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Abstract nology is increasingly apparent as the push to run general-
purpose software on multicore platforms is required.

As multicore systems become the dominant mainstream In the scientific community, there is a long history of suc-
computing technology, one of the most difficult challengescessful parallelization efforts [1, 3, 7, 12, 15]. Thesehtec
the industry faces is the software. Applications with large niques target counted loops that manipulate array accesses
amounts of explicit thread-level parallelism naturallyate with affine indices, where memory dependence analysis can
performance with the number of cores, but single-threadedbe precisely performed. Loop-level and single-instructio
applications realize little to no gains with additional e multiple-data parallelism are extracted to execute migltip
One solution to this problem is automatic parallelizatibat loop iterations or process multiple data items in paralli-
frees the programmer from the difficult task of parallel pro- fortunately, these techniques do not often translate veell t
gramming and offers hope for handling the vast amount of general-purpose applications. These applications ardnmuc
legacy single-threaded software. There is a long history of more complex than those typically seen in the scientific com-
automatic parallelization for scientific applications, ttithe puting domain, often utilizing pointers, recursive dataist
techniques have generally failed in the context of general-tures, dynamic memory allocation, frequent branches, Ismal
purpose software. Thread-level speculation overcomes thefunction bodies, and loops with small bodies and low trip
problem of memory dependence analysis by speculating uneount. More sophisticated memory dependence analysis,
likely dependences that serialize execution. Howeves, thi such as points-to analysis [23], can help, but parallébnat
approach has lead to only modest performance gains. In thisoften fails due to a small number of unresolvable memory
paper, we take another look at exploiting loop-level paral- accesses.
lelism in single-threaded applications. We show that sub-  Explicit parallel programming is one potential solution to
stantial amounts of loop-level parallelism is available in the problem, but it is not a panacea. These systems may
general-purpose applications, but it lurks beneath the sur hurden the programmer with implementation details and can
face and is often obfuscated by a small number of data andseverely restrict productivity and creativity. In partiag
control dependences. We adapt and extend several codgetting performance for a parallel application on a heterog
transformations from the instruction-level and scienfifas-  neous hardware platform, such as the Cell architecturenoft
allelization communities to uncover the hidden parallelis requires substantial tuning, a deep knowledge of the upderl
Our results show that 61% of the dynamic execution of stud-ing hardware, and the use of special libraries. Furthergthe

ied benchmarks can be parallelized with our techniques com-is a large body of legacy sequential code that cannot be par-
pared to 27% using traditional thread-level speculatiocite allelized at the source level.

niques, resulting in a speedup of 1.84 on a four core system A ell-researched direction for parallelizing general-

compared to 1.41 without transformations. purpose applications is thread-level speculation (TLS)hW
TLS, the architecture allows optimistic execution of code r
1 Introduction gions before all values are known [2, 13, 14, 25, 30, 32, 34,

39]. Hardware structures track register and memory acsesse

Due to power dissipation and design complexity issues to determine if any dependence violations occur. In such
of building faster uniprocessors, multicore systems have cases, register and memory state are rolled back to a pseviou
emerged as the dominant architecture for mainstream com-<orrect state and sequential re-execution is initiatedth Wi
puter systems. Semiconductor companies now put two toTLS, the programmer or compiler can delineate regions of
eight cores on a chip, and this number is expected to continuecode believed to be independent [4, 9, 18, 20]. Profile data is
growing. One of the most difficult challenges going forward often utilized to identify regions of code that are likelyi
is software: if the number of devices per chip continues to pendent, and thus good candidates for TLS.
grow with Moore’s law, can the available hardware resources  Previous work on TLS has yielded only modest perfor-
be converted into meaningful application performancegain mance gains on general-purpose applications. The POSH
In some regards, the embedded and domain-specific commueompiler is an excellent example where loop-based TLS
nities have pulled ahead of the general-purpose world in tak yielded approximately 1.2x for a 4-way CMP and loop com-
ing advantage of available parallelism, as most system-on-bined with subroutine TLS yielded approximately 1.3x on
chip designs have consisted of multiple processors and hardSPECint2000 benchmarks [18]. That result improves upon
ware accelerators for some time. However, these system-rior results reported for general-purpose applicationthe
on-chip designs are often deployed for limited application Stampede and Hydra groups [13, 32]. One major limitation
spaces, requiring hand-generated assembly and tedious praf prior work is that parallelization is attempted on unmodi
gramming models. The lack of necessary compiler tech-fied code generated by the compiler. Real dependences (con-



trol, register, or memory) often mask potential parallelis Y o
A simple example is the use of a scalar reduction variable | ©°° - I
in a loop. All iterations update the reduction variable, ten 5 o8
they cannot be run in parallel. One notable exception is the| s °7
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Our work is directly motivated by Prabhu and Olukotun.
We examine the feasibility of automatic compiler transfor-
mations to expose more TLP in general-purpose applica-
tions. We target automatic extraction of loop-level paral- riqre 1: Fraction of sequential execution covered by prov-
lelism, where loops with sets of completely independenploo ble DOALL | identified th h i vsis (bot
iterations, or DOALL loops, are identified, transformeddan @Ple DOALL loops identified through compiler analysis (bot-
parallelized. Memory dependence profiling is used to gathertom portion of bars) and speculative DOALL loops identified
statistics on memory dependence patterns in all loop bpdiesthrough profiling (top portion of bars).
similar to prior work [18]. Note that we are not paralleligin ) _ o
inherently sequential algorithms. Rather, we focus on unco static operations that reside in at least one provable DOALL
ering hidden parallelism in implicitly parallel code. loop are summed and divided by the total dynamic opera-

We examine the use of TLS as a method to overcometion count. The figure shows that the compiler analysis is not
the limitations of static compiler analysis. This is the sam very successful with the exception of two cases, 171.swim
conclusion reached by prior work. However, we look be- from SPECfp and mpeg2dec from MediaBench. The com-
yond the nominal code generated by the compiler to find piler is generally most successful in SPECfp, where presiou
parallel loops. We show that substantial loop-level paral- scientific parallelization techniques are applicable. iger,
lelism lurks below the surface, but it is obstructed by a va- the pointer analysis is only partially successful at resgjv
riety of control, register and memory dependences. To over-memory dependences in the non-scientific code.
come these dependences, we introduce a novel framework TLS has the potential to provide large performance gains
and adapt and extend several code transformations from doby allowing speculative parallelization of loops where eom
mains of instruction-level parallelism and parallelipatiof piler analysis alone is unsuccessful. One key issue for SLS i
scientific codes. Specifically, our contributions are: to parallelize the loops that have low probability memory de

) ) pendences. Memory profiling is a way to estimate the mem-

e DOALL loop code generation framework - We intro-  ory dependences in a program. The memory profiler runs
duce a novel framework for speculative partitioning of the application on a sample input and records the memory
chunked loop iterations across multiple cores. The tem- address accessed by every load and store. If two memory in-
plate handles complex cases of uncounted loops as welktructions access the same location, a memory dependence is
as counted ones and takes care of all scalar live-outs. recorded.

