data communication is still necessary to transfer
register values between clusters in most loops.

3.3 Example
The example in Figure 4 illustrates the organization and opera-

tion of DVLIW code. This is a basic block adapted from the raw-
caudio benchmark [19]. The code is compiled for a two-cluster
processor with each cluster supporting two operations of any type
per cycle. The figure shows the VLIW schedule in tabular form
with each row comprising a single instruction word. Figure 4(a)
shows the code for a traditional multicluster VLIW. The branch at
the end of the basic block is realized by three operations: the PBR
at cycle 2, the CMPP at cycle 4, and the BRCT at cycle 6. Control
is transferred to block 42 if the condition evaluates to True. Note
that no branch operations are required on cluster 1.

Figure 4(b) shows the corresponding DVLIW code. There are
two major changes in the code. First, the code for the basic block
is split into two disjoint pieces, one for each cluster, and they are
stored in different memory locations. Second, three new operations
(shown in bold in the figure) are inserted. An EPBR is inserted
on cluster 1 at cycle 0 to specify the branch target for cluster 1
corresponding to logical block 42. A BCAST is inserted on cluster
0 at cycle 5 to transmit the branch condition contained in predicate
PR7 on cluster 0 to PR7 on cluster 1. Finally, an EBR is inserted
in cluster 1 and scheduled at the same cycle as the BRCT in cluster
0. The EBR reads the branch condition from the register written
by the BCAST, and branches to the specified target if the value is
True.

Note that the two clusters enter the basic block at the same time,
but with differing local PCs. Before execution of the BRCT and
EBR, each cluster executes instructions independently. The only
inter-cluster control communication occurs in cycle 5 when the
BCAST operation is executed, sending the branch condition from
cluster 0 to cluster 1. There are two inter-cluster data communica-
tions (ICMOVEs) at cycles 0 and 3.

3.4 Analysis of the Architecture
As global communication in processors becomes critical from

cost, latency, and energy efficiency perspectives, the DVLIW archi-
tecture has a number of advantages. First, DVLIW can effectively
remove the bottleneck caused by global wires to fetch and dis-
tribute operations in wide issue machines. In this architecture, the
resources needed for instruction fetch, including instruction cache
and next PC generation hardware, are localized within the clusters.
Together with other datapath and data cache clustering techniques,
DVLIW provides an efficient architecture for creating scalable de-
signs. Furthermore, the elimination of global communication re-
duces control path energy and latency. In addition, DVLIW sup-
ports both horizontal and vertical instruction compression within
each cluster using any existing technique. The compression of code
is not possible in traditional distributed I-cache schemes where the
PC is still centralized.

On the negative side, there are some costs associated with DVLIW.
The architecture needs extra operations to be inserted for every
branch on every cluster, which leads to increased code size. Fur-
thermore, the dependence height of a block can be increased if a
branch is on the critical path. Third, a larger number of I-cache
misses may occur since each cache is independently managed. Last,
the global stall signal bus and the branch condition bus may limit
the scalability of the processor. To address these challenges, the
next section proposes ways to reduce the code size expansion and
the impact of I-cache misses. In addition, issues regarding proce-
dure calls and compiler partitioning are discussed.

4. IMPLEMENTATION ISSUES

4.1 Cluster Sleep Mode
In the DVLIW architecture, multiple clusters collectively exe-

cute a single program exploiting instruction/loop level parallelism.
Some applications may not have enough parallelism to keep all of
the clusters busy, in which case some clusters are idle for portions
of the application’s execution. Also, a heterogeneous clustered ma-
chine may have a cluster dedicated to floating-point operations;
when integer code is executed, the floating-point cluster is idle.

In the basic DVLIW model, every cluster must keep its control
flow synchronized with other clusters even if the cluster is not doing
any useful work. If a cluster branches to a block, other clusters



also need to branch to the same logical block at the same time. To
keep the idle clusters synchronized with other clusters, every empty
block must contain the EPBRs and EBRs, and at least one NOP at
the beginning for synchronization. These operations in idle clusters
increase static code size and waste energy when they are executed.

A software-controlled mechanism is proposed to handle idle clus-
ters. The idea is to allow the compiler to insert operations to ex-
plicitly place a cluster in sleep mode and wake a cluster to resume
execution. In sleep mode, the cluster does nothing, but values in
the register files are kept unchanged.

