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Abstract—

Graphics processing units (GPUs) are becoming an increagity popular
platform to run applications that require a high computation throughput.
They are limited, however, by memory bandwidth and power and as
such, cannot always achieve their full potential. This pape presents the
PUMA architecture - a domain-specific accelerator designedspecifically
for medical imaging applications, but with sufficient geneality to make
it programmable. The goal is to closely match the performane achieved
by GPUs in this domain but at a fraction of the power consumpton. The
results are quite promising - PUMA achieves upto 2X the perfamance of
a modern GPU architecture and has upto a 54X improved efficiecy on a
floating-point and memory-intensive MRI reconstruction algorithm.

I. INTRODUCTION

The advent of programmable graphics processing units, &fsGfor
general-purpose computing is one of the major steps takeomputing
over the last few years. These GPGPUs which, in the past, bese
predominantly used for gaming and advanced image and viddiog
are now being used by many developers to accelerate inhepamallel
programs in several other domains. Indeed, considerabtriais time
and engineering effort are often spent in order to modifygpams so
that they may run effectively on GPUs.

Several different application domains observe remarkapkedups
when using GPUs, including the following [18]:

programming language, which enables straightforward eémgintation
of parallel algorithms on the GPU. CUDA also supports schiegu
the computation between CPU and GPU, such that serial psrid
applications run on the CPU and parallel portions are mappeithe
GPU.

Individual cores in Intel's up-and-coming Larrabee pr@oesim-
plement the ubiquitous x86 ISA [23], allowing users to use asth
of already-existing development tools to port their apgiiens to it.
Server products like Tesla [17] with even more compute pawveralso
available.

B. The Disadvantages of GPUs

One of the main bottlenecks in applications running on GRlhé
gap between their computational ability and their memorgdvadth.
While the absolute memory bandwidth available to GPUs iseduiigh,
it is not growing at the same rate as their theoretical peatopeance.
Currently, even one of the latest generation of NVIDIA gragh
processors, the GeForce GTX 280 [16] can only transfer up4® 1
GBY/s of data despite having a peak performance of 933 GFLQ@PRS [
This works out to approximately 0.15 bytes of data, on averaupr
floating-point operation.

« 4X to 100X speedup on medical applications, such as biorakdic Further, the total power consumption of these GPUs, is eoosniThe

image analysis, 3D reconstruction of tissue structureafge sets
of microscopic images and accelerating MRI reconstrustion

o 8X to 260X speedup on electronic design automation, such
power grid analysis and statistical static timing analysis

GeForce GTX 280, for example, while having a tremendous amnolu
compute ability, consumes 236W of power resulting in a vewy MIPS-
per-mW power-efficiency ratio at peak performance. InsidRJGores,
the main power-consuming components are general storageerts

« 4X to 327X speedup on physics applications, such as weatlseich as register files and scratchpad memories. This is messarily

prediction and astrophysics.

a drawback with GPUs, specifically, but rather with most galke

« 11X to 100X speed up financial applications such as instramepurpose programming devices. The interconnect requirecctess

pricing using Monte-Carlo methods.

A. The Advantages of GPUs

GPUs have many appealing hardware features. Firstly, tbag |
themselves very well to both thread-level and data-leveblpism.
Thread-level parallelism (TLP) is exploited by having agmmumber
of independent processing elements (PEs) on the GPU, eabhitwi
own set of functional units (FUs) and local storage. Indidthreads
can quite cleanly be assigned, either statically by the naragner or
dynamically by the hardware, to each of these PEs and intead
communication is made possible by some form of interconfedmtic
or through local storage such as caches. Programs with @ éangunt
of data-level parallelism (DLP) can make use of vector-SIMits in
these PEs which allow a single instruction to perform an aipen

random elements in register files is quite power-hungry, tlledmore
read and write ports a register file has, the higher its powesemption.
Consequently, register files that feed vector-SIMD FUs andtroutput
several elements at once consume significant amounts ofrpowe

Though power is not necessarily a significant drawback farais
interested in using these devices for video game graphiosieration,
it is not a desirable choice when on a limited power sourceann
embedded system or in a high-temperature environment. Toessl
these disadvantages, many designers turn to customizedi@ndin-
specific hardware.

