
Uncovering Hidden Loop Level Parallelism in Sequential Applications

Hongtao Zhong, Mojtaba Mehrara, Steve Lieberman, and ScottMahlke

Advanced Computer Architecture Laboratory
University of Michigan, Ann Arbor, MI 48109

{hongtaoz,mehrara,lieberm,mahlke}@umich.edu

Abstract

As multicore systems become the dominant mainstream
computing technology, one of the most difficult challenges
the industry faces is the software. Applications with large
amounts of explicit thread-level parallelism naturally scale
performance with the number of cores, but single-threaded
applications realize little to no gains with additional cores.
One solution to this problem is automatic parallelization that
frees the programmer from the difficult task of parallel pro-
gramming and offers hope for handling the vast amount of
legacy single-threaded software. There is a long history of
automatic parallelization for scientific applications, but the
techniques have generally failed in the context of general-
purpose software. Thread-level speculation overcomes the
problem of memory dependence analysis by speculating un-
likely dependences that serialize execution. However, this
approach has lead to only modest performance gains. In this
paper, we take another look at exploiting loop-level paral-
lelism in single-threaded applications. We show that sub-
stantial amounts of loop-level parallelism is available in
general-purpose applications, but it lurks beneath the sur-
face and is often obfuscated by a small number of data and
control dependences. We adapt and extend several code
transformations from the instruction-level and scientificpar-
allelization communities to uncover the hidden parallelism.
Our results show that 61% of the dynamic execution of stud-
ied benchmarks can be parallelized with our techniques com-
pared to 27% using traditional thread-level speculation tech-
niques, resulting in a speedup of 1.84 on a four core system
compared to 1.41 without transformations.

1 Introduction

Due to power dissipation and design complexity issues
of building faster uniprocessors, multicore systems have
emerged as the dominant architecture for mainstream com-
puter systems. Semiconductor companies now put two to
eight cores on a chip, and this number is expected to continue
growing. One of the most difficult challenges going forward
is software: if the number of devices per chip continues to
grow with Moore’s law, can the available hardware resources
be converted into meaningful application performance gains?
In some regards, the embedded and domain-specific commu-
nities have pulled ahead of the general-purpose world in tak-
ing advantage of available parallelism, as most system-on-
chip designs have consisted of multiple processors and hard-
ware accelerators for some time. However, these system-
on-chip designs are often deployed for limited application
spaces, requiring hand-generated assembly and tedious pro-
gramming models. The lack of necessary compiler tech-

nology is increasingly apparent as the push to run general-
purpose software on multicore platforms is required.

In the scientific community, there is a long history of suc-
cessful parallelization efforts [1, 3, 7, 12, 15]. These tech-
niques target counted loops that manipulate array accesses
with affine indices, where memory dependence analysis can
be precisely performed. Loop-level and single-instruction
multiple-data parallelism are extracted to execute multiple
loop iterations or process multiple data items in parallel.Un-
fortunately, these techniques do not often translate well to
general-purpose applications. These applications are much
more complex than those typically seen in the scientific com-
puting domain, often utilizing pointers, recursive data struc-
tures, dynamic memory allocation, frequent branches, small
function bodies, and loops with small bodies and low trip
count. More sophisticated memory dependence analysis,
such as points-to analysis [23], can help, but parallelization
often fails due to a small number of unresolvable memory
accesses.

Explicit parallel programming is one potential solution to
the problem, but it is not a panacea. These systems may
burden the programmer with implementation details and can
severely restrict productivity and creativity. In particular,
getting performance for a parallel application on a heteroge-
neous hardware platform, such as the Cell architecture, often
requires substantial tuning, a deep knowledge of the underly-
ing hardware, and the use of special libraries. Further, there
is a large body of legacy sequential code that cannot be par-
allelized at the source level.

A well-researched direction for parallelizing general-
purpose applications is thread-level speculation (TLS). With
TLS, the architecture allows optimistic execution of code re-
gions before all values are known [2, 13, 14, 25, 30, 32, 34,
39]. Hardware structures track register and memory accesses
to determine if any dependence violations occur. In such
cases, register and memory state are rolled back to a previous
correct state and sequential re-execution is initiated. With
TLS, the programmer or compiler can delineate regions of
code believed to be independent [4, 9, 18, 20]. Profile data is
often utilized to identify regions of code that are likely inde-
pendent, and thus good candidates for TLS.

Previous work on TLS has yielded only modest perfor-
mance gains on general-purpose applications. The POSH
compiler is an excellent example where loop-based TLS
yielded approximately 1.2x for a 4-way CMP and loop com-
bined with subroutine TLS yielded approximately 1.3x on
SPECint2000 benchmarks [18]. That result improves upon
prior results reported for general-purpose applications by the
Stampede and Hydra groups [13, 32]. One major limitation
of prior work is that parallelization is attempted on unmodi-
fied code generated by the compiler. Real dependences (con-



trol, register, or memory) often mask potential parallelism.
A simple example is the use of a scalar reduction variable
in a loop. All iterations update the reduction variable, hence
they cannot be run in parallel. One notable exception is the
work by Prabhu and Olukotun that looked at manually ex-
posing thread-level parallelism (TLP) in Spec2000 applica-
tions [26]. They examined manually transforming applica-
tions to expose more TLP, including introducing parallel re-
ductions. They showed substantial increases in TLP were
possible using a variety of transformations for traditional se-
quential applications. However, many of the transformations
were quite complex, requiring programmer involvement.

Our work is directly motivated by Prabhu and Olukotun.
We examine the feasibility of automatic compiler transfor-
mations to expose more TLP in general-purpose applica-
tions. We target automatic extraction of loop-level paral-
lelism, where loops with sets of completely independent loop
iterations, or DOALL loops, are identified, transformed, and
parallelized. Memory dependence profiling is used to gather
statistics on memory dependence patterns in all loop bodies,
similar to prior work [18]. Note that we are not parallelizing
inherently sequential algorithms. Rather, we focus on uncov-
ering hidden parallelism in implicitly parallel code.

We examine the use of TLS as a method to overcome
the limitations of static compiler analysis. This is the same
conclusion reached by prior work. However, we look be-
yond the nominal code generated by the compiler to find
parallel loops. We show that substantial loop-level paral-
lelism lurks below the surface, but it is obstructed by a va-
riety of control, register and memory dependences. To over-
come these dependences, we introduce a novel framework
and adapt and extend several code transformations from do-
mains of instruction-level parallelism and parallelization of
scientific codes. Specifically, our contributions are:

• DOALL loop code generation framework - We intro-
duce a novel framework for speculative partitioning of
chunked loop iterations across multiple cores. The tem-
plate handles complex cases of uncounted loops as well
as counted ones and takes care of all scalar live-outs.

• TLP-enhancing code transformations - We design sev-
eral code transformations to break cross iteration depen-
dences in nearly DOALL loops. These transformations
are not entirely new, but rather are variants of prior tech-
niques that have different objectives and are adapted to
work in the presence of uncertain dependence informa-
tion and TLS hardware. The optimizations consist of of
speculative loop fission, speculative prematerialization,
and isolation of infrequent dependences.

2 Parallelization Challenges
To illustrate more concretely the challenges of identify-

ing TLP using compiler analysis in general-purpose code, we
examine the frequency of provable DOALL loops in a vari-
ety of applications. We use the OpenImpact compiler sys-
tem that performs memory dependence analysis using inter-
procedural points-to analysis [23]. A total of 41 applications
(all C source code, or C code generated from f2c) from four
domains are investigated: SPECfp, SPECint, MediaBench,
and Unix utilities. The lower portion of the bars in Figure 1
show the ability of an advanced compiler to expose provable
DOALL parallelism. For each application, the fraction of se-
quential execution that is spent in provable DOALL loops is
presented. To derive this value, the execution frequency ofall
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Figure 1: Fraction of sequential execution covered by prov-
able DOALL loops identified through compiler analysis (bot-
tom portion of bars) and speculative DOALL loops identified
through profiling (top portion of bars).

static operations that reside in at least one provable DOALL
loop are summed and divided by the total dynamic opera-
tion count. The figure shows that the compiler analysis is not
very successful with the exception of two cases, 171.swim
from SPECfp and mpeg2dec from MediaBench. The com-
piler is generally most successful in SPECfp, where previous
scientific parallelization techniques are applicable. However,
the pointer analysis is only partially successful at resolving
memory dependences in the non-scientific code.