To support sleep mode, several new operations are introduced
into the instruction set architecture (ISA). In DVLIW, switching
between sleep mode and wake mode is always done at a block
boundary. Thus, the sleep operation is always executed in the same
cycle as a branch. There are three operations that can begin sleep
mode: SLEEP TK, SLEEP NT, and SLEEP AL. All of these op-
erations have no operands, so their encoding can be very com-
pact. SLEEP TK (NT) sets the cluster it is executing on to sleep
mode if the branch executing in the same cycle is taken (not taken).
SLEEP AL always sets the cluster to sleep mode whether the branch
is taken or not.

Sleep mode could be supported by adding a single SLEEP oper-
ation rather than three, and giving the SLEEP operation a predicate
operand. We choose to add three different sleep operations instead
of one to reduce the encoding size. SLEEP TK and SLEEP NT get
their predicate implicitly from the branch in the same cycle, so all
three of these operations can be encoded as two bits in the encoding
of a branch operation. Since most branch operations do not have a
destination operand, two bits are available for sleep modifiers, and
overall code size is not affected.

Waking up a sleeping cluster is more complicated as it must be
done by a cluster that is active. The waking of a cluster is essen-
tially an inter-cluster move. An active cluster moves an instruction
address to the PC register of the sleeping cluster, and tells the sleep-
ing cluster to start execution from that PC after a certain number of
cycles so that all clusters remain synchronized. A WAKE opera-
tion is added to the ISA that has three source operands: a cluster id
indicating which cluster to wake up, a start PC where the sleeping
cluster should begin executing, and a delay, which is the number
of cycles the sleeping cluster should wait before it starts executing.
This delay operand is used to give more scheduling flexibility when
multiple WAKEs must be executed and the inter-cluster bandwidth
is limited. The WAKE operation is also guarded by a predicate.

Figure 5 shows an example usage of sleep mode in DVLIW. Fig-
ure 5(a) is a portion of a control flow graph; edges labeled TK
(NT) represent taken (fall-through) paths. Figure 5(b) shows the
same control flow graph on a 2-cluster DVLIW machine. Assume
the program does not have enough parallelism for the compiler to
assign any operations to cluster 1 in blocks BB2, BB3, BB4, and
BB5. Without sleep mode, all of these blocks must contain EPBR,
EBR and NOPs to stay synchronized. With support for sleep mode,
a SLEEP TK operation is added in cluster 1 at the end of BB1, at
the same cycle as the EBR operation. If the EBR is taken, cluster
1 will enter sleep mode. To wake up cluster 1, a WAKE operation
is added in BB5 of cluster 0, one cycle before the branch. It will
make cluster 1 wake up and start execution at BB6 after a 1-cycle
delay, if the branch is not taken (p2 is false).

4.2 Compiler Support
In addition to performing the conventional VLIW compiler tasks,

such as scheduling and register allocation, a DVLIW compiler must
partition operations across the clusters, insert ICMOVE sequences
to transfer values between clusters, insert EPBRs, BCASTs and

…
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BB6 …
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Figure 5: Sleep mode example: (a) Original control flow graph,
(b) control flow graphs for a 2-cluster DVLIW where cluster
one is in sleep mode for blocks two through five. Sleep mode is
entered via the SLEEP TK operation in BB1 on Cluster 1 and
exited via the WAKE operation in BB5 on Cluster 0.

EBRs to orchestrate the correct control flow, and insert SLEEPs
and WAKEs to switch clusters between active and sleep modes.

The first step is to perform operation partitioning to assign oper-
ations to clusters [11, 6]. We use a typical partitioning algorithm
that attempts to maximize performance by balancing the applica-
tion workload across the clusters while minimizing the number of
required ICMOVEs. If a value must be communicated from one
cluster to another, an ICMOVE must be inserted; if this ICMOVE
is on the critical path, performance may suffer. In addition, the
inter-cluster communication bandwidth is limited. Therefore, the
goal is to localize communication of data values within a cluster
as much as possible, while distributing work across clusters to take
advantage of instruction- and loop-level parallelism.

This performance-centric clustering algorithm attempts to make
use of all of the parallelism available in the machine in order to
achieve the best schedule for each region of code. In many cases,
this results in an unbalanced schedule, with more operations on
some clusters than on others. For example, if there is a long depen-
dence chain in the code, this dependence chain may be scheduled
on one cluster, while other independent operations are scheduled on
other clusters. In such cases, it is often possible to proactively of-
fload all of the operations from some lightly-loaded clusters while
suffering little or no performance penalty. Those clusters can then
be placed in sleep mode as described in Section 4.1, saving energy
and code size.