e TLP-enhancing code transformations - We design sev-  For the purpose of parallelizing loops, we only care about
eral code transformations to break cross iteration depen-cross iteration dependences. If the loops are nested, vek nee
dences in nearly DOALL loops. These transformations to know in what nesting level each memory dependence is
are not entirely new, but rather are variants of prior tech- happening. Furthermore, when the loop contains function
niques that have different objectives and are adapted tocalls, we want to know if the called function accesses any
work in the presence of uncertain dependence informa- global variable which causes cross iteration memory depen-
tion and TLS hardware. The optimizations consist of of dence. Therefore, we developed a control-aware memory
speculative loop fission, speculative prematerialization profiler to identify speculative DOALL loops.
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and isolation of infrequent dependences. The upper portion of the bars in Figure 1 show the frac-
tion of serial runtime spent in DOALL loops identified by
2 Paralléeization Challenges the profiler. A loop is speculative DOALL if it contains

zero or very few cross iteration memory dependences, and it
To illustrate more concretely the challenges of identify- contains no cross iteration register and control deperetenc

ing TLP using compiler analysis in general-purpose code, weNote that simple register and control dependences, such as
examine the frequency of provable DOALL loops in a vari- those cause by induction variables, can easily be elimihate
ety of applications. We use the Openlmpact compiler sys-and hence are ignored in this analysis. Comparing the pro-
tem that performs memory dependence analysis using interfiled and provable results, we see that many more DOALL
procedural points-to analysis [23]. A total of 41 applioats loops are identified using profile information than using eom
(all C source code, or C code generated from f2c) from four piler memory analysis. On average, 28% of the sequential
domains are investigated: SPECfp, SPECint, MediaBench,execution is contained within speculative DOALLs, com-
and Unix utilities. The lower portion of the bars in Figure 1 pared with 8% in provable DOALLs. As expected, the pro-
show the ability of an advanced compiler to expose provablefiler is highly effective with the SPECfp applications, whic
DOALL parallelism. For each application, the fraction of se are known to contain large amounts of loop-level paraltelis
guential execution that is spent in provable DOALL loops is However, for the remaining applications, the results are ge
presented. To derive this value, the execution frequenaitof  erally disappointing. With the exception of a few media ap-



plications, most of these applications contain few DOALL register; otherwise, it stalls the core and waits for the-mes
loops. sage.

These poor results were confusing as we had observed SEND and RECV operations also provide an efficient
that many loops in these applications contained no sta-mechanism to guarantee the ordering of instructions in dif-
tistically significant cross-iteration memory dependence ferent cores. We commit loop iterations in original program
Hence, if we were only looking at memory dependences, theorder to maintain sequential semantics by passing a commit
number of speculative DOALLs would be much larger. The permission token between the cores using SEND/RECYV in-
problem is that the loops are not DOALL due to other de- structions.
pendences - namely cross iteration register and control de- Finally, the hardware supports low latency thread spawn-
pendences. |If these dependences could be broken by théng to efficiently exploit parallelism in small loops. We as-
compiler, then the number of DOALL loops would increase sume the operating system pre-allocates several coresho ea
substantially. The remainder of the paper explores thiscdir - application. To spawn a new thread, a core simply sends a
tion of research, namely a set of compiler transformationst program counter (PC) value to another core to initiate its ex
break these dependences within the context of a speculativecution. Since the compiler explicitly controls threadwpa
execution environment. ing, the live-in scalar values for the slave are explicithgped

from the master using the scalar operand network.

3 Architectural Support ) ) .
Speculative DOALL loops require several underlying fea- 4 Uncovering Hidden Loop Level Parallelism

tures to ensure correct execution and make recovery actions As shown in the previous sections, without any code trans-
when a speculation violation occurs. These features can bgormation, out-of-the-box loop level parallelization app
implemented in hardware, software, or a combination of the tynities for general applications are limited, even withSTL
two. Traditional TLS hardware can support speculative €x- hardware support. After manually studying a wide range of
ecution of all types of loops and acyclic code [30, 32, 13]. |oops, we found that many parallel opportunities were hidde
Since we are only executing speculative DOALL loops, a peneath the seemingly sequential code. With proper code
subset of TLS hardware is required. = Furthermore, since transformations, critical cross iteration dependenceshz
many of the loops studied have small bodies and low trip yntangled resulting in many more speculative DOALL loops.
counts, the overhead of parallel execution must be mini- | this section, we first introduce our code generation séhem
mized. In this section, we specify the underlying hardware for speculative DOALL loops. It handles both counted loop
model and assumptions about its operation. ) and uncounted loop with cross iteration control dependgnce
_Our target architecture is a standard chip multlprocessorSubsequenﬂy, we present techniques to handle crossdterat
with coherent L1 caches and a shared L2 cache. The sysgependences that hinder loop level parallelism. In aduittio
tem is extended with three major features to support specula some well-known techniques, we introduce three novel trans
tive DOALL execution. First, a transactional memory system fgrmations to untangle register and memory dependences:

similar to LogTM [22, 37] is utilized to detect memory de- speculative loop fission, speculative prematerializataord
pendence violations and rollback execution if necessagy. W isolation of infrequent dependences.

assume ordered transactions. In the case of a conflict, the
transaction with the higher ID is aborted. Larger transacti 41 Code Generation
IDs are assigned to higher groups of loop iterations to main-
tain sequential semantics. Since we only parallelize loops After choosing candidate loops for parallelization us-
with statistically zero dependences, memory values are noting the profile information, the compiler distributes loop
forwarded from previous transactions to later transastion execution across multiple cores. In this work, we cate-
to simplify the hardware implementation. If a later trans- gorize DOALL loops into DOALL-counted and DOALL-
action uses values stored in a previous transaction, the lat uncounted. In DOALL-counted, the trip count is known
transaction is aborted. Several new instructions are atlled when the loop is invoked (note, the trip count is not nec-
the instruction set to expose the transactional memorydo th essarily a compile-time constant). However, for DOALL-
compiler. The XBEGIN instruction marks the beginning of a uncounted, the trip count is unknown until the loop is fully
transaction. XBEGIN takes the address of the abort handlerexecuted.While loops andfor loops with conditional break
as an operand. The XCOMMIT instruction marks the end of statements are two examples of DOALL-uncounted loops
a transaction and commits the speculative state. that occur frequently. In these cases, the execution ofyever
Second, a scalar operand network, similar to that in the iteration depends on the outcome of exit branches in previ-
Raw architecture [33], is used to communicate register val- ous iterations. Therefore, these loops contain crosgitera
ues between cores. A mechanism similar to register chan-control dependences. In this section, we introduce our code
nels [11, 10] or a synchronization array [28] can also be generation framework for handling control dependences and
used to support register communication and synchronizatio executing both speculative DOALL-counted and DOALL-
Each core is extended with send and receive queues and simiancounted loops.
ple routing logic (XY routing is assumed). Two new instruc- Figure 2 shows the detailed implementation of our code
tions, SEND and RECV, are added to the instruction set. Thegeneration framework. In the proposed scheme, the loop iter
SEND instruction has two source operands, a register and aations are divided into chunks. The operating system passes
destination core ID. It reads the value in the source registe the number of available cores and the chunk size to the appli-
and sends it to the destination core. The RECV instruction cation. Our framework is flexible enough to use any number
also takes two source operands, a target register and arsendef available cores for loop execution. We insert an outeploo
core ID. When a RECV is executed, it looks in the incoming around the original loop body to manage the parallel execu-
message queue in the core for messages from the sender IDion between different chunks. Following is a descriptidn o
If such a message is found, it moves the value to the targethe functionality of each segment in Figure 2.



spawn jobs to svailsble cores Spawn each transaction, and move the backup value to the registers
Send CS, SS, TC and liveins to all threads