TLS has the potential to provide large performance gains
by allowing speculative parallelization of loops where com-
piler analysis alone is unsuccessful. One key issue for TLS is
to parallelize the loops that have low probability memory de-
pendences. Memory profiling is a way to estimate the mem-
ory dependences in a program. The memory profiler runs
the application on a sample input and records the memory
address accessed by every load and store. If two memory in-
structions access the same location, a memory dependence is
recorded.

For the purpose of parallelizing loops, we only care about
cross iteration dependences. If the loops are nested, we need
to know in what nesting level each memory dependence is
happening. Furthermore, when the loop contains function
calls, we want to know if the called function accesses any
global variable which causes cross iteration memory depen-
dence. Therefore, we developed a control-aware memory
profiler to identify speculative DOALL loops.

The upper portion of the bars in Figure 1 show the frac-
tion of serial runtime spent in DOALL loops identified by
the profiler. A loop is speculative DOALL if it contains
zero or very few cross iteration memory dependences, and it
contains no cross iteration register and control dependences.
Note that simple register and control dependences, such as
those cause by induction variables, can easily be eliminated
and hence are ignored in this analysis. Comparing the pro-
filed and provable results, we see that many more DOALL
loops are identified using profile information than using com-
piler memory analysis. On average, 28% of the sequential
execution is contained within speculative DOALLs, com-
pared with 8% in provable DOALLs. As expected, the pro-
filer is highly effective with the SPECfp applications, which
are known to contain large amounts of loop-level parallelism.
However, for the remaining applications, the results are gen-
erally disappointing. With the exception of a few media ap-



plications, most of these applications contain few DOALL
loops.

These poor results were confusing as we had observed
that many loops in these applications contained no sta-
tistically significant cross-iteration memory dependences.
Hence, if we were only looking at memory dependences, the
number of speculative DOALLs would be much larger. The
problem is that the loops are not DOALL due to other de-
pendences - namely cross iteration register and control de-
pendences. If these dependences could be broken by the
compiler, then the number of DOALL loops would increase
substantially. The remainder of the paper explores this direc-
tion of research, namely a set of compiler transformations to
break these dependences within the context of a speculative
execution environment.

3 Architectural Support
Speculative DOALL loops require several underlying fea-

tures to ensure correct execution and make recovery actions
when a speculation violation occurs. These features can be
implemented in hardware, software, or a combination of the
two. Traditional TLS hardware can support speculative ex-
ecution of all types of loops and acyclic code [30, 32, 13].
Since we are only executing speculative DOALL loops, a
subset of TLS hardware is required. Furthermore, since
many of the loops studied have small bodies and low trip
counts, the overhead of parallel execution must be mini-
mized. In this section, we specify the underlying hardware
model and assumptions about its operation.

Our target architecture is a standard chip multiprocessor
with coherent L1 caches and a shared L2 cache. The sys-
tem is extended with three major features to support specula-
tive DOALL execution. First, a transactional memory system
similar to LogTM [22, 37] is utilized to detect memory de-
pendence violations and rollback execution if necessary. We
assume ordered transactions. In the case of a conflict, the
transaction with the higher ID is aborted. Larger transaction
IDs are assigned to higher groups of loop iterations to main-
tain sequential semantics. Since we only parallelize loops
with statistically zero dependences, memory values are not
forwarded from previous transactions to later transactions
to simplify the hardware implementation. If a later trans-
action uses values stored in a previous transaction, the later
transaction is aborted. Several new instructions are addedto
the instruction set to expose the transactional memory to the
compiler. The XBEGIN instruction marks the beginning of a
transaction. XBEGIN takes the address of the abort handler
as an operand. The XCOMMIT instruction marks the end of
a transaction and commits the speculative state.

Second, a scalar operand network, similar to that in the
Raw architecture [33], is used to communicate register val-
ues between cores. A mechanism similar to register chan-
nels [11, 10] or a synchronization array [28] can also be
used to support register communication and synchronization.
Each core is extended with send and receive queues and sim-
ple routing logic (XY routing is assumed). Two new instruc-
tions, SEND and RECV, are added to the instruction set. The
SEND instruction has two source operands, a register and a
destination core ID. It reads the value in the source register
and sends it to the destination core. The RECV instruction
also takes two source operands, a target register and a sender
core ID. When a RECV is executed, it looks in the incoming
message queue in the core for messages from the sender ID.
If such a message is found, it moves the value to the target

register; otherwise, it stalls the core and waits for the mes-
sage.

SEND and RECV operations also provide an efficient
mechanism to guarantee the ordering of instructions in dif-
ferent cores. We commit loop iterations in original program
order to maintain sequential semantics by passing a commit
permission token between the cores using SEND/RECV in-
structions.

Finally, the hardware supports low latency thread spawn-
ing to efficiently exploit parallelism in small loops. We as-
sume the operating system pre-allocates several cores to each
application. To spawn a new thread, a core simply sends a
program counter (PC) value to another core to initiate its ex-
ecution. Since the compiler explicitly controls thread spawn-
ing, the live-in scalar values for the slave are explicitly passed
from the master using the scalar operand network.

4 Uncovering Hidden Loop Level Parallelism

As shown in the previous sections, without any code trans-
formation, out-of-the-box loop level parallelization oppor-
tunities for general applications are limited, even with TLS
hardware support. After manually studying a wide range of
loops, we found that many parallel opportunities were hidden
beneath the seemingly sequential code. With proper code
transformations, critical cross iteration dependences can be
untangled resulting in many more speculative DOALL loops.
In this section, we first introduce our code generation scheme
for speculative DOALL loops. It handles both counted loop
and uncounted loop with cross iteration control dependences.
Subsequently, we present techniques to handle cross iteration
dependences that hinder loop level parallelism. In addition to
some well-known techniques, we introduce three novel trans-
formations to untangle register and memory dependences:
speculative loop fission, speculative prematerialization, and
isolation of infrequent dependences.

4.1 Code Generation

After choosing candidate loops for parallelization us-
ing the profile information, the compiler distributes loop
execution across multiple cores. In this work, we cate-
gorize DOALL loops into DOALL-counted and DOALL-
uncounted. In DOALL-counted, the trip count is known
when the loop is invoked (note, the trip count is not nec-
essarily a compile-time constant). However, for DOALL-
uncounted, the trip count is unknown until the loop is fully
executed.While loops andfor loops with conditional break
statements are two examples of DOALL-uncounted loops
that occur frequently. In these cases, the execution of every
iteration depends on the outcome of exit branches in previ-
ous iterations. Therefore, these loops contain cross iteration
control dependences. In this section, we introduce our code
generation framework for handling control dependences and
executing both speculative DOALL-counted and DOALL-
uncounted loops.

Figure 2 shows the detailed implementation of our code
generation framework. In the proposed scheme, the loop iter-
ations are divided into chunks. The operating system passes
the number of available cores and the chunk size to the appli-
cation. Our framework is flexible enough to use any number
of available cores for loop execution. We insert an outer loop
around the original loop body to manage the parallel execu-
tion between different chunks. Following is a description of
the functionality of each segment in Figure 2.



RECV live_outs and 
last_upd_idx values 
Set live_outj to the 
last updated value

for (all live_outs)
 SEND(live_outj,0)

 SEND(last_upd_idxj,0)

DONE

Receive CS, SS, TC and live-ins
IS = IS_init + CS * SS * thread_id
for (all live_outs)

 last_upd_idxi = -1;

THREAD0?