The overall compiler flow is summarized as follows. First, op-
eration partitioning is performed, followed by ICMOVE insertion.
Next, the compiler inserts EPBRs and BCASTs to the appropriate
clusters for every branch sequence in the code. The code is then
scheduled and register allocated. After scheduling, EBR opera-
tions are inserted to ensure all clusters contain a branch. EBRs are
inserted in the same cycle as the original branches. Note that the
branch resource is guaranteed to be free as at most one branch is
allowed per cycle in the original schedule. Finally, the active and
idle blocks in all clusters are identified and the appropriate SLEEP
and WAKE modifiers on the branches are inserted.

4.3 Instruction Prefetching
In DVLIW, the centralized I-cache is distributed to several smaller

caches. When a program is executed, every I-cache miss requires
all clusters to stall. Thus, the smaller distributed I-caches can cause



more stalls due to multiplicative misses. Many of these misses may
be handled in parallel; however, differing code sizes in each clus-
ter can cause misses not to overlap perfectly. Moreover, it may not
be possible to evenly partition the code among clusters, further in-
creasing stall cycles when each cluster has a smaller I-cache. To
mitigate the penalty of I-cache misses, we employ the HPL-PD ar-
chitecture mechanism for software-controlled instruction prefetch-
ing to reduce stalls [15]. The idea is that PBR and EPBR oper-
ations contain a prediction bit to initiate a prefetch of the target
address of the branch. An integer field is also added to PBR/EPBR
operations to specify the number of cache lines to prefetch. Note
that prefetching is also useful on a traditional VLIW; however, it is
more important in DVLIW machines due to the smaller distributed
I-caches.

4.4 Procedure Calls
There are several issues with procedure calls in DVLIW. First,

as stated in Section 4.1, sleep and wake operations are inserted at
branches. If a branch is a procedure call, the compiler may not
know which clusters are active in the callee function particularly if
procedures are compiled separately. Moreover, since a procedure
may have multiple callers, it is impossible to know which clusters
are active at the return point (call site). The second issue is function
pointer support. If a function is called through a pointer, its address
will be determined at run time. In DVLIW, a function has multiple
start addresses, one for the code in each cluster. Thus, each function
pointer in DVLIW needs to be a vector of addresses instead of a
single address. This solution requires non-trivial compiler changes
and could significantly increase the code size if function pointers
are heavily used. Finally, for functions in dynamic linked libraries
(DLLs) and interrupt/exception handlers, a single address is used
to represent the branch target in traditional processors. If a vector
of addresses is used to represent a branch target in DVLIW, the
compiler, operating system, and user software would all need to
change.

Our solution to all of these problems is to enforce a DVLIW
calling convention. We assume that only the first cluster (cluster 0)
is active in the first and last block of every function. If the func-
tion needs to use more than one cluster, it will have explicit wake
operations to activate them. In this case, every function has only
one start address, just as in a traditional processor. Thus, function
pointers and library calls can be handled smoothly. Note that this
calling convention can be relaxed for certain function calls if the
source code for both caller and callee are available, and the com-
piler is able to perform inter-procedural analysis to determine the
start addresses and sleep/wake states for the callee function. An al-
gorithm can be designed to intelligently choose between different
ways to handle function calls to achieve optimal performance and
energy usage. Currently, we assume separate compilation, so no
inter-procedural optimizations are applied.

Function pointers are a kind of indirect jump where the target
is another function. Indirect jumps may also target basic blocks
within the same function, such as in table jumps generated for C
switch statements. In this case, the compiler simply replicates the
branch target table for every cluster.

5. EXPERIMENTAL RESULTS
To evaluate the DVLIW architecture, an experimental system in-

cluding compiler, assembler, linker, and simulator was built using
the Trimaran toolset [2]. The DineroIV trace-driven cache simula-
tor [10] was integrated into the simulator to provide cache perfor-
mance data.