C. The Quest for Programmable and
Soecialized Hardware

on several data at the same time. DLP can also be extracted i\ wide range of architectures, in addition to GPUs, have been

programs with compute-intensive loops that have little or inter-

designed before to address the problem of providing higfopaance

iteration dependencies by executing operations from rgiffeiterations computation efficiently. These solutions maintain or dai pro-
within a single SIMD instruction. grammability to various degrees depending on the domaiy tiduget.

Secondly, GDDR RAM and its increasingly fast successorse hatrigure 1 shows the performance (on the y-axis) and prograbititggon
allowed for GPUs to have access to an immense amount of memthg x-axis) expectations from various architecture stylése numbers
bandwidth. The AMD Radeon HD 4870 - the first GPU to supponext to each of the ovals shows the approximate performpoaer
GDDR5 memory - has a memory bandwidth of up to 115 GB/s.  ratio offered by each of these solutions.

Above all, GPUs are commodity hardware products commordjl-av  General purpose processors (GPPs) which fall on the lovggt ri
able as a part of many desktop and laptop computers. The toolscorner of the figure, are highly programmable solutions latlianited
program them are also easily available; NVIDIAs Computeifldd in terms of the peak performance they can achieve. Furttreictsres
Device Architecture (CUDA) package, for example, is freeldavnload like instruction decoders and caches that are needed tcogupo-
from their website [15]. CUDA is a general purpose parall@hputing grammability consume energy. This results in a very low cotatonal
architecture which consists of the CUDA instruction set stralcompute efficiency of about 1 MIPS-per-mW, for example, for the Ireantium-
engine in the GPU. It provides a small set of extensions toGhe M processor.
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Fig. 1: Comparison of peak performance, power efficiency, and progra-
bility of different architecture design styles.

On the other end of the spectrum are Application-specifiegrited
Circuits (ASICs). ASICs are custom-designed specificallyd particu-
lar problem, without extraneous hardware structures. TAG$Cs have
a high computational density with hardwired control, résglin high
computation efficiency up to 1,000 to 10,000 times more tiet of
GPPs. The space between these two extremes is populateffdreri
solutions that have varying degrees of programmability.

Application specific instruction-set processors (ASIR8)@ocessors
with custom extensions for a particular application or agpion-
domain. They can be quite efficient when running the appdoatfor
which they are designed, and they are also capable of rureiyg
other application, though with reduced efficiency. Exarapieclude
processors from Tensilica and ARC, transport triggeretiactures [3]
and custom-fit processors [9].

Domain loop accelerators are designed to execute comguitiatien-
sive loops present in media and signal processing domalveir @esign
is close to that of VLIW processors, but with a much higher ham
of function units, and consequently, a higher peak perfogeaVery
long instruction words in a control memory direct all FUs gveycle.
However, domain loop accelerators (LAs) have less flexjhiian GPPs
because only highly computationally-intensive loops magil ¥o them.
Some examples of architectures in this design space are RE\4nd
CGRAs [14].

Coarse-grain adaptable architectures have coarser-drailding
blocks compared to FPGAs, but, like FPGASs, still maintaittléiel
reconfigurability. The coarser reconfiguration granwaniproves the
computation efficiency of these solutions. However, namdard tools
are needed to map computations onto them and their succesdbean
limited to the multimedia domain. PipeRench [10], RaPiD §6 some
examples of coarse-grain adaptable architectures.

D. Programmable Loop Accelerators

The programmable solutions shown in Figure 1 are all “uisiakly”
programmable, allowing any loop to be mapped on to themoagth at
varying degrees of efficiency. There is a wide gap betweeeffi@ency
that can be achieved by ASICs and the efficiency that can hewachby
these programmable solutions. There are, for exampleyrioss where
there is a narrow requirement of flexibility. Using any of sheabove
solutions is overkill for these instances as these solat&acrifice too
much efficiency for the needed flexibility. Further, most loé€ tmiddle-
ground solutions listed above do not offer any support fst flmating-
point computation, which limits the number of applicaticihsit they
can be used for.