Initialization

Parallel 
Loop

Consolidation

Abort 
Handler

for (i=IS;i<IE;i+=SS)
 // original loop code 
 live_outk =… //kth liveout assignment
 last_upd_idxk= i;
 if (brk_cond)
   local_brk_flag = 1;

   break;

XBEGIN
 if (global_brk_flag) break;

 IE = min(IS+CS*SS,n)

perm = RECV(THREADj-1)
XCOMMIT
if (local_brk_flag)
   global_brk_flag = 1;
   kill_other_threads;
elseif (IE < n)
   SEND(perm,THREADj +1)

IS+=CS * TC * SS;

if (IS < n) & 
(!local_brk_flag)

Spawn jobs to available cores

Send CS, SS, TC and live-ins to all threads
Spawn

Yes No

Figure 2: Detailed code generation framework for spec-
ulative loop parallelization. Transaction scope is marked
by XBEGIN and XCOMMIT. (CS: chunk size, IS: iteration
start, IE: iteration end, SS: step size, TC: thread count)

Spawn: To start, the master thread spawns threads con-
taining chunks of loop iterations. It sends the necessary pa-
rameters (chunk size, thread count, etc.) and live-in values to
all threads.

Initialization: In the initialization block, all participat-
ing cores receive the required parameters and live-in values.
Since live-in values are not changed in the loop1, we only
send them once for each loop execution. This block also
computes the starting iteration, IS, for the first chunk. After
initialization, each core manages its own iteration start value,
thus parallel execution continues with minimum interaction
among the threads.

In order to capture the correct live-out registers after par-
allel loop execution, we use a set of registers calledlast-upd-
idx, one for each conditional live-out (i.e., updated in an if-
statement). When a conditional live-out register is updated,
we set the correspondinglast-upd-idxto the current itera-
tion number to keep track of the latest modifications to the
live-out values. If the live-out register is unconditional(i.e.,
updated in every iteration), the final live-out value can be re-
trieved from the last iteration and nolast-upd-idxis needed.

Abort Handling: The abort handler is called when a
transaction aborts. If the TM hardware does not backup the
register file, we can use the abort handler to recover certain
register values in case of transaction abort. More specifically,
we need to recover the live-out andlast-upd-idxregister val-
ues. We need to backup these registers at the beginning of

1If a live-in value is changed in the loop, it generates a crossiteration
register dependence and the loop cannot be parallelized.

each transaction, and move the backup value to the registers
in the abort handler. Moreover, we also add recovery code
in the abort handler for some of our transformations as de-
scribed in the next section.

Parallel Loop: The program stays in the parallel loop
segment as long as there are some iterations to run and no
break has happened. In this segment, each thread executes
a set of chunks. Each chunk runs iterations from IS to IE.
The value of IS and IE are updated after each chunk using
the chunk size (CS), thread count (TC) and step size (SS).

Each chunk of iterations are enclosed in a transaction, de-
marcated by XBEGIN and XCOMMIT instructions. The
transactional memory monitors the memory accessed by
each thread. It aborts the transaction running higher itera-
tions if a conflict is detected, and restarts the transactionfrom
the abort handler. Chunks are forced to commit in-order to
maintain correct execution and enable partial loop rollback
and recovery. In order to minimize the required bookkeeping
for this task, we use a distributed commit ordering technique
in which each core sends commit permission to the next core
after it commits successfully. These permissions are sent in
the form of dummy values to the next core. TheRECV
command near the end of the main block causes the core to
stall and wait for dummy values from the previous core.

For uncounted loops, if a break happens in any thread,
we don’t want to abort higher transactions immediately, be-
cause the execution of the thread is speculative and the break
could be a false break. Therefore, we use a local variablelo-
cal brk flag in each thread to keep track of if a chunk breaks.
If the transaction commits successfully withlocal brk flag
set, the break is not speculative any more, and a transaction
abort signal is sent to all threads using a software or hard-
ware interrupt mechanism. In addition, aglobal brk flag is
set, so that all threads break the outer loop after restarting
the transaction as a result of the abort signal. The reason for
explicitly aborting higher iterations is that if an iteration is
started by misspeculation after the loop breaks, it could pro-
duce an illegal state. The execution of this iteration might
cause unwanted exceptions or might never finish if it con-
tains inner loops.

Consolidation: After all cores are done with the execu-
tion of iteration chunks, they enter the consolidation phase.
In this period, each core sends its live-outs andlast-upd-idx
array toTHREAD0 that selects the last updated live-out
values. All threads are terminated after consolidation and
THREAD0 continues with the rest of program execution.

We carefully designed the framework to keep most of the
extra code outside the loop body, so they only execute once
per chunk . The overhead in terms of total dynamic instruc-
tions is quite small.

4.2 Dependence Breaking Optimizations

This section focuses on breaking cross iteration regis-
ter dependences that occur when a scalar variable is de-
fined in one iteration and used in another. First, we exam-
ine several traditional techniques that are commonly used
by parallelizing compilers for scientific applications: vari-
able privatization, reduction variable expansion, and ignor-
ing long distance memory dependences. These optimizations
are adapted to a speculative environment. Then, we pro-
pose three optimizations specifically designed for a specu-
lative environment: speculative loop fission, speculativepre-
materialization and infrequent dependence isolation. These
transformations are adaptations of existing ones used in the



1: while (node) {
2:   work(node);
3:   node = node->next;
   }

   // Sequential
   count = 0;
1: while (node) {
4:   node_array[count++]= node;
3:   node = node->next;
   }

   // Parallel
   XBEGIN
    node = node_array[IS];
    i = 0;
1': while (node && i++ < CS) {
2:    work(node)
3':   node = node->next
    }
   if (node != node_array[IS+CS]
      kill_higher_iter_THREADs();
   XCOMMIT
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(b)
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Figure 3: Speculative loop fission (a) Original loop (b) Original data flow graph (c) Data flow graph after fission (d) Loop after
fission - (rf: register flow dependence, c: control dependence, m?: unlikely cross-iteration memory dependence

scientific and ILP compilers.

4.2.1 Traditional Dependence Breaking Optimizations

Variable privatization. Cross iteration input, anti- and out-
put dependences can be removed by register privatization.
Since each core has a separate register file, register accesses
in different cores are naturally privatized. Live-in scalars are
broadcast to each core during initialization, thus all false de-
pendences on scalars are removed. Handling output depen-
dences for live-out variables is tricky. Since the value of a
live-out variable is used outside the loop, we need to find out
which core performed the last write to the register. This is not
obvious if the register is updated conditionally. As described
in the previous section, the code generation template handles
this case by assigning an integer value on each core for each
live-out register. This value is set to the last iteration index
where the live-out variable is written. The compiler inserts
code after the loop (in the consolidation block in Figure 2)
to set the live-out registers to their last updated values inthe
loop based on the stored iteration index.

Reduction variable expansion. Reduction variables,
such as accumulators or variables that are used to find a max-
imum or minimum value, cause cross iteration flow depen-
dences. The most common case is thesumvariable when all
elements of an array are summed. These dependences can be
removed by creating a local accumulator (or min/max vari-
able) for each core, and privately accumulating the totals on
each core. After the loop and in the consolidation block, lo-
cal accumulators are summed or the global min/max is found
amongst the local min/max’s.

Ignoring long distance memory dependences. When
the number of iterations between two memory depen-
dences is larger than some threshold, there is an oppor-
tunity for parallelization by simply ignoring the depen-
dence. Intuitively, if the distance between memory ac-
cesses isn, the compiler can maken − 1 iterations exe-
cute in parallel. Subsequently, if we set the chunk size as
cross iteration distance/number of cores, our scheme

in Section 4.1 generates the proper code for parallel execu-
tion of the loop.