2-cluster and 4-cluster DVLIW processors are compared to base-

line VLIW machines with a traditional centralized control path.
Both DVLIW and baseline machines have a clustered datapath.
Common to all machines are 2 integer units, 1 floating-point unit,
1 memory unit, and 1 branch unit in each cluster. Operation la-
tencies similar to those of the Intel Itanium are assumed. The L1
I-caches are 4-way with 64-byte blocks; total sizes of 8K, 16K, and
32K are examined. Each L1 I-cache in a DVLIW cluster has a size
of total L1 size

#clusters
. For example, in the four-cluster configuration, a

DVLIW machine with four 4K L1 I-caches is compared to a ma-
chine with a conventional 16K L1 I-cache. 32K data caches are
assumed for all experiments. The L1 miss latency is a minimum of
10 cycles. All machines have a unified, centralized 8-way 256K L2
cache with 128-byte blocks. The clusters are configured in a mesh
for both DVLIW and the baseline. The latency for inter-cluster
communication is 1 cycle per hop.

The compiler employs hyperblock region formation; loops were
software-pipelined if possible and unrolled otherwise. Unless oth-
erwise specified, sleep mode is used for DVLIW machines. The
performance of the MediaBench benchmarks [19] and a subset of
the SPECint2000 benchmarks were evaluated.1 The multimedia
benchmarks have characteristically high ILP, making them ideal
candidates for wide-issue machines, while the SPEC benchmarks
are more irregular and difficult to partition effectively.

DVLIW vs. CVLIW Cost and Energy. The experimental anal-
ysis is begun by comparing the cost and energy of the DVLIW in-
struction fetch and distribution subsystem to that of a traditional
VLIW which uses a centralized control path architecture, CVLIW
for short. Table 1 compares hardware cost and power consumption
of the instruction align/distribution logic for DVLIW and CVLIW.
The issue width of all configurations is 16 and the TINKER en-
coding is assumed [8]. To employ compressed encodings, shift,
align, and distribution networks are required in both CVLIW and
DVLIW. The shift/align network is required because the beginning
of variable-length instructions will not always be aligned to the be-
ginning of a cache line. A distribution network is required because
the control bits must be delivered to all the FUs but the positions
of control bits for FUs are not fixed. The cost of these networks
increase quadratically with the issue width, because the number of
MUXes and the number of inputs for each MUX increase with the
issue width. Using the Synopsys Design Compiler [1], we syn-
thesized the major components of these networks. As can be seen
from the table, the distributed organization of the DVLIW can ef-
fectively control this quadratic cost and energy consumption of the
alignment and distribution logic. By distributing the networks, a
large centralized network can be avoided for wider issue machines.

The key benefit of DVLIW is that most instruction fetch and dis-
tribution can be done locally. Only rarely is global distribution of
control bits necessary. For purposes of this analysis, we define a
global signal as an inter-cluster transfer or transfer between a cen-
tralized memory and a cluster. A local signal is one that is con-
tained within a cluster (possibly including a local I- or D-cache.)
Figure 6 compares the number of bytes distributed globally on a 4-
cluster DVLIW and CVLIW. Three bars are shown for each bench-
mark. The first bar shows the increase in inter-cluster data commu-
nication on DVLIW architectures, including BCASTs and WAKEs;
this increase is generally negligible. The second bar shows the ra-
tio of globally distributed instruction bytes on the CVLIW to glob-
ally distributed instruction bytes on DVLIW. On the CVLIW with
centralized I-fetch, all the instruction bits need to be distributed
on global wires (both L1 hits and misses), while on DVLIW, only
L1 cache misses need to be transfered on global wires. The ra-

1Benchmarks in the suites but missing from the evaluations were left out
due to problems with the Trimaran compiler system.



Configuration 16-issue Traditional VLIW 2× 8 DVLIW 4× 4 DVLIW 8× 2 DVLIW
Hardware area (mm2) 6.317 2.638 0.843 0.307

Power (µW ) 95.112 46.792 25.296 12.504

Table 1: Comparison of hardware cost and power consumption for the instruction align/shift/distribution networks of various VLIW
configurations.
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Figure 6: Reduction in dynamic global communication sig-
nals of a 4-cluster DVLIW processor.
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Figure 7: Relative energy consumption for the instruction
fetch subsystem of a 4-cluster DVLIW processor.

tio varies from 20 to 1,000,000 across the benchmarks. The third
bar shows the total reduction of global traffic including both inter-
cluster move and instruction fetch. The total ratio is not as large as
the fetch ratio because inter-cluster data transfers represent a sig-
nificant portion of the global traffic that does not change much on
DVLIW.