: in the abort handler. Moreover, we also add recovery code

* in the abort handler for some of our transformations as de-
scribed in the next section.
Receive CS, SS, TC and live-ins .
IS = IS_init + CS * S5 * thread id Initialization Parallel Loop: The program stays in the parallel loop
e e, segment as long as there are some iterations to run and no
= v Y break has happened. In this segment, each thread executes
— _— a set of chunks. Each chunk runs iterations from IS to IE.
Handler] | ¢ (global brk flag) break; Loop The value of IS and IE are updated after each chunk using
IE = min(IS+CS*SS,n) the chunk size (CS), thread count (TC) and step size (SS).
v Each chunk of iterations are enclosed in a transaction, de-
...... marcated by XBEGIN and XCOMMIT instructions. The
T e transactional memory monitors the memory accessed by
{asead ek £1ag each thread. It aborts the transaction running higher-itera
tions if a conflict is detected, and restarts the transadtamn
the abort handler. Chunks are forced to commit in-order to
perm = RECV(TAREAD,.) maintain correct execution and enable partial loop rokbac
if (local brk_flag) and recovery. In order to minimize the required bookkeeping
globalbrk flag o for this task, we use a distributed commit ordering techaiqu
elseif (IE < n) in which each core sends commit permission to the next core
LD (perm, TRRERD ) after it commits successfully. These permissions are sent i
: = the form of dummy values to the next core. TRECV
v o - —I'd— - command near the end of the main block causes the core to
iy . Consolidation stall and wait for dummy values from the previous core.
last upa Lix vatues R (Live ont 0 For uncounted loops, if a break happens in any thread,
Set Tive out; to the SEND(last_upd_idx;,0) we don’t want to abort higher transactions immediately, be-
2o wpearer m | cause the execution of the thread is speculative and th& brea
((oone ) i could be a false break. Therefore, we use a local variable

cal_brk flagin each thread to keep track of if a chunk breaks.
Figure 2: Detailed code generation framework for spec- If the transaction commits successfully withcal_brk flag
ulative loop parallelization. Transaction scope is marked S€t the break is not speculative any more, and a transaction

. : . - abort signal is sent to all threads using a software or hard-
by XBEGIN and XCOMMIT. (CS: chunk size, 13 iteration ware interrupt mechanism. In additiongéobalbrk_flag is

start, IE: iteration end, SS: step size, TC: thread count) set, so that all threads break the outer loop after restartin

] the transaction as a result of the abort signal. The reason fo
Spawn: To start, the master thread spawns threads con-gypicitly aborting higher iterations is that if an iterat is

taining chunks of loop iterations. It sends the necessary pa siarted by misspeculation after the loop breaks, it coutd pr
rameters (chunk size, thread count, etc.) and live-in\&@oe  g,ce an illegal state. The execution of this iteration might

all threads. s - cause unwanted exceptions or might never finish if it con-
Initialization: In the initialization block, all participat-  tains inner loops.

ing cores receive the required parameters and live-in alue  consolidation: After all cores are done with the execu-
Since live-in values are not changed in the lbope only  tion of iteration chunks, they enter the consolidation ghas
send them once for each loop execution. This block also|n this period, each core sends its live-outs #ast-upd-idx
computes the starting iteration, IS, for the first chunk.ehft  array to THREAD, that selects the last updated live-out
initialization, each core manages its own iteration staltl®,  values. All threads are terminated after consolidation and
thus parallel execution continues with minimum interactio 7/ READ, continues with the rest of program execution.

among the threads. ) ) We carefully designed the framework to keep most of the
In order to capture the correct live-out registers after par extra code outside the loop body, so they only execute once
allel loop execution, we use a set of registers cdtsttupd-  per chunk . The overhead in terms of total dynamic instruc-

idx, one for each conditional live-out (i.e., updated in an if- tions is quite small.
statement). When a conditional live-out register is update
we set the correspondirigst-upd-idxto the current itera- 42  Dependence Breaking Optimizations
tion number to keep track of the latest modifications to the
live-out values. If the live-out register is unconditiorfaé., This section focuses on breaking cross iteration regis-
updated in every iteration), the final live-out value canée r ter dependences that occur when a scalar variable is de-
trieved from the last iteration and riast-upd-idxis needed. fined in one iteration and used in another. First, we exam-
Abort Handling: The abort handler is called when a ine several traditional techniques that are commonly used
transaction aborts. If the TM hardware does not backup theby parallelizing compilers for scientific applications: riva
register file, we can use the abort handler to recover certainable privatization, reduction variable expansion, andign
register values in case of transaction abort. More spetiifica  ing long distance memory dependences. These optimizations
we need to recover the live-out afebt-upd-idxregister val- are adapted to a speculative environment. Then, we pro-
ues. We need to backup these registers at the beginning opose three optimizations specifically designed for a specu-
lative environment: speculative loop fission, speculapiree
1if a live-in value is changed in the loop, it generates a citesation materialization and infrequent dependence isolation.s&he
register dependence and the loop cannot be parallelized. transformations are adaptations of existing ones usedein th




1: while (node) { // Sequential

/
:

2: work (node) ; \ count = 0;
3: node = node->next; c : while (node) {
} Y 4 4: node_array [count++]= node;
\rf m? / 3: node = node->next;

}

o4

// Parallel

(a)
(b) XBEGIN
i node = node array[IS];
Sequential parallel St _ y [IS]
| 1': while (node && i++ < CS) {
\ | \ «\ 2 work (node)
.
c \ | c \ c \ 3 node = node->next
}
rf /V@ ¢ | rf y ¢ .- rf \ ¢ if (node '= node array[IS+CS]
Y .
\rf /7 | \,f A \rf A kill higher iter THREADs ();
\\ % / | \ % e iy XCOMMIT
(c) (d)

Figure 3: Speculative loop fission (a) Original loop (b) Gmay data flow graph (c) Data flow graph after fission (d) Lodeiaf
fission - (rf: register flow dependence, c: control dependem®: unlikely cross-iteration memory dependence

scientific and ILP compilers. in Section 4.1 generates the proper code for parallel execu-
tion of the loop.

4.2.1 Traditional Dependence Breaking Optimizations

. . . L . 4.2.2 eculative L oop Fission
Variable privatization. Cross iteration input, anti- and out- P P

put dependences can be removed by register privatizationBy studying benchmarks, we observed that many loops con-
Since each core has a separate register file, register ascesstain large amounts of parallel computation, but they cannot
in different cores are naturally privatized. Live-in saalare be parallelized due to a few instructions that form cross ite
broadcast to each core during initialization, thus alldadg- ation dependence cycles. We call these laapsostDOALL
pendences on scalars are removed. Handling output deperloop as the bulk of the loop is DOALL, but a small recurrence
dences for live-out variables is tricky. Since the value of a cycle(s) inhibits parallelization. The objective of spktive
live-out variable is used outside the loop, we need to find outloop fission is to split the alma€dOALL into two parts: a
which core performed the last write to the register. Thisags n  sequential portion that is run on one core followed by a spec-
obvious if the register is updated conditionally. As ddsed ulative DOALL loop that can be run on multiple cores. The
in the previous section, the code generation template kandl basic principles of this optimization are derived from frad
this case by assigning an integer value on each core for eachional loop fission or distribution [1].
live-out register. This value is set to the last iteratioder Figure 3(a) shows a classic example of such a loop. A
where the live-out variable is written. The compiler insert linked list is iterated through, with each iteration doiragree
code after the loop (in the consolidation block in Figure 2) work on the current node. Figure 3(b) shows the data de-
to set the live-out registers to their last updated valugkén  pendence graph for the loop, with the important recurrence
loop based on the stored iteration index. of operation 3 to itself. Note that there may be an unlikely
Reduction variable expansion. Reduction variables, memory dependence between operations 2 and 3 as indicated
such as accumulators or variables that are used to find a maxby the “m?” edge in the graph. Such a situation occurs when
imum or minimum value, cause cross iteration flow depen- the compiler analysis cannot prove that the linked list is un
dences. The most common case isshevariable when all ~ modified by the work function. For this loop, the sequential
elements of an array are summed. These dependences can Ipartion consists of the pointer chasing portion (i.e., @tien
removed by creating a local accumulator (or min/max vari- 3) and the DOALL portion consists of the work performed on
able) for each core, and privately accumulating the totals o each node (i.e., operation 2).
each core. After the loop and in the consolidation block, lo-  The basic transformation is illustrated in Figure 3(c). The
cal accumulators are summed or the global min/max is foundstrongly connected components, or SCCs, are first identi-
amongst the local min/max’s. fied to compose the sequential portion of the loop. Depen-
Ignoring long distance memory dependences. When dences that will be subsequently eliminated are ignored dur
the number of iterations between two memory depen-ing this process. These include control dependences hndle
dences is larger than some threshold, there is an opporby the DOALL-uncounted schema (i.e., the control depen-
tunity for parallelization by simply ignoring the depen- dence from operation 1 to 3), unlikely memory dependences
dence. Intuitively, if the distance between memory ac- (i.e., the memory dependence from operation 2 to 3), and
cesses i, the compiler can make — 1 iterations exe-  register dependences caused by reduction variables. dn thi
cute in parallel. Subsequently, if we set the chunk size asexample, the SCC is operation 3. The sequential portion is
cross_iteration_distance/number_of _cores, our scheme  then populated with two sets of nodes. First, copies of all