4.2.2 Speculative Loop Fission

By studying benchmarks, we observed that many loops con-
tain large amounts of parallel computation, but they cannot
be parallelized due to a few instructions that form cross iter-
ation dependence cycles. We call these loopsalmostDOALL
loop as the bulk of the loop is DOALL, but a small recurrence
cycle(s) inhibits parallelization. The objective of speculative
loop fission is to split the almostDOALL into two parts: a
sequential portion that is run on one core followed by a spec-
ulative DOALL loop that can be run on multiple cores. The
basic principles of this optimization are derived from tradi-
tional loop fission or distribution [1].

Figure 3(a) shows a classic example of such a loop. A
linked list is iterated through, with each iteration doing some
work on the current node. Figure 3(b) shows the data de-
pendence graph for the loop, with the important recurrence
of operation 3 to itself. Note that there may be an unlikely
memory dependence between operations 2 and 3 as indicated
by the “m?” edge in the graph. Such a situation occurs when
the compiler analysis cannot prove that the linked list is un-
modified by the work function. For this loop, the sequential
portion consists of the pointer chasing portion (i.e., operation
3) and the DOALL portion consists of the work performed on
each node (i.e., operation 2).

The basic transformation is illustrated in Figure 3(c). The
strongly connected components, or SCCs, are first identi-
fied to compose the sequential portion of the loop. Depen-
dences that will be subsequently eliminated are ignored dur-
ing this process. These include control dependences handled
by the DOALL-uncounted schema (i.e., the control depen-
dence from operation 1 to 3), unlikely memory dependences
(i.e., the memory dependence from operation 2 to 3), and
register dependences caused by reduction variables. In this
example, the SCC is operation 3. The sequential portion is
then populated with two sets of nodes. First, copies of all



for (k=0;k<num_nets_affected;k++) {

    inet = nets_to_update[k];

    if (net_block_moved[k] == FROM_AND_TO)

       continue;

    if (net[inet].num_pins <= SMALL_NET) {

       get_non_updateable_bb (inet, 

&bb_coord_new[bb_index]);

    }

     ...... 

     ...... 

    bb_index++;

 }

for (k=0;k<num_nets_affected;k++) {

    if (net_block_moved[k] == FROM_AND_TO) 

       continue;

    bb_index_array [k] = bb_index;

    bb_index++;

}

XBEGIN
 bb_index = bb_index_array[IS];

 for (k = IS; k < IS + CS ; k++) {
    inet = nets_to_update[k];

    if (net_block_moved[k] == FROM_AND_TO)

       continue;

    if (net[inet].num_pins <= SMALL_NET) {

       get_non_updateable_bb (inet, 

&bb_coord_new[bb_index]);

    }

     ......

     ......

     bb_index++;

 }

if (bb_index != bb_index_array[k])
    abort_higher_threads;
XCOMMIT

Abort_handler: 

  bb_index = bb_index from aborting core;
  k = k from the aborting core;

  for (;k<num_nets_affected;k++) {
    if (net_block_moved[k] == FROM_AND_TO) 
       continue;
    bb_index_array [k] = bb_index;
    bb_index++;

}

Spawn parallel chunks with abort handler;

(a)

(b)

(c)

Figure 4: Example of speculative loop fission from 175.vpr: (a) original loop (b) loop after fission (c) abort handler.

dependence predecessors of the SCC are added (operation 1
in Figure 3(c)). Second, a new operation is introduced for
each register flow edge that is cut between the SCCs and the
remaining operations. In the example, there is a register flow
edge from operation 3 to 2. A new operation is created (op-
eration 4) that stores the value communicated via the edge
into an array element. For this example, each node pointer
is stored into the array. In essence, the register flow depen-
dence is converted into a through-memory dependence. The
result is the dependence graph shown on the left portion of
Figure 3(c) and the code shown at the top of Figure 3(d).

The parallel portion of the loop consists of the entire orig-
inal loop, including the SCCs, with a few modifications as
shown in Figures 3(c) (right portion) and 3(d) (bottom por-
tion). Each parallel chunk is seeded with a single value com-
puted in the sequential loop for each register flow edge that
was cut. In the example,nodeis set tonodearray[IS] or the
index of the starting iteration of the chunk. The body of the
DOALL is identical to the original loop, except that only a
fixed number of iterations are performed, CS or chunk size.
Note that each parallel chunk is sequential, yet all parallel
chunks are completely decoupled due to array variables pro-
duced by the sequential loop (i.e.,nodearray).

The final change is a test to ensure that each live-out SCC
variable has the same value that was computed in the sequen-
tial loop. For the linked list example, this tests whether the
current parallel chunk modified the starting element of the
next chunk. This test combined with the transaction com-
mit ensures that the linked list was not modified during the
parallel portion. In cases where the compiler can prove no
modifications are possible, this check is not necessary. The
final parallel code is presented in Figure 3(d). Note that only
the transaction scope portion of the code is shown for clarity.
This code is dropped into the DOALL-uncounted template in
Figure 2 to complete the parallelization.

Our loop fission scheme is different from traditional loop

fission technique in that both the sequential and parallel loops
are speculative. Since the sequential loop contains compu-
tations from every iteration, it could conflict with one or
more of the parallel chunks. For example, in Figure 3(a), the
work function could modify the linked list. This means that
nodearray contains one or more incorrect values. Such a
memory dependence violation must be detected and rollback
performed. The combination of the transactional semantics
and the additional tests added after each parallel chunk to test
the SCC variables ensure there are no unexpected memory
dependences between two parallel chunks (transaction com-
mit) and between the sequential and parallel chunks (explicit
test inserted by the compiler). To simplify the problem, we
don’t allow inclusion of any store instruction in the sequen-
tial loop besides the ones that write to the new arrays. Our
experiments show that very few fission candidates are lost
by this requirement. When a parallel loop chunk reaches the
end of its execution, it can commit only if all previous chunks
have committed and no conflicts are detected, thereby ensur-
ing correctness.

When the abort handler is invoked due to a memory de-
pendence conflict, it must first abort all threads executing
higher numbered iterations. Then, it restarts the execution
of the sequential loop to re-initialize all the relevant values
for the new arrays (i.e.,nodearray in the example). To en-
sure that modifications to data structures by later iterations
do not affect earlier iterations, the sequential loop is runonly
from the starting iteration of the next thread after abort (iter-
ation start + chunk size or IS+CS) to reset only the relevant
portion of the new array(s).

To show a real example of speculative loop fission, Fig-
ure 4(a) presents an importantalmost DOALL loop from
the SPECint application 175.vpr. This example is different
from the previous example in that it is not a linked list traver-
sal. The variablebb indexcarries a cross iteration register
dependence. The variable is not an induction variable be-



   for (...) {
1:   current = … ;
2:   work(last);
3:   last = current;
   }

   XBEGIN
1':  current = 
3':  last = 
    for (...) {
1:    current = … ;
2:    work(last);
3:    last = current;
    }
   XCOMMIT

(a) (b)

1

2

3

(c)

Figure 5: Example of speculative prematerialization: (a) original loop, (b) dataflow graph, and (c) loop after transformation.

cause it is not updated in every iteration due to thecontinue
statement. The split loops are shown in Figure 4(b). The first
loop is the sequential loop and contains the cross iteration
dependences. It produces value ofbb indexon every itera-
tion and stores them to a new array calledbb indexarray.
The second loop is the parallel loop, where each chunk is de-
coupled through the use ofbb indexarray. Finally, the abort
handler for the loop is presented in Figure 4(c).

Two alternatives for parallelizing almostDOALL loops
are DOACROSS [1] and speculative decoupled software
pipelining (DSWP) [35]. We consider speculative fission
a better option than DOACROSS for two reasons. First,
DOACROSS does not work with iteration chunking. If
chunks of many iterations are executed in the DOACROSS
manner, the first iteration in a chunk has to wait for data from
the last iteration of the previous chunk, which basically se-
quentializes execution. For loops with small bodies, iteration
chunking is very important to get performance improvement.
Second, DOACROSS execution is very sensitive to the com-
munication latency between threads because each iteration
has to wait for data from the previous iteration. With specula-
tive loop fission, the communication between the sequential
part and the parallel part can happen in parallel and thereby
the total execution time would be much shorter.