The reduction in global traffic combined with a more efficient
cache organization leads to potential energy savings for DVLIW
over a traditional VLIW. Focusing on the instruction fetch subsys-
tem, Figure 7 reports the relative energy on a 4 cluster DVLIW ar-
chitecture. A value of 1 in the figure is the instruction fetch energy
consumption on a CVLIW processor with the same issue width
and centralized control path. Our instruction energy consumption
model consists of 3 parts: align/distribution, interconnect, and the
L1/L2 caches. The align/distribution energy was presented previ-
ously in Table 1. The interconnect energy corresponds to the energy
consumed to broadcast the control signals from the I-cache to the
FUs. We use a wire energy model similar to that of [29]. Finally,
the L1/L2 cache energy is derived from Cacti [27].

As shown in Figure 7, DVLIW on average reduces the energy
consumption of the instruction align/distribution network by 67%,
interconnect by 80%, and the caches by 21%. The total energy con-
sumption on the control path is reduced by 54% on average. One
thing to notice is that three benchmarks (cjpeg, djpeg and 255.vor-
tex) consume more I-cache energy in the DVLIW processor. This
is because although DVLIW has smaller and more efficient caches,
the number of I-cache accesses and L1 misses for these benchmarks
increases by a large amount. However, the energy savings on the
instruction align/distribution network and interconnect compensate
for the increase in I-cache energy consumption, and the total energy
coa large fraction of control path is reduced. In a real processor, in-
struction fetch consumes a large fraction of power dissipated by the
processor. For example, instruction consumes 27% of CPU power
in the StrongARM SA-100 [9], and almost 50% of CPU power in
the Motorola MCORE [20]. The energy savings on the control path
translate to a significant power reduction for the whole chip.

DVLIW vs. CVLIW Performance. Figure 8 shows the per-
centage change in execution time on 4-cluster DVLIW versus a 4-
cluster CVLIW. Two bars are presented for each benchmark; they
represent total I-cache configurations of 16K and 32K. The baseline

for each bar is the execution time on the CVLIW machine with the
corresponding total I-cache size. A positive value means the exe-
cution time was longer on DVLIW. Each bar in the graph is divided
into 2 parts; the lower part represents the portion of execution time
due to the increase in computation, such as the EPBRs, BCASTs
and WAKEs. The upper part represents the change in I-cache miss
stalls.

On average, the execution time increases due to the extra compu-
tation is about 5%. For gsmencode and gsmdecode, the computa-
tion time is shorter because a different clustering algorithm is used
for DVLIW to set more clusters to sleep mode, which could result
in a different schedule. A closer look into the data shows that most
of the slowdown in the computation is because some BCASTs are
inserted on the critical path and thus increase the schedule length.
This observation suggests that instruction replication techniques [5]
can be used to reduce execution time on DVLIW in the future.

The I-cache stalls vary widely across different benchmarks and I-
cache configurations. The L1 cache misses increase in the DVLIW
architecture for most benchmarks because the code size on DVLIW
increases, and the code is not evenly distributed across clusters
while the I-cache hardware is evenly divided between the clusters.
A more detailed study of the g721encode benchmark on the 16K
I-cache configuration shows that a large unrolled loop body can fit
into the 16K centralized I-cache, but in the 4-cluster DVLIW, the
I-cache for each cluster is only 4K. The loop is not divided evenly
and cannot fit in the 4K I-cache in one of the clusters. This results
in cache misses every iteration of the loop.

To better illustrate the overhead of managing the separate in-
struction streams on DVLIW, DVLIW is compared against CVLIW.
One thing to note is that the CVLIW machine is not scalable. As
the number of FUs increases (up to 20 in these experiments), it be-
comes unrealistic to implement a VLIW with centralized control.
Thus, DVLIW is compared with an ideally-scaled CVLIW instead
of a realistic design in the prior experiments. The modest overhead
of DVLIW should therefore be considered a positive result.