for (k=0;k<num nets_affected k++) { for (k=0;k<num nets_affected k++) {
inet = nets to update[k]; if (net_block moved[k] == FROM AND TO)
continue
if (net_block moved[k] == FROM AND TO) bb index array [k] = bb_index;
continue bb indext+;
}
if (netl[inet].num pins <= SMALL NET) { v

get non updateablebb (inet,
&bb_coord new[bb_index]);

’ v

...... XBEGIN ™
bb indext+; bb_index = bb index array[IS]; [
i

Spawn parallel chunks with abort handler|

for (k = IS; k < IS + CS ; k++) {
inet = nets to_updatelk];

(a) if (net_block moved[k] == FROM AND TO)
continue

Abort handler if (net[inet].num pins <= SMALL NET) {

get non_updateablebb (inet,

bb_index = bb_index from aborting core sbb_coord new[bb_index]);

k = k from the aborting core
for (;k<num nets affectedk++) { | | e
if (net block moved[k] == FROM AND_TO)
continue
bb index array [k] = bb_index;
bb_indext+;

bb index++;
}
if (bb_index != bb index array[k])
abort higher threads;
} XCOMMIT

©
(b)

Figure 4: Example of speculative loop fission from 175.vaj:driginal loop (b) loop after fission (c) abort handler.

dependence predecessors of the SCC are added (operationfission technique in that both the sequential and paraltgldo
in Figure 3(c)). Second, a new operation is introduced for are speculative. Since the sequential loop contains compu-
each register flow edge that is cut between the SCCs and théations from every iteration, it could conflict with one or
remaining operations. In the example, there is a register flo more of the parallel chunks. For example, in Figure 3(a), the
edge from operation 3 to 2. A new operation is created (op-work function could modify the linked list. This means that
eration 4) that stores the value communicated via the edgenodearray contains one or more incorrect values. Such a
into an array element. For this example, each node pointermemory dependence violation must be detected and rollback
is stored into the array. In essence, the register flow depenperformed. The combination of the transactional semantics
dence is converted into a through-memory dependence. Theand the additional tests added after each parallel churdsto t
result is the dependence graph shown on the left portion ofthe SCC variables ensure there are no unexpected memory
Figure 3(c) and the code shown at the top of Figure 3(d). = dependences between two parallel chunks (transaction com-
The parallel portion of the loop consists of the entire orig- Mit) and between the sequential and parallel chunks (ekplic
inal loop, including the SCCs, with a few modifications as test inserted by the compiler). To simplify the problem, we
shown in Figures 3(c) (right portion) and 3(d) (bottom por- don’t allow inclusion of any store instruction in the sequen
tion). Each parallel chunk is seeded with a single value com-tial loop besides the ones that write to the new arrays. Our
puted in the sequential loop for each register flow edge thatexperiments show that very few fission candidates are lost
was cut. In the exampleodeis set tonodearray[IS] orthe by this requirement. When a parallel loop chunk reaches the
index of the starting iteration of the chunk. The body of the end ofits execution, it can commit only if all previous chenk
DOALL is identical to the original loop, except that only a have committed and no conflicts are detected, thereby ensur-
fixed number of iterations are performed, CS or chunk size. Ing correctness.
Note that each parallel chunk is sequential, yet all pdralle  When the abort handler is invoked due to a memory de-
chunks are completely decoupled due to array variables propendence conflict, it must first abort all threads executing
duced by the sequential loop (i.aqgdearray). higher numbered iterations. Then, it restarts the exenutio
The final change is a test to ensure that each live-out SCCof the sequential loop to re-initialize all the relevantued
variable has the same value that was computed in the sequerfor the new arrays (i.enodearray in the example). To en-
tial loop. For the linked list example, this tests whether th sure that modifications to data structures by later iteratio
current parallel chunk modified the starting element of the do not affect earlier iterations, the sequential loop isaaty
next chunk. This test combined with the transaction com- from the starting iteration of the next thread after abd#r(i
mit ensures that the linked list was not modified during the ation start + chunk size or IS+CS) to reset only the relevant
parallel portion. In cases where the compiler can prove no portion of the new array(s).
modifications are possible, this check is not necessary. The To show a real example of speculative loop fission, Fig-
final parallel code is presented in Figure 3(d). Note thayonl ure 4(a) presents an importastinost_DOALL loop from
the transaction scope portion of the code is shown for glarit the SPECint application 175.vpr. This example is different
This code is dropped into the DOALL-uncounted template in from the previous example in that it is not a linked list trave
Figure 2 to complete the parallelization. sal. The variabldb_indexcarries a cross iteration register
Our loop fission scheme is different from traditional loop dependence. The variable is not an induction variable be-



XBEGIN

1': current =
for (...) { 3': 1last =
1: current = .. ; for (...) {
2: work (last) ; 1: current = .. ;
3: last = current; 2: work (last) ;
} 3: last = current;

}
XCOMMIT

(@) (b) (©)

Figure 5: Example of speculative prematerialization: {@gioal loop, (b) dataflow graph, and (c) loop after trangfiation.

cause it is not updated in every iteration due todbatinue iterations need to be pre-executed.
statement. The split loops are shown in Figure 4(b). The first  Figure 5 illustrates the transformation. The original loop
loop is the sequential loop and contains the cross iterationand dataflow graph are presented in Figures 5 (a) and (b).
dependences. It produces valuebbfindexon every itera-  There is a cross iteration register flow edge from operation 3
tion and stores them to a new array calledindexarray. to 2 corresponding the the variabist The transformation
The second loop is the parallel loop, where each chunk is de-is accomplished by peeling off a copy of the source of the
coupled through the use bb.indexarray. Finally, the abort  register flow dependence and all its dependence predeces-
handler for the loop is presented in Figure 4(c). sors. In this case, the source of the register flow dependence
Two alternatives for parallelizing alma&tOALL loops (operation 3) and its dependence predecessor (operation 1)
are DOACROSS [1] and speculative decoupled software are peeled and placed in the loop preheader. The resultant
pipelining (DSWP) [35]. We consider speculative fission loop is shown in Figure 5(c). On the surface, this loop i$ stil
a better option than DOACROSS for two reasons. First, sequential as the dependence between operations 3 and 2 has
DOACROSS does not work with iteration chunking. If not been eliminated. However, the peeling decouples each
chunks of many iterations are executed in the DOACROSSchunk from the prior chunk allowing the chunks to execute
manner, the first iteration in a chunk has to wait for data from in parallel.
the last iteration of the previous chunk, which basically se ~ One important thing to note is that the prematerializa-
quentializes execution. For loops with small bodies, tiera  tion code is speculative because other iterations couldfsnod
chunking is very important to get performance improvement. variables it uses. This is akin to speculative fission whieee t
Second, DOACROSS execution is very sensitive to the com-linked list is modified during its traversal. In the simple-ex
munication latency between threads because each iteratiommple, a pointer used to computerrentcould be changed,
has to wait for data from the previous iteration. With speeul  thereby invalidating the prematerialized variables. Thie
tive loop fission, the communication between the sequentialprematerialization code must be part of the transactioh tha
part and the parallel part can happen in parallel and therebycontains the chunk. If any memory conflict is detected in
the total execution time would be much shorter. the prematerialization code or the loop itself, the transac
Speculative DSWP converts almd3OALL loops into tion corresponding to higher number iterations is abortet! a
a producer-consumer pipeline. This has the advantage ofestarted.
overlapping the sequential and parallel portions. However  To illustrate a real application of prematerializationgFi
when the two portions are not relatively equal sized, the ure 6 shows a loop in the application djpeg from Media-
pipeline can be unbalanced. This problem can be alleviatedBench. The variablekstcolsum thiscolsum and nextcol-
by replicating pipeline stages. We believe DOALL execu- sumform a 3-wide sliding window in the loop. Variables
tion is more scalable and more compatible with conventional nextcolsunmandlastcolsumboth carry cross iteration depen-
transactional semantics. dences that prevent DOALL execution. Speculative prema-
terialization can be applied because the valueetcolsum
: e andlastcolsumare defined in every iteration, and the cross
4.2.3  Speculative Prematerialization iteration dependences do not form cycles. The right half