Speculative DSWP converts almostDOALL loops into
a producer-consumer pipeline. This has the advantage of
overlapping the sequential and parallel portions. However,
when the two portions are not relatively equal sized, the
pipeline can be unbalanced. This problem can be alleviated
by replicating pipeline stages. We believe DOALL execu-
tion is more scalable and more compatible with conventional
transactional semantics.

4.2.3 Speculative Prematerialization

A special type of cross iteration register dependence can be
removed through a transformation called speculative prema-
terialization. The idea of prematerialization is to execute a
small piece of code before each chunk to calculate the live-
in register values, so the chunks can be executed in parallel
instead of waiting for all previous iterations to finish. Rema-
terialization is a technique commonly used by register alloca-
tors where its more efficient to recompute a value than store
it in a register for a long period of time. Here the objective is
different, but the process is similar.

Prematerialization can remove cross iteration depen-
dences on registers that are not part of dependence cycles and
are defined in every iteration. For each register that satisfies
those two conditions, pre-execution of at most one iteration
will generate the live-in value for a chunk. If a loop con-
tainsn registers that need to be prematerialized, at mostn

iterations need to be pre-executed.
Figure 5 illustrates the transformation. The original loop

and dataflow graph are presented in Figures 5 (a) and (b).
There is a cross iteration register flow edge from operation 3
to 2 corresponding the the variablelast. The transformation
is accomplished by peeling off a copy of the source of the
register flow dependence and all its dependence predeces-
sors. In this case, the source of the register flow dependence
(operation 3) and its dependence predecessor (operation 1)
are peeled and placed in the loop preheader. The resultant
loop is shown in Figure 5(c). On the surface, this loop is still
sequential as the dependence between operations 3 and 2 has
not been eliminated. However, the peeling decouples each
chunk from the prior chunk allowing the chunks to execute
in parallel.

One important thing to note is that the prematerializa-
tion code is speculative because other iterations could modify
variables it uses. This is akin to speculative fission where the
linked list is modified during its traversal. In the simple ex-
ample, a pointer used to computecurrentcould be changed,
thereby invalidating the prematerialized variables. Thus, the
prematerialization code must be part of the transaction that
contains the chunk. If any memory conflict is detected in
the prematerialization code or the loop itself, the transac-
tion corresponding to higher number iterations is aborted and
restarted.

To illustrate a real application of prematerialization, Fig-
ure 6 shows a loop in the application djpeg from Media-
Bench. The variableslastcolsum, thiscolsum, andnextcol-
sum form a 3-wide sliding window in the loop. Variables
nextcolsumandlastcolsumboth carry cross iteration depen-
dences that prevent DOALL execution. Speculative prema-
terialization can be applied because the value ofnextcolsum
and lastcolsumare defined in every iteration, and the cross
iteration dependences do not form cycles. The right half
of Figure 6 shows the parallel code after prematerialization.
A prematerialization block is inserted before each chunk to
compute the live-in values fornextcolsumandlastcolsum. In
the prematerialization code, portions of the previous two it-
erations are executed to prematerialize two variables.

4.2.4 Infrequent Dependence Isolation

Another form of almostDOALL loops are loops with infre-
quently occurring cross-iteration dependences. The sources
or sinks of the dependence edges are contained in infre-
quently executed conditional clauses. Thus, the majority of
the time the loops are DOALL. Isolation does not break any
dependences, but rather transforms the control flow struc-
ture of the code to allow the compiler to parallelize the por-
tion of the loop that is DOALL. The transformation is sim-



for (colctr = compptr ->downsampled _width - 2;
 colctr > 0; colctr--) {

  nextcolsum = 
    GETJSAMPLE (*inptr0++) * 3 + 
    GETJSAMPLE (*inptr1++);
  *outptr++ = 
    (JSAMPLE ) ((thiscolsum * 3 + lastcolsum + 8) 
     >> 4);
  *outptr++ = 
    (JSAMPLE ) ((thiscolsum * 3 + nextcolsum + 7) 
     >> 4);
  lastcolsum = thiscolsum ; 
  thiscolsum = nextcolsum ;
}

colctr = IS - 2; 
inptr0 = inptr0_init;
inptr1 = inptr0_init;

nextcolsum = GETJSAMPLE (*inptr0++)*3 
    +   GETJSAMPLE (*inptr1++);
thiscolsum = nextcolsum ;

colctr = ++;
nextcolsum = GETJSAMPLE (*inptr0++)*3 
    + GETJSAMPLE (*inptr1++);
lastcolsum = thiscolsum ; 
thiscolsum = nextcolsum ;

for (colctr = IS;colctr >IS–CS;colctr --) 
{
    // The original loop body goes here
    ......
}

Init 

inductions

Iteration 

iter_start -2

Iteration 

iter_start -1

Chunk from 

iter_start

Figure 6: Example of speculative prematerialization from djpeg.

for( j=0; j<=nstate; ++j ){
 if( tystate[j] == 0 ) continue;
 if( tystate[j] == best ) 
continue;
 count = 0;
 cbest = tystate[j];
 for (k=j; k<=nstate; ++k)
  if (tystate[k]==cbest) ++count;
 if ( count > times) {
   best = cbest;
   times = count;
 }
}

j=0;
while (j<=nstate){
 for( ; j<=nstate; ++j ){
  if( tystate[j] == 0 ) continue;
  if( tystate[j] == best ) continue;
  count = 0;  cbest = tystate[j];
  for (k=j; k<=nstate; ++k)
   if (tystate[k]==cbest) ++count;
  if ( count > times)
 break;

 }   
if (count > times) {
  best= cbest; times= count; j++;
 }
}

(c) (d )

1: 

2: 

m

m

A

B

C

1: 

2: 

m

m

A

B
C

C’

(a ) (b )

Figure 7: Example of dependence isolation: (a) mechanics oftransformation for an abstract loop, (b) example loop from yacc.

ilar to hyperblock formation, but again the objectives are
changed [19].

Cross-iteration register and memory dependences are eli-
gible for isolation as well as calls to libraries where the com-
piler does not have complete memory dependence informa-
tion. Library calls are typically treated conservatively and
and thus inhibit parallelization. Isolation optimizes thecom-
mon case by restructuring a loop into a nested loop. The
schematic transformation is illustrated in Figure 7(a). The
example loop consists of three basic blocks, A, B, and C.
A dependence cycle exists between operations 1 and 2, con-
tained in blocks A and B, respectively. Assume that block B
is infrequently executed. Isolation converts the A-B-C loop
into a nested loop structure as shown in the figure. The inner
loop contains the frequent, DOALL portion, namely A-C.
And, the outer loop contains the sequential portion, namely
A-B-C. Block C is duplicated as in hyperblock formation to
eliminate side entrances into the loop. The resultant inner
loop is an DOALL-uncounted. When control enters block B,
parallel execution is aborted, and the cross iteration depen-
dence is properly enforced.

Figure 7(b) illustrates the application of dependence iso-
lation to a loop from the Unix utility yacc. The left hand por-
tion of part (b) shows the original code in which the outerfor
loop is not parallellizable due to two cross-iteration register
dependences that are shown by arrows. However, according
to the profile information, theif statement at the bottom of
the loop rarely evaluates to True. Therefore, we can trans-
form the loop to that in the right hand portion of Figure 7(b).

This code is transformed by adding an outerwhile loop and
the unlikelyif block is replaced by abreakstatement. When
the conditioncount> timesis True, the outerfor loop will
break and theif statement in new while loop is entered. After
execution of this block, thefor loop continues running from
the iteration it left off. The outerfor is now DOALL.