DVLIW Sleep Mode. To demonstrate the effectiveness of sleep
mode in reducing code size, Figure 9 compares the relative code
size with and without sleep mode enabled for a 4-cluster DVLIW
machine. The code size is reported relative to the 4-cluster CVLIW
with a fully compressed encoding. On average, DVLIW code size
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Figure 8: Relative execution time on a 4-cluster DVLIW pro-
cessor with total I-cache sizes of 16K and 32K.
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Figure 9: Effectiveness of sleep mode on a 4-cluster DVLIW.
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Figure 10: Comparison of the relative code size of 2- and
4-cluster DVLIWs with VLIWs having a distributed I-cache
and a shared PC.
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Figure 11: Comparison of the relative stall cycles and exe-
cution time on a 4-cluster DVLIW with a VLIW having a
distributed I-cache and a shared PC.

decreases from 1.77 times that of a CVLIW without sleep mode to
1.40 when sleep mode is used. This shows that in parts of the ap-
plication that do not have high ILP, significant code size and energy
savings can be realized by turning off unused clusters.

DVLIW vs. Distributed Uncompressed Instruction Memory.
The obvious alternative to DVLIW is to distribute the control path,
but with a single PC, similar to the Multiflow TRACE system as
shown in Figure 1(c). With this approach, code compression can-
not be employed as discussed in Section 2. Figure 10 compares
the normalized code size of DVLIW and the distributed uncom-
pressed architecture. On the y-axis, a value of 1 is the code size
of the benchmark on a CVLIW machine with a fully compressed
encoding. Again, the TINKER encoding is assumed in our ex-
periments [8]. Four bars are presented for each benchmark. The
first bar is the normalized code size of the benchmark on the 2-
cluster DVLIW machine. The second bar shows the normalized
code size on a 2-cluster distributed machine with uncompressed
encoding. The third and fourth bars show corresponding data for
4-cluster configurations. On average, the normalized code size is
1.2 on the 2-cluster DVLIW and 1.4 on the 4-cluster DVLIW. The
increase in code size on DVLIW is due to the introduction of EP-
BRs, BCASTs, EBRs, WAKEs and other related operations such as
spill code. As stated before, the fully uncompressed encoding must
be used for distributed architectures with a shared PC or multiple
identical PCs. As shown in the figure, the code size on DVLIW
machines is much smaller than the code size on those machines.

Figure 11 shows the relative stalls and execution cycles of a
4-cluster DVLIW over the corresponding processors with uncom-

pressed distributed I-cache. The datapath of both machines is iden-
tical. The TINKER encoding is used for DVLIW, while the shared
PC machine uses an uncompressed encoding. As shown in the fig-
ure, on average, stall cycles decrease by 70% on DVLIW and con-
sequently, the total execution time reduced by 30%. One bench-
mark 164.gzip is slightly slower on DVLIW because the I-cache
stalls account for a small fraction of the total execution time, and
the overhead incurred by extra operations on DVLIW outweighs
the benefit of fewer I-cache stalls. However, for the majority of
benchmarks, the benefits of smaller code size and fewer I-cache
misses more than compensate for the overhead of extra operations.

6. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a distributed VLIW architec-

ture to overcome the scalability limitations of VLIW control paths.
The architecture combines a multicluster datapath design and a
completely decentralized instruction fetch, decode, and distribu-
tion subsystem. The DVLIW architecture simplifies the dispersal
of complex VLIW instructions while not sacrificing the code size
benefits of compressed instruction encodings. DVLIW executes
multiple instruction streams at the same time, orchestrated to col-
lectively function as a single logical stream through architectural
support and compiler technology. Experimental results show that
on average DVLIW reduces inter-cluster communication traffic by
30x. This leads to a 90% savings in interconnect energy and a 21%
overall energy savings in the instruction fetch subsystem. DVLIW
introduces a small performance overhead over ideally scaled VLIW
machines with centralized control paths due to increased instruc-



tion cache stalls, ranging from an average of 17% with an 16k in-
struction cache to 7% with a 32k instruction cache. DVLIW also
introduces a modest code size increase due to the explicit manage-
ment of the multiple instruction streams. However, the code size
on DVLIW is still about 5 times smaller than the code size on other
distributed architectures with a shared PC or multiple identical PCs
where uncompressed encodings must be used. We believe DVLIW
provides a highly scalable architectural model where processor exe-
cution width can be efficiently scaled to meet the high-performance
demands of current and future embedded processing.

For future work, the DVLIW architecture can be extended to
support decoupled execution. In decoupled mode, every cluster
executes and stalls independently. The only places that clusters
must synchronize are inter-cluster register or memory communi-
cation points. To handle both, a light-weight software-controlled
synchronization mechanism can be added to the baseline DVLIW.
The decoupled execution mode allows the processor to better hide
memory latencies and provide high performance.
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