A special type of cross iteration register dependence can b Figure 6 shows the parallel code after prematerializatio

removed through a transformation called speculative prema A Prématerialization block is inserted before each chunk to

terialization. The idea of prematerialization is to execat ~ compute the live-in values forextcolsunandlastcolsumin

small piece of code before each chunk to calculate the live-th€ Prematerialization code, portions of the previous two i

in register values, so the chunks can be executed in parallefrations are executed to prematerialize two variables.

instead of waiting for all previous iterations to finish. Rem

terialization is a technique commonly used by registeicalto 42 4 |nfrequent Dependence I solation

tors where its more efficient to recompute a value than store

it in a register for a long period of time. Here the objectisei  Another form of almosDOALL loops are loops with infre-

different, but the process is similar. guently occurring cross-iteration dependences. The ssurc
Prematerialization can remove cross iteration depen-or sinks of the dependence edges are contained in infre-

dences on registers that are not part of dependence cyades amuently executed conditional clauses. Thus, the majofity o

are defined in every iteration. For each register that sesisfi the time the loops are DOALL. Isolation does not break any

those two conditions, pre-execution of at most one iteratio dependences, but rather transforms the control flow struc-

will generate the live-in value for a chunk. If a loop con- ture of the code to allow the compiler to parallelize the por-

tainsn registers that need to be prematerialized, at most tion of the loop that is DOALL. The transformation is sim-



colctr = IS - 2; Ini
inptr0 = inptr0_init; . m.t
for (colctr = compptr ->downsampled width - 2; inptrl = inptr0 init; inductions
colctr > 0; colctr--) { -
nextcolsum = s N nextcolsum = GETJSAMPLE (*inptr O++)*3 Iteration
GETJSAMPLE (*inptrO++) * 3 + +  GETJSAMPLE (*inptrl++) ; iter start -2
/G/FEJSMLE (*inptrl++) ; T~ thiscolsum = nextcolsum ; -
_*outptr++ = \‘D N
p ~(JSAMPLE ) T(thiscolsum * 3 + lasttolsum + 8) colctr = ++: terat
/ . 1/ ! eration
/ >> 4); nextcolsum = GETJSAMPLE (*inptr O++)*3 iter start -1
*outptr++ = ) + GETJSAMPLE (*inptr 1++) ; -
\ (JSAMPLE ) ((thiscolsum * 3 + nextcolsum + 7) lastcolsum = thiscolsum ;
‘\\ >> 4); thiscolsum = nextcolsum ;
‘r\‘\ . lastcolsum = thiscolsum ;
\ thiscolsum = nextcolsum ; M
} // for (colctr = IS;colctr >IS-CS;colctr --)
{
Chunk fi
// The original loop body goes here 7":: starr:m
}
Figure 6: Example of speculative prematerialization frgped.
A

3=0;

while (j<=nstate){

for ( j=0; j<=nstate; ++j ){ for( ; j<=nstate; ++j ){

if ( tystate[j] == 0 ) continue; if( tystate[j] == 0 ) continue;
if ( tystate[j st ) if( tystate[j] == best ) continue;
continue ; count = 0; cbest = tystate[]]’;

e

2 count 70; for (k=j; k<=nstate; ++k)
cbest/= tystate[]j]; $ if (tystate[k]==cbest) ++count;
for [(k=j; k<=nstate; ++k) if ( count > times)

v if [(tystate [k]==cbest) ++count; break;
if count > ti ) { }
/ best = cbest; g if (count > times) {
¢ times = count; best= cbest; times= count; j++;
} }
4 }
(a) (b) (c) (d)

Figure 7: Example of dependence isolation: (a) mechanitsw$formation for an abstract loop, (b) example loop fraag,

ilar to hyperblock formation, but again the objectives are This code is transformed by adding an outgrile loop and

changed [19]. the unlikelyif block is replaced by areakstatement. When
Cross-iteration register and memory dependences are elifh€ conditioncount> timesis True, the outefor loop will

gible for isolation as well as calls to libraries where theco ~ break and thé statement in new while loop is entered. After

tion. Library calls are typically treatéd conservativelyda  the iteration it left off. The outefor is now DOALL.

and thus inhibit parallelization. Isolation optimizes thwn-

mon case by restructuring a loop into a nested loop. Theg Regylts

schematic transformation is illustrated in Figure 7(a).eTh

example loop consists of three basic blocks, A, B, and C.  \e implemented the algorithms discussed in the previ-
A dependence cycle exists between operations 1 and 2, congys section in the OpenIMPACT compiler [24]. The algo-
tained in blocks A and B, respectively. Assume that block B yithms identify opportunities for control dependence spec
is infrequently executed. Isolation converts the A-B-Cdoo jation (DOALL-uncounted loops), register reduction vari
into a nested loop structure as shown in the figure. The innergpje expansion, long distance memory dependence iteration
loop contains the frequent, DOALL portion, namely A-C. chunking, speculative loop fission, speculative premaleri
And, the outer loop contains the sequential portion, namely jzation, and infrequent dependence isolation. For reducti
A-B-C. Block C is duplicated as in hyperblock formation to yariable expansion, the compiler identifies reduction ~vari
eliminate side entrances into the loop. The resultant innergpjes for summation, production, logical AND/OR/XOR, as
loop is an DOALL-uncounted. When control enters block B, \ye|| a5 variables for finding min/max. For speculative loop
parallel execution is aborted, and the cross iteration depe fissjon, the compiler identifies loops where the sequential
dence is properly enforced. part represents less than 3% of the dynamic execution of the
Figure 7(b) illustrates the application of dependence iso- loop. For infrequent dependence isolation, the frequericy o
lation to a loop from the Unix utility yacc. The left hand por- cross iteration register dependence and library callsdnbe t
tion of part (b) shows the original code in which the oudtar less than 10%. For long distance memory dependences, a
loop is not parallellizable due to two cross-iteration stgi threshold of 4 iterations is assumed. These thresholds were
dependences that are shown by arrows. However, accordingxperimentally chosen to maximize the speedup. Several
to the profile information, thé statement at the bottom of benchmarks from SPEC CPU 92/95/2000, MediaBench [16],
the loop rarely evaluates to True. Therefore, we can trans-and Unix utilities are studied and we show the results for all
form the loop to that in the right hand portion of Figure 7(b). the benchmarks that successfully ran through our system.