5 Results

We implemented the algorithms discussed in the previ-
ous section in the OpenIMPACT compiler [24]. The algo-
rithms identify opportunities for control dependence spec-
ulation (DOALL-uncounted loops), register reduction vari-
able expansion, long distance memory dependence iteration
chunking, speculative loop fission, speculative prematerial-
ization, and infrequent dependence isolation. For reduction
variable expansion, the compiler identifies reduction vari-
ables for summation, production, logical AND/OR/XOR, as
well as variables for finding min/max. For speculative loop
fission, the compiler identifies loops where the sequential
part represents less than 3% of the dynamic execution of the
loop. For infrequent dependence isolation, the frequency of
cross iteration register dependence and library calls has to be
less than 10%. For long distance memory dependences, a
threshold of 4 iterations is assumed. These thresholds were
experimentally chosen to maximize the speedup. Several
benchmarks from SPEC CPU 92/95/2000, MediaBench [16],
and Unix utilities are studied and we show the results for all
the benchmarks that successfully ran through our system.
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Figure 8: Fraction of sequential execution covered by spec-
ulative DOALL loops after transformations
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Figure 10: The first two bars show the effect of inter-
core communication through memory systems versus scalar
operand network. The last bar shows the speedup without
any parallelization overhead.

We use a multicore simulator that models 1-8 single-issue
in-order processor cores similar to the ARM-9. The simula-
tor models a scalar operand network, where we assume a 3
cycle latency to communicate register values between neigh-
boring cores. A perfect memory system is assumed. We use a
software transactional memory [8] to emulate the underlying
hardware transactional memory described in Section 3. We
assume that the transaction abort incurs an average of 500
cycles overhead and requires execution of the reset block as
well as re-execution of the chunk. Successfully committed
transactions do not incur extra overhead besides XBEGIN
and XCOMMIT instructions.

Figure 8 shows the fraction of the dynamic sequential ex-
ecution that can be parallelized after applying all our pro-
posed transformation techniques. On average, 61% of the
sequential execution can be speculatively parallelized. This
number is more than twice the coverage of 28% using TLS
without any transformation, and 8.5 times the 7% gain by
relying on static analysis alone (see Figure 1). More impor-
tantly, for SPECint benchmarks, the transformations are able
to uncover loop level parallelism in 55% of the sequential
execution, where previous techniques yield poor results.

Figure 9 shows the speedups achieved on 2-core, 4-core
and 8-core machines compared to a single core. One stacked

bar is shown for each configuration. The lower part shows
the speedup results without our proposed transformations.
Therefore, only counted loops with no or very few cross
iteration dependences from profiling are parallelized. The
higher part of the stack bar shows the speedup after all trans-
formations are applied. The compiler chooses the most prof-
itable loop to parallelize if multiple nesting levels can bepar-
allelized.

On average, we achieved a speedup of 1.36 with transfor-
mations compared to the 1.19 speedup without transforma-
tion on a 2-core machine. In addition, we got much higher
speedups on 4-core and 8-core configurations as the average
speedup increases from 1.41 to 1.84 for the 4-core machine
and from 1.63 to 2.34 for the 8-core machine after applying
transformations.

The speedup values vary widely across different bench-
marks. For SPECfp benchmarks, significant speedup values
are achieved due to the inherent parallel nature of the appli-
cations. In the SPECint benchmarks, the average speedups
are 1.19, 1.37 and 1.50 for 2-core, 4-core and 8-core config-
urations, which is a considerable improvement over previous
techniques. As shown in the figure, the baseline compiler
cannot extract much parallelism from these benchmarks due
to the large number of inter-iteration register and controlde-
pendences typically found in C applications.

The speedups for MediaBench benchmarks are generally
higher than SPECint, while the Unix utility benchmarks have
similar results to SPECint. If we consider reduction vari-
able expansion as part of the baseline, the speedups without
transformations increase to an average of 1.24, 1.59 and 1.95,
respectively. Our new transformations still achieve consider-
able speedups on top of that. It should also be noted that
reduction variable expansion helped mostly in the SPECfp
benchmarks compared to the integer applications. The new
transformations are especially helpful for SPECint bench-
marks where traditional transformations alone are largelyun-
successful. Note that high coverages shown in Figure 8 do
not always translate to high speedup numbers. Mpeg2enc
is an example of such a case. The loops identified as par-
allel in this example have a small loop body and low trip
count. Therefore, the parallelization overhead makes it much
less appealing for parallelizing such loops. Another observa-
tion is that the SPECfp benchmarks are quite scalable. Sev-
eral benchmarks such as 171.swim, 172.mgrid and 179.art
achieve almost linear speedup on 4 and 8 cores.

As mentioned before, we use Scalar Operand Network
(SON) to communicate register values between the cores and
maintain commit orderings. In Figure 10, we studied the
effects of SON and also the code generation framework on
the benchmark speedups. This figure shows the speedup val-
ues on a 4-core machine with different configurations. Three
bars are shown for each benchmark. The first bar shows the
speedup assuming we don’t have a scalar operand network
and all communications between the cores must go through
the shared L2 cache. In this scheme, the commit order is
maintained using locking primitives. We assume communi-
cation between cores takes 30 cycles. The second bar shows
the case when we have a SON can communicate register val-
ues between neighboring cores with a 3-cycle latency. This
is the same data from Figure 9. As shown in the figure, for
some benchmarks such as 171.swim, 179.art and 175.vpr,
we can achieve nearly the same speedup with and without
the SON. These benchmarks have large loop bodies with
high trip counts, and the communication overhead is amor-
tized by large chunks of parallel work. On the other hand,
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Figure 9: Effect of the compiler transformations on performance for 2, 4, and 8 core systems. The bottom portion of each bar
shows the baseline with TLS only and the top portion shows thecombined affects of all transformations.

benchmarks, such as pegwitdec, pegwitenc, and grep, suffer
significantly from lack of the SON. The loop sizes in these
benchmarks are small to medium, and the high communi-
cation overhead easily takes away all the benefits resulting
from parallelization. On average, the speedup without the
SON is 1.70 compared to the 1.85x speedup with the SON.
We can see that a reasonable benefit can be achieved from
the transformations without a SON as well. The third bar in
Figure 10 shows speedups without the parallelization over-
head. Our speculative parallelization framework decreases
the performance gain by about 10% on average compared to
the configuration with zero parallelization overhead.

Table 1 shows the the fraction of the dynamic sequential
execution that can be parallelized with different techniques.
It also shows the abort frequencies during speculative exe-
cution. The first 7 columns show the coverage of different
transformation techniques. Each element represents the time
spent in loops that are parallelized by a certain transforma-
tion. For example, by applying reduction variable expansion
in 052.alvinn, loops that account for 97% of the sequential
execution time can become parallelizable. For the transfor-
mation in each column, we assume the techniques in columns
to the left have been applied, so the data in a column repre-
sents the additional parallelism being uncovered. If both the
outer and inner loop in a nested loop are parallelized by a
certain technique, only the time spent in the outer loop taken
into account. If the outer and inner loop are parallelized by
two different techniques, the time spent in the inner loop will
show up in two categories. Therefore, the numbers in a row
could add up to more than 100%.

The first column shows the coverage of parallel loops
without any transformations. The second column shows the
fraction of time spent in DOALL-uncounted loops. On aver-
age, control flow speculation alone enables an additional 9%
of the sequential execution to execute in parallel. Moreover,
it is an enabling technique for other transformations. For ex-
ample, infrequent dependence isolation converts a loop into
a nested loop, and the inner one is DOALL-uncounted. The
third column is for register reduction variable expansion.On

average, it converts 15% of the execution into parallel loops.
This is a relatively simple transformation and provides good
performance improvement. For any system that tries to par-
allelize sequential programs, reduction variable expansion
should be the first low hanging fruit to go for.