Benchmark #instrs | %FP | Data Req'd
bytes
instr

MRl . FH 38 42 0.95

MRl . Q 34 35 1.06

CT. segnent 26 42 1.38

CT. | apl ace 20 30 1.20

CT. gauss 22 32 1.09

TABLE |: Medical application characteristics

and domain-specific design, as a whole, resembles an ASI€ than a
processor. The design point is labeled Programmable LoaglArator,
or PLA (not to be confused with programmable logic array).eTh
specifics of the PLA are described in Section IlI-A.

Il. TARGETINGMEDICAL APPLICATIONS

Medical imaging devices are generally large, bulky and asjpe
machines that have very limited portability and consumgdamounts
of power. There is an increasing focus on reducing the power o
these medical imaging devices [20]. In order to address idsge,
this work focuses on principle components of Computed Toaggy
(CT) and Magnetic Resonance Imaging (MRI) image procesaimdy
reconstruction.

A CT scan involves capturing a composite image from a serfes o
X-Ray images taken from various angles around a subjectotyzes
a very large amount of data that can be manipulated using iatyar
of techniques to best arrive at a diagnosis. Oftentimes, ithiolves
separating different layers of the captured image basedein tadio-
densities. A common way of accomplishing this is by using dl-we
known image-processing algorithm known as “image segrtienta

In essence, image segmentation allows one to partitionendimage
into multiple regions based on any of a number of differeriteda
such as edges, colors, textures, etc. Being able to pariiti@ages in
this manner allows for studying of isolated sections of thage rather
than of all the information that was captured.

The segmentation algorithm used in this work has three maétirfig-
point-intensive components: Graph segmenti@@.(segnent ), Lapla-
cian filtering CT. | apl ace) and Gaussian convolution
(CT. gauss).

Laplacian filtering highlights portions of the image thahidit a rapid
change of intensity and is used in the segmentation algorftr edge
detection. Gaussian convolution is used to smooth texiuras image
to allow for better partitioning of the image into differergions.

An MRI scan, instead of using X-Rays, uses a strong magnatic a
radio frequency fields to align, and alter the alignment gfdrbgen
atoms in the body. The hydrogen atoms then produce a rotaiigmetic
field that can be detected by the MRI scanner and convertedlitoage.
The main computational component of reconstructing an MiRige is
calculating the value of two different vectors, known heseVl . FH
andMRI . Q respectively (explained in more detail in [13], [24]).

Table | shows some characteristics of the benchmarks inidems
ation. All of these benchmarks are floating-point-inteasand require
large amounts of data for the computation they perform,@afhe when
compared to the 0.15 bytes/instruction supported by the GgXGPU
mentioned earlier. The main loops in these benchmarks avealfiti
loops - there are no inter-iteration dependences.

Prior work in this field has predominantly focused on usingneo
mercial products to accelerate medical imaging. For igam [11],
the authors port “large-scale, biomedical image analyagglications
to multi-core CPUs and GPUs, and compare different impleatem
strategies with each other. In [21], the authors study intagéstration
and segmentation and accelerate those applications byg @UDA
on a GPU. In [24], the authors use both the hardware pasatiedind
the special function units available on an NVIDIA GPU to deditally
improve the performance of an advanced MRI reconstructigoridhm.
There are several other such examples of novel work in thid. fie

This work advocates an open area in the design space where I contrast with such research, this work focuses on desigwi

non-trivial amount of programmability is provided in terr$ intra-
processor communication, functionality and storage, atapplication

new, highly efficient, microarchitecture and architectwith the specific
hardware requirements of medical imaging in consideration
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Fig. 3: Template for single-function loop accelerator.

connected to each FU input; a multiplexer (MUX) is used tesethe
appropriate one. Since the operations executing in a mastiieduled
loop are periodic, the selector for this MUX is essentiallynadulo
counter. In addition, a central register file (CRF) holdgistéve-in

register values that cannot