O J— _ bar is shown for each configuration. The lower part shows

0s i ) o | I the speedup results without our proposed transformations.
cos Therefore, only counted loops with no or very few cross
g0y i iteration dependences from profiling are parallelized. The

higher part of the stack bar shows the speedup after all-trans
formations are applied. The compiler chooses the most prof-
itable loop to parallelize if multiple nesting levels cangee-
allelized.

On average, we achieved a speedup of 1.36 with transfor-
mations compared to the 1.19 speedup without transforma-
tion on a 2-core machine. In addition, we got much higher
speedups on 4-core and 8-core configurations as the average
speedup increases from 1.41 to 1.84 for the 4-core machine
and from 1.63 to 2.34 for the 8-core machine after applying
transformations.

The speedup values vary widely across different bench-
Figure 8: Fraction of sequential execution covered by spec-marks. For SPECfp benchmarks, significant speedup values
ulative DOALL loops after transformations are achieved due to the inherent parallel nature of the appli

cations. In the SPECint benchmarks, the average speedups
are 1.19, 1.37 and 1.50 for 2-core, 4-core and 8-core config-
urations, which is a considerable improvement over previou
techniques. As shown in the figure, the baseline compiler
cannot extract much parallelism from these benchmarks due
to the large number of inter-iteration register and condex
pendences typically found in C applications.

The speedups for MediaBench benchmarks are generally
higher than SPECint, while the Unix utility benchmarks have
similar results to SPECint. If we consider reduction vari-
able expansion as part of the baseline, the speedups without
transformationsincrease to an average of 1.24, 1.59 aisg 1.9
respectively. Our new transformations still achieve cdesi
able speedups on top of that. It should also be noted that
reduction variable expansion helped mostly in the SPECfp
benchmarks compared to the integer applications. The new
transformations are especially helpful for SPECint bench-

Figure 10: The first two bars show the effect of inter- marks where traditional transformations alone are largaly

core communication through memory systems versus scalagUccessful. Note that high coverages shown in Figure 8 do
d network. The last bar shows the speedun withou not always translate to high speedup numbers. Mpeg2enc
operan : peedup s an example of such a case. The loops identified as par-

any parallelization overhead. allel in this example have a small loop body and low trip
] ) ] ) count. Therefore, the parallelization overhead makes &thmu

~ We use a multicore simulator that models 1-8 single-issue|ess appealing for parallelizing such loops. Another otser
in-order processor cores similar to the ARM-9. The simula- tion is that the SPECfp benchmarks are quite scalable. Sev-
tor models a scalar operand network, where we assume a %ral benchmarks such as 171.swim, 172.mgrid and 179.art
cycle latency to communicate register values between neigh achieve almost linear speedup on 4 and 8 cores.
boring cores. A perfectmemory systemis assumed. We usea As mentioned before, we use Scalar Operand Network
software transactional memory [8] to emulate the undegyin (SON) to communicate register values between the cores and
hardware transactional memory described in Section 3. Wemaintain commit orderings. In Figure 10, we studied the
assume that the transaction abort incurs an average of 50@ffects of SON and also the code generation framework on
cycles overhead and requires execution of the reset block ashe benchmark speedups. This figure shows the speedup val-
well as re-execution of the chunk. Successfully committed yes on a 4-core machine with different configurations. Three
transactions do not incur extra overhead besides XBEGIN pars are shown for each benchmark. The first bar shows the
and XCOMMIT instructions. speedup assuming we don't have a scalar operand network

Figure 8 shows the fraction of the dynamic sequential ex- and all communications between the cores must go through
ecution that can be parallelized after applying all our pro- the shared L2 cache. In this scheme, the commit order is
posed transformation techniques. On average, 61% of themaintained using locking primitives. We assume communi-
sequential execution can be speculatively parallelizeds T cation between cores takes 30 cycles. The second bar shows
number is more than twice the coverage of 28% using TLS the case when we have a SON can communicate register val-
without any transformation, and 8.5 times the 7% gain by ues between neighboring cores with a 3-cycle latency. This
relying on static analysis alone (see Figure 1). More impor- is the same data from Figure 9. As shown in the figure, for
tantly, for SPECint benchmarks, the transformations ate ab some benchmarks such as 171.swim, 179.art and 175.vpr,
to uncover loop level parallelism in 55% of the sequential we can achieve nearly the same speedup with and without
execution, where previous techniques yield poor results. the SON. These benchmarks have large loop bodies with

Figure 9 shows the speedups achieved on 2-core, 4-cordigh trip counts, and the communication overhead is amor-
and 8-core machines compared to a single core. One stacketized by large chunks of parallel work. On the other hand,
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Figure 9: Effect of the compiler transformations on perfarme for 2, 4, and 8 core systems. The bottom portion of each ba
shows the baseline with TLS only and the top portion showstmebined affects of all transformations.

benchmarks, such as pegwitdec, pegwitenc, and grep, suffeaverage, it converts 15% of the execution into parallel foop
significantly from lack of the SON. The loop sizes in these This is a relatively simple transformation and providesdjoo
benchmarks are small to medium, and the high communi-performance improvement. For any system that tries to par-
cation overhead easily takes away all the benefits resultingallelize sequential programs, reduction variable exgansi
from parallelization. On average, the speedup without the should be the first low hanging fruit to go for.

SON is 1.70 compared to the 1.85x speedup with the SON. The next column shows fraction of time spent in loops
We can see that a reasonable benefit can be achieved frorthat can be parallelized by speculative loop fission. On av-
the transformations without a SON as well. The third bar in erage, it enables 28% of the execution to partially execute i
Figure 10 shows speedups without the parallelization over-parallel. This transformation has the largest potentiabagn
head. Our speculative parallelization framework decrease the ones that we studied. It is especially useful for SPECint
the performance gain by about 10% on average compared tdenchmarks for which other techniques do not provide much
the configuration with zero parallelization overhead. benefit.

Table 1 shows the the fraction of the dynamic sequential ~Prematerialization, infrequent dependence isolatiod, an
execution that can be parallelized with different techeigu  iteration chunking for long distance memory dependence
It also shows the abort frequencies during speculative exe-each improve parallel coverage significantly for certain
cution. The first 7 columns show the coverage of different benchmarks. In contrast to control speculation, reducion
transformation techniques. Each element representstige ti  pansion and fission, they each affect less than 50% of the
spent in loops that are parallelized by a certain transferma benchmarks. However, in the benchmarks which they show
tion. For example, by applying reduction variable expansio benefits, it is usually quite significant. On average, they im
in 052.alvinn, loops that account for 97% of the sequential prove the parallel coverage by 4%, 5% and 8%, respectively.
execution time can become parallelizable. For the transfor ~ The last column in the table shows the abort frequency
mation in each column, we assume the techniquesin columnsluring speculative execution. The abort frequency is the
to the left have been applied, so the data in a column repre-number of aborted iterations divided by the total number of
sents the additional parallelism being uncovered. If bbéh t iterations in the benchmark. As shown in the figure, they
outer and inner loop in a nested loop are parallelized by aare quite low, and most benchmarks have abort frequencies
certain technique, only the time spent in the outer loopriake less than 2%. We also studied the stability of the profile
into account. If the outer and inner loop are parallelized by results on different inputs. We found loops without cross
two different techniques, the time spent in the inner loolh wi  iteration memory dependence on one input usually do not
show up in two categories. Therefore, the numbers in a rowhave cross iteration memory dependence using other inputs
could add up to more than 100%. as well. As a result, speculative DOALL loops are mostly

The first column shows the coverage of parallel loops consistent across different inputs.
without any transformations. The second column shows the
fraction of time spent in DOALL-uncounted loops. On aver- g Related Work
age, control flow speculation alone enables an additional 9%
of the sequential execution to execute in parallel. Moreove There is a large amount of previous work in TLS [2, 13,
it is an enabling technique for other transformations. kere 14, 25, 30, 32, 34, 39] and TLDS [31, 32] that propose spec-
ample, infrequent dependence isolation converts a loap int ulative execution of threads along with the required archi-
a nested loop, and the inner one is DOALL-uncounted. Thetectural support. For example, Multiscalar architect(is&§
third column is for register reduction variable expansiom. support TLS, and prior work [36] has studied graph partition



Bench _ |DOALL] CS | RE | SF [ PM | IDI | LD | AF

No dedicated checker threads are needed.