The next column shows fraction of time spent in loops
that can be parallelized by speculative loop fission. On av-
erage, it enables 28% of the execution to partially execute in
parallel. This transformation has the largest potential among
the ones that we studied. It is especially useful for SPECint
benchmarks for which other techniques do not provide much
benefit.

Prematerialization, infrequent dependence isolation, and
iteration chunking for long distance memory dependence
each improve parallel coverage significantly for certain
benchmarks. In contrast to control speculation, reductionex-
pansion and fission, they each affect less than 50% of the
benchmarks. However, in the benchmarks which they show
benefits, it is usually quite significant. On average, they im-
prove the parallel coverage by 4%, 5% and 8%, respectively.

The last column in the table shows the abort frequency
during speculative execution. The abort frequency is the
number of aborted iterations divided by the total number of
iterations in the benchmark. As shown in the figure, they
are quite low, and most benchmarks have abort frequencies
less than 2%. We also studied the stability of the profile
results on different inputs. We found loops without cross
iteration memory dependence on one input usually do not
have cross iteration memory dependence using other inputs
as well. As a result, speculative DOALL loops are mostly
consistent across different inputs.

6 Related Work

There is a large amount of previous work in TLS [2, 13,
14, 25, 30, 32, 34, 39] and TLDS [31, 32] that propose spec-
ulative execution of threads along with the required archi-
tectural support. For example, Multiscalar architectures[30]
support TLS, and prior work [36] has studied graph partition-



Bench DOALL CS RE SF PM IDI LD AF
SpecFP

052.alvinn 55 0 97 94 0 0 0 0
056.ear 99 0 0 0 0 0 0 0
171.swim 98 0 2 98 0 0 0 0
172.mgrid 98 0 0 97 0 0 0 0
177.mesa 68 0 6 0 0 0 0 0
179.art 51 0 77 100 94 77 0 0
183.equake 66 0 41 16 0 44 0 0
188.ammp 10 16 0 1 0 0 0 0

SpecINT
008.espresso 8 12 18 9 25 3 22 2
023.eqntott 2 95 0 30 0 1 97 0
026.compress 1 0 0 29 0 0 0 0
072.sc 1 3 14 5 0 24 0 0
099.go 4 2 0 8 0 3 1 1
124.m88ksim 15 1 0 34 0 34 0 0
129.compress 2 0 9 4 0 0 0 0
130.li 0 0 0 17 0 0 44 1
132.ijpeg 60 19 1 16 9 26 0 0
164.gzip 9 0 0 2 0 0 0 1
175.vpr 0 0 0 79 0 0 100 0
181.mcf 1 1 0 42 0 0 1 2
197.parser 12 0 2 6 0 0 1 1
255.vortex 0 0 0 0 0 0 0 0
256.bzip2 5 1 0 100 0 0 49 2
300.twolf 1 0 0 54 0 2 1 0

MediaBench
cjpeg 53 0 2 9 0 6 0 0
djpeg 29 23 23 59 23 0 0 1
epic 86 0 87 85 0 0 1 0
g721decode 8 0 36 0 0 0 0 0
g721encode 7 0 34 0 0 0 0 0
gsmdecode 12 3 0 0 0 0 0 0
gsmencode 12 2 47 0 0 1 0 0
mpeg2dec 92 5 67 5 0 3 0 0
mpeg2enc 13 84 33 31 10 0 0 0
pegwitdec 26 0 0 31 0 0 0 0
pegwitenc 28 0 0 32 0 0 0 0
rawcaudio 0 0 0 0 0 0 0 0
rawdaudio 0 0 0 0 0 0 0 0
unepic 41 0 10 12 0 0 0 0

Utilities
grep 0 43 0 0 0 0 0 0
lex 21 5 0 70 0 2 0 0
yacc 33 52 17 2 0 3 20 6

average 27 9 15 28 4 5 8 0

Table 1: Percentage sequential code coverage of various
transformations – Last column shows the Abort frequencies
in the benchmarks. Coverages higher than 20% are high-
lighted. (CS:control speculation for uncounted loop, RE: re-
duction expansion, SF: speculative fission, PM: premateri-
alization, IDI: infrequent dependence isolation, LD: ignore
long distance dependence, AF: abort frequency).

ing algorithms to extract multiple threads; however, this does
not eliminate unnecessary dependences in the same way this
work does. Our work builds upon previous research and pro-
poses compiler transformations to expose more speculative
parallelism in loops. In particular, the Hydra project [25]
classifies loops to different categories and introduces com-
piler techniques to parallelize the code. This work extends
those ideas with compiler techniques for loop identification,
selection, transformation, and code generation. MSSP [39]
transforms code into master and slave threads to expose spec-
ulative parallelism. It creates a master thread that executes
an approximate version of the program containing a fre-
quently executed path, and slave threads that run to check
results. Conversely, our transformations have different exe-
cution models. Both speculative fission and infrequent path
isolation create parallel threads executing different iterations.

No dedicated checker threads are needed.

Several works have proposed full compiler systems [2,
9, 18, 27, 31] that target loop-level and method-level par-
allelism. In [18], the authors introduce a compilation frame-
work for transformation of the program code to a TLS com-
patible version. Profile information is also used to improve
speculation choices. The Mitosis compiler [27] proposes
a general framework to extract speculative threads as well
as pre-computation slices (p-slices) that allow speculative
threads to start earlier. Our prematerialization is similar to p-
slices, but prematerialization is highly targeted to loop recur-
rences that can be unwound to decouple iterations and must
maintain register and control dependences, while p-slicescan
speculatively prune paths. Du et al. [9] propose a compila-
tion framework in which candidate loops for speculation are
chosen based on a profile-guided misspeculation cost. A gen-
eral compilation strategy for TLS is introduced in [2]. Their
method is applicable to loops as well as other parts of the pro-
gram. Due to the application of this general approach, many
opportunities in loop transformation and parallelizationare
skipped. Chen et al. [6] use pointer analysis to figure out
memory dependences. However, this sophisticated pointer
analysis prevents full characterization of memory accesses
in the program. Also, as mentioned before, our work trans-
forms many loops to make them more parallelizable. We
extend previous work in that we studied a comprehensive set
of existing and new transformations to expose more parallel
opportunities hidden under removable dependences.

The LRPD Test [29] and variants [21] speculatively paral-
lelize DOALL loops that access arrays and perform runtime
detection of memory dependences. These techniques work
well for codes that access arrays with known bounds, but not
general single-threaded programs.

Speculative decoupled software pipelining (DSWP) [35]
presents another technique for thread extraction on loops
with pointer-chasing cross-iteration dependences. DSWP
pipelines a single iteration across multiple cores. This has
the advantage of overlapping the sequential and parallel por-
tions. However, when the two portions are not relatively
equal sized, the pipeline can be unbalanced. Our approach
has benefits in load balancing and scalability, particularly for
small recurrence cycles. Further, DSWP checkpoints archi-
tectural state for every iteration in flight using a versioned
memory. Storage grows with the length of the pipeline. A
separate commit thread synchronizes the memory versions
and handles commits. Conversely, speculative fission uses
a conventional transactional memory where only one buffer
per core is required and no commit thread.

The JPRM [5] framework uses a dynamic approach for
loop parallelization. Although this might lead to more accu-
rate speculation, the overhead of dynamic binary manipula-
tion might become too high. Furthermore, dividing the loop
too chunks with a length of one iteration incurs a significant
bookkeeping overhead.

Previous work also researched exploiting fine-grain par-
allelism in loops. Lee et. al. [17] studied running loop it-
erations simultaneously with communications through regis-
ter channels. This technique is good for loops with cross-
iteration dependences that cannot be removed through trans-
formations. Our previous work [38] studied exploiting fine-
grain parallelism in a single iteration, which is orthogonal to
this work and can be applied simultaneously.