SpecFP
ggg-gg’r'”“ gg 8 907 904 8 8 8 8 Several works have proposed full compiler systems [2,
TTiewim T 98 o 2 e o o o o 9, 18, 27, 31] that target loop-level and method-level par-
T72.mgrid | 98 | 0 | 0 | 97 | O 0 0 0 allelism. In [18], the authors introduce a compilation fiem
T77.mesa | 68 | 0 | 6 | O 0 0 0 [ O work for transformation of the program code to a TLS com-
179.art 51 | 0 | 77 1100 ) 94 | 77 | O | O patible version. Profile information is also used to improve
igg:zﬁn”ni';e S A S RN EE B - speculation choices. The Mitosis compiler [27] proposes
SpecINT a general framework to extract speculative threads as well
08espressp 8 | 12 | 18 | 0 | 25 [ 3 [ 22 [ 2 as pre-computation slices (p-slices) that allow speatdati
023.eqntott | 2 | 95| 0 [ 30 | O 1 97| o0 threads to start earlier. Our prematerialization is sintibep-
gig-compre-s i g 104 259 8 204 8 8 slices, but prematerialization is highly targeted to loegur-
099:32 I 5 5 3 I I rences that can be unwound to decouple iterations and must
ameskem 15 T 1T o0 T3 0 3 0 5 maintain register and control dependences, while p-stiaas
129.compregs 2 0| 9 | 4 0 0 0 | © speculatively prune paths. Du et al. [9] propose a compila-
130.1i 0 0 [ 0 [17] 0 0 | 44| 1 tion framework in which candidate loops for speculation are
123-”5?9 590 109 (1) 126 g ";)6 8 (1) chosen based on a profile-guided misspeculation cost. A gen-
v oo o T o o Tmo o eral compilation strategy for TLS is introduced in [2]. Thei
T8L.mcf T T 1 0 | 42 0 0 T 1 2 method is applicable to loops as well as other parts of the pro
T97parser | 12 | 0 | 2 | 6 | 0 | 0 | 1 | 1 gram. Due to the application of this general approach, many
255.vortex | 0 0 ] 0] O 0 0 0 [ O opportunities in loop transformation and parallelizatame
TSR T N N - O N . skipped. Chen et al. [6] use pointer analysis to figure out
: NViediaBench memory dependences. However, this sophisticated pointer
Cjpeg 53 1 0 | 2 | O 0 5 0 ] O analysis prevents full characterization of memory accesse
dipeg 29 | 23] 23 159 | 23] O 0 1 in the program. Also, as mentioned before, our work trans-
SECHE— 886 8 gg %5 8 8 é 8 forms many loops to make them more parallelizable. We
gmeﬁﬁgdi sl w0 o loo o extend previous work in that we studied a comprehensive set
gsmdecode| 12 | 3 | O 5 5 5 5 5 of existing and new transformations to expose more parallel
gsmencode | 12 2 a7 0 0 1 0 0 unit | u V .
opportunities hidden under removable dependences
mpeg2dec 92 5 67 5 0 3 0 0 . .
mpegZenc | 13 | 84 | 33 | 31 | 10 | 0 | 0 | © The LRPD Test [29] and variants [21] speculatively paral-
pegwitdec | 26 | 0 | 0 [ 81T | © 0 0 [© lelize DOALL loops that access arrays and perform runtime
pegwitenc 7728 | 0 | 0 [7827] O | 0 [ 0 | © detection of memory dependences. These techniques work
fawcaudio | 0 | 0 10 1 0 1 01010 10 well for codes that access arrays with known bounds, but not
rawdaudio | 0 | 0 | 0 | 0 | 0 | 0 ] 0 | 0O . Y ,
unepic 0 T 10 1 0 5 5 5 general single-threaded programs.
Utilities . . ..
grep o TaE T 0 T 0 o T 0 T 0 T 0 Speculative decoupled software pipelining (DSWP) [35]
lex 21 | 5 | 0 | 70| © 2 0 | © presents another technique for thread extraction on loops
acc 33 [ 52|17 ] 2 0 3 2] 6 with pointer-chasing cross-iteration dependences. DSWP
Rverage [ 27 | 9 [ 15 ] 28 4 | 5 | 8 | 0 | pipelines a single iteration across multiple cores. This ha

the advantage of overlapping the sequential and paraltel po
Table 1: Percentage sequential code coverage of variougions. However, when the two portions are not relatively

transformations — Last column shows the Abort frequencies€dual sized, the pipeline can be unbalanced. Our approach

in the benchmarks. Coverages higher than 20% are high-has benefits in load balancing and scalability, particy ft

. ) h ) small recurrence cycles. Further, DSWP checkpoints archi-
lighted. (CS:control speculation for uncounted loop, RE! I tactyral state for every iteration in flight using a versidne

duction expansion, SF: speculatlve fISSIOn, PM: prematerl-memory_ Storage grows with the |ength of the p|pe||ne A

alization, IDI: infrequent dependence isolation, LD: igeio  separate commit thread synchronizes the memory versions

long distance dependence, AF: abort frequency). and handles commits. Conversely, speculative fission uses
a conventional transactional memory where only one buffer

ing algorithms to extract multiple threads; however, toesl ~ Per core is required and no commit thread.

not eliminate unnecessary dependences in the same way this 1ha JpRM [5] framework uses a dynamic approach for
work does. Our work builds upon previous research and pro- 1y harajlelization. Although this might lead to more accu

poses compiler transformations to expose more speculative oo speculation, the overhead of dynamic binary manipula-

parallelism in loops. In particular, the Hydra project [25] {jon might become too high. Furthermore, dividing the loop
classifies loops to different categories and introduces-com 4 chinks with a length of one iteration incurs a significant
piler techniques to parallelize the code. This work extends bookkeeping overhead.

those ideas with compiler techniques for loop identificatio
selection, transformation, and code generation. MSSP [39] Previous work also researched exploiting fine-grain par-
transforms code into master and slave threads to expose speallelism in loops. Lee et. al. [17] studied running loop it-
ulative parallelism. It creates a master thread that esscut erations simultaneously with communications throughgegi
an approximate version of the program containing a fre- ter channels. This technique is good for loops with cross-
guently executed path, and slave threads that run to checkteration dependences that cannot be removed through trans
results. Conversely, our transformations have differelet e  formations. Our previous work [38] studied exploiting fine-
cution models. Both speculative fission and infrequent pathgrain parallelism in a single iteration, which is orthogbtaa
isolation create parallel threads executing differematiens. this work and can be applied simultaneously.



7 Conclusion [13]

The microprocessor industry is gradually shifting from |14
single-core to multicore systems. A major challenge going
forward is to get the software to utilize the vast amount of
computing power and adapt single-threaded applications to[15]
keep up with this advancement. In this paper, we studied the
automatic parallelization of loops in general-purposeliapp
cations with TLS hardware support. By studying the bench-
marks, we found that a considerable amount of loop-level 17]
parallelism is buried beneath the surface. We adapted an&
introduced several code transformations to expose the hid;g
den parallelism in single-threaded applications. Moregpe
ically, we introduced speculative loop fission, isolatiadh o
infrequent dependences, and speculative prematerializat
to untangle cross iteration data dependences, and a general
code generation framework to handle both counted and un-20]
counted speculative DOALL loops. With our transforma-
tion techniques, more than 61% of dynamic execution time
in the general applications can be parallelized compared to
27% achieved using traditional techniques. On a 4-core ma-
chine, our transformations achieved 1.84x speedup cordpare
to 1.41x speedup without transformations.

[16]

(19]

[21]

[22]

(23]

8 Acknowledgments

We thank the anonymous referees for their valuable com-
ments and suggestions. We also thank Neil Vachharajani,[
Easwaran Raman, Arun Raman from the Liberty research
group for their help with the simulation system. This re-
search was supported by the National Science Foundatiorj26]
grants CNS-0615261 CCF-0347411, and the Gigascale Sys-
tems Research Center, one of five research centers fundef27]
under the Focus Center Research Program, a Semiconductor
Research Corporation program. (28]

[24]

References

29
[1] R. Allen and K. KennedyOptimizing compilers for modern architec- [29]
tures: A dependence-based approadiiorgan Kaufmann Publishers

Inc., 2002.

A. Bhowmik and M. Franklin. A general compiler framewdid spec-
ulative multithreading. I'SPAA "02: 14th Annual Symp. on Parallel
Algorithms and Architecturepages 99-108, 2002.

W. Blume et al. Parallel programming with PolarikEEE Computer
29(12):78-82, Dec. 1996.

M. K. Chen and K. Olukotun. Exploiting method-level pletism
in single-threaded Java programs. Rroc. 7th PACT page 176, Oct.
1998.

[2] [30]

3] [31]

(4 (32]

(5]
(6]

M. K. Chen and K. Olukotun. The Jrpm system for dynamicalar-
allelizing Java programs. IRroc. 30th ISCApages 434446, 2003.

P.-S. Chen, M.-Y. Hung, Y.-S. Hwang, R. D.-C. Ju, and J.Lke.
Compiler support for speculative multithreading architee with
probabilistic points-to analysis. IRroc. 8th PPoPPpages 25-36,
June 2003.

K. Cooper et al. The ParaScope parallel programmingrenment.
Proceedings of the IEEB1(2):244-263, Feb. 1993.

D. Dice, O. Shalev, and N. Shavit. Transactional Lockihgn Proc.
2006 International Symposium on Distributed Comput21@06.

Z.-H. Du et al. A cost-driven compilation framework fopeculative
parallelization of sequential programs. Pmoc. '04 PLDI|, pages 71—
81, 2004.

R. Gupta. Employing register channels for the expt@taof instruc-
tion level parallelism. IrSecond PPoPRages 118-127, 1990.

R. Gupta. A fine-grained MIMD architecture based upogister
channels. IrProc. 23rd Annual Workshop on Microprogramming and
Microarchitecture pages 28-37, 1990.

M. Hall et al. Maximizing multiprocessor performancétfivthe SUIF
compiler. IEEE Computer29(12):84-89, Dec. 1996.

(33]

(34]

7 1351

(8]
El

(36]
(37]

[10] [38]

[11] [39]

[12]

L. Hammond, M. Willey, and K. Olukotun. Data speculatisupport
for a chip multiprocessor. 18th ASPLOSpages 58—-69, Oct. 1998.

T. A. Johnson, R. Eigenmann, and T. N. Vijaykumar. Mirt-program
decomposition for thread-level speculation.Hroc. '04 PLD|, pages
59-70, June 2004.

D. J. Kuck. The Structure of Computers and Computationshn
Wiley and Sons, New York, NY, 1978.

C. Lee, M. Potkonjak, and W. Mangione-Smith. MediaBen4 tool
for evaluating and synthesizing multimedia and commuiuoatsys-
tems. InProc. 30th MICRQpages 330-335, 1997.

S. Lee and R. Gupta. Executing loops on a fine-grained Biichi-
tecture. InProc. 24th MICRQpages 199-205, 1991.

W. Liu et al. POSH: A TLS compiler that exploits progratnusture.
In Proc. 11th PPoPPpages 158-167, Apr. 2006.

S. A. Mahlke, D. C. Lin, W. Y. Chen, R. E. Hank, and R. A. %@
mann. Effective compiler support for predicated executising the
hyperblock. InProc. 25th MICRQpages 45-54, Dec. 1992.

P. Marcuello and A. Gonzalez. Thread-spawning scheforespecu-
lative multithreading. IProc. 8th HPCApage 55, Feb. 2002.

S. Moon, B. So, and M. W. Hall. Evaluating automatic flateation
in SUIF. JPDC, 11(1):36-49, 2000.

K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A.0ad.
LogTM: Log-based transactional memory.Rnoc. 12th HPCApages
254-265, Feb. 2006.

E. Nystrom, H.-S. Kim, and W. Hwu. Bottom-up and top-aow
context-sensitive summary-based pointer analysi®rat. 11th SAS
pages 165-180, Aug. 2004.

OpenIMPACT. The OpenlIMPACT
http://gelato.uiuc.edul/.

IA-64 compiler, 2005.

25] J. Oplinger, D. Heine, S.-W. Liao, B. A. Nayfeh, M. S. Lamand

K. Olukotun. Software and hardware for exploiting spedwapar-
allelism with a multiprocessor. Technical Report CSL-TR-AL5,
Stanford University, Feb. 1997.

M. Prabhu and K. Olukotun. Exposing speculative thrparhllelism
in SPEC2000. IProc. 10th PPoPPpages 142-152, June 2005.

C. G. Quinones et al. Mitosis compiler: an infrastruetdior specu-
lative threading based on pre-computation slicesPioc. ‘05 PLD|,
pages 269-279, June 2005.

R. Rangan, N. Vachharajani, M. Vachharajani, and D.Ug#ést. De-
coupled software pipelining with the synchronization grrén Proc.
13th PACT pages 177-188, 2004.

L. Rauchwerger and D. A. Padua. The LRPD test: Spevelatin-
time parallelization of loops with privatization and redioa paral-
lelization. Trans. on Parallel and Distributed SystemB0(2):160,
1999.

G. S. Sohi, S. E. Breach, and T. N. Vijaykumar. Multisggbrocessors.
In Proc. 22nd ISCApages 414-425, June 1995.

J. G. Steffan, C. Colohan, A. Zhai, and T. C. Mowry. TheABPede
approach to thread-level speculatioffirans. on Computer Systems
23(3):253-300, 2005.

J. G. Steffan and T. C. Mowry. The potential for usingetu-level
data speculation to facilitate automatic parallelizatioim Proc. 4th
HPCA pages 2-13, 1998.

M. Taylor et al. Evaluation of the Raw microprocessom éxposed-
wire-delay architecture for ILP and streams Aroc. 31st ISCApages
2-13, June 2004.

J. Tsai et al. The superthreaded processor archieect&EE Trans.
Comput, 48(9):881-902, Sept. 1999.

N. Vachharajani, R. Rangan, E. Raman, M. Bridges, Goi@ttand
D. August. Speculative Decoupled Software PipeliningPtac. 16th
PACT, pages 49-59, Sept. 2007.

T. N. Vijaykumar and G. S. Sohi. Task selection for a risathlar
processor. IProc. 31st MICROQpages 81-92, Dec. 1998.

L. Yen et al. LogTM-SE: Decoupling hardware transacibmemory
from caches. IProc. 13th HPCApages 261-272, Feb. 2007.

H. Zhong, S. Lieberman, and S. Mahlke. Extending maitcarchi-
tectures to exploit hybrid parallelism in single-threaglégations. In
Proc. 13th HPCApages 25-36, Feb. 2007.

C. Zilles and G. Sohi. Master/slave speculative paliaktion. In
Proc. 35th MICRQpages 85-96, Nov. 2002.