7 Conclusion
The microprocessor industry is gradually shifting from

single-core to multicore systems. A major challenge going
forward is to get the software to utilize the vast amount of
computing power and adapt single-threaded applications to
keep up with this advancement. In this paper, we studied the
automatic parallelization of loops in general-purpose appli-
cations with TLS hardware support. By studying the bench-
marks, we found that a considerable amount of loop-level
parallelism is buried beneath the surface. We adapted and
introduced several code transformations to expose the hid-
den parallelism in single-threaded applications. More specif-
ically, we introduced speculative loop fission, isolation of
infrequent dependences, and speculative prematerialization
to untangle cross iteration data dependences, and a general
code generation framework to handle both counted and un-
counted speculative DOALL loops. With our transforma-
tion techniques, more than 61% of dynamic execution time
in the general applications can be parallelized compared to
27% achieved using traditional techniques. On a 4-core ma-
chine, our transformations achieved 1.84x speedup compared
to 1.41x speedup without transformations.

8 Acknowledgments
We thank the anonymous referees for their valuable com-

ments and suggestions. We also thank Neil Vachharajani,
Easwaran Raman, Arun Raman from the Liberty research
group for their help with the simulation system. This re-
search was supported by the National Science Foundation
grants CNS-0615261 CCF-0347411, and the Gigascale Sys-
tems Research Center, one of five research centers funded
under the Focus Center Research Program, a Semiconductor
Research Corporation program.

References
[1] R. Allen and K. Kennedy.Optimizing compilers for modern architec-

tures: A dependence-based approach. Morgan Kaufmann Publishers
Inc., 2002.

[2] A. Bhowmik and M. Franklin. A general compiler frameworkfor spec-
ulative multithreading. InSPAA ’02: 14th Annual Symp. on Parallel
Algorithms and Architectures, pages 99–108, 2002.

[3] W. Blume et al. Parallel programming with Polaris.IEEE Computer,
29(12):78–82, Dec. 1996.

[4] M. K. Chen and K. Olukotun. Exploiting method-level parallelism
in single-threaded Java programs. InProc. 7th PACT, page 176, Oct.
1998.

[5] M. K. Chen and K. Olukotun. The Jrpm system for dynamically par-
allelizing Java programs. InProc. 30th ISCA, pages 434–446, 2003.

[6] P.-S. Chen, M.-Y. Hung, Y.-S. Hwang, R. D.-C. Ju, and J. K.Lee.
Compiler support for speculative multithreading architecture with
probabilistic points-to analysis. InProc. 8th PPoPP, pages 25–36,
June 2003.

[7] K. Cooper et al. The ParaScope parallel programming environment.
Proceedings of the IEEE, 81(2):244–263, Feb. 1993.

[8] D. Dice, O. Shalev, and N. Shavit. Transactional LockingII. In Proc.
2006 International Symposium on Distributed Computing, 2006.

[9] Z.-H. Du et al. A cost-driven compilation framework for speculative
parallelization of sequential programs. InProc. ’04 PLDI, pages 71–
81, 2004.

[10] R. Gupta. Employing register channels for the exploitation of instruc-
tion level parallelism. InSecond PPoPP, pages 118–127, 1990.

[11] R. Gupta. A fine-grained MIMD architecture based upon register
channels. InProc. 23rd Annual Workshop on Microprogramming and
Microarchitecture, pages 28–37, 1990.

[12] M. Hall et al. Maximizing multiprocessor performance with the SUIF
compiler. IEEE Computer, 29(12):84–89, Dec. 1996.

[13] L. Hammond, M. Willey, and K. Olukotun. Data speculation support
for a chip multiprocessor. In8th ASPLOS, pages 58–69, Oct. 1998.

[14] T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Min-cut program
decomposition for thread-level speculation. InProc. ’04 PLDI, pages
59–70, June 2004.

[15] D. J. Kuck. The Structure of Computers and Computations. John
Wiley and Sons, New York, NY, 1978.

[16] C. Lee, M. Potkonjak, and W. Mangione-Smith. MediaBench: A tool
for evaluating and synthesizing multimedia and communications sys-
tems. InProc. 30th MICRO, pages 330–335, 1997.

[17] S. Lee and R. Gupta. Executing loops on a fine-grained MIMD archi-
tecture. InProc. 24th MICRO, pages 199–205, 1991.

[18] W. Liu et al. POSH: A TLS compiler that exploits program structure.
In Proc. 11th PPoPP, pages 158–167, Apr. 2006.

[19] S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. Bring-
mann. Effective compiler support for predicated executionusing the
hyperblock. InProc. 25th MICRO, pages 45–54, Dec. 1992.

[20] P. Marcuello and A. Gonzalez. Thread-spawning schemesfor specu-
lative multithreading. InProc. 8th HPCA, page 55, Feb. 2002.

[21] S. Moon, B. So, and M. W. Hall. Evaluating automatic parallelization
in SUIF. JPDC, 11(1):36–49, 2000.

[22] K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood.
LogTM: Log-based transactional memory. InProc. 12th HPCA, pages
254–265, Feb. 2006.

[23] E. Nystrom, H.-S. Kim, and W. Hwu. Bottom-up and top-down
context-sensitive summary-based pointer analysis. InProc. 11th SAS,
pages 165–180, Aug. 2004.

[24] OpenIMPACT. The OpenIMPACT IA-64 compiler, 2005.
http://gelato.uiuc.edu/.

[25] J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. S. Lam, and
K. Olukotun. Software and hardware for exploiting speculative par-
allelism with a multiprocessor. Technical Report CSL-TR-97-715,
Stanford University, Feb. 1997.

[26] M. Prabhu and K. Olukotun. Exposing speculative threadparallelism
in SPEC2000. InProc. 10th PPoPP, pages 142–152, June 2005.

[27] C. G. Quinones et al. Mitosis compiler: an infrastructure for specu-
lative threading based on pre-computation slices. InProc. ’05 PLDI,
pages 269–279, June 2005.

[28] R. Rangan, N. Vachharajani, M. Vachharajani, and D. I. August. De-
coupled software pipelining with the synchronization array. In Proc.
13th PACT, pages 177–188, 2004.

[29] L. Rauchwerger and D. A. Padua. The LRPD test: Speculative run-
time parallelization of loops with privatization and reduction paral-
lelization. Trans. on Parallel and Distributed Systems, 10(2):160,
1999.

[30] G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multiscalar processors.
In Proc. 22nd ISCA, pages 414–425, June 1995.

[31] J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. The STAMPede
approach to thread-level speculation.Trans. on Computer Systems,
23(3):253–300, 2005.

[32] J. G. Steffan and T. C. Mowry. The potential for using thread-level
data speculation to facilitate automatic parallelization. In Proc. 4th
HPCA, pages 2–13, 1998.

[33] M. Taylor et al. Evaluation of the Raw microprocessor: An exposed-
wire-delay architecture for ILP and streams. InProc. 31st ISCA, pages
2–13, June 2004.

[34] J. Tsai et al. The superthreaded processor architecture. IEEE Trans.
Comput., 48(9):881–902, Sept. 1999.

[35] N. Vachharajani, R. Rangan, E. Raman, M. Bridges, G. Ottoni, and
D. August. Speculative Decoupled Software Pipelining. InProc. 16th
PACT, pages 49–59, Sept. 2007.

[36] T. N. Vijaykumar and G. S. Sohi. Task selection for a multiscalar
processor. InProc. 31st MICRO, pages 81–92, Dec. 1998.

[37] L. Yen et al. LogTM-SE: Decoupling hardware transactional memory
from caches. InProc. 13th HPCA, pages 261–272, Feb. 2007.

[38] H. Zhong, S. Lieberman, and S. Mahlke. Extending multicore archi-
tectures to exploit hybrid parallelism in single-thread applications. In
Proc. 13th HPCA, pages 25–36, Feb. 2007.

[39] C. Zilles and G. Sohi. Master/slave speculative parallelization. In
Proc. 35th MICRO, pages 85–96, Nov. 2002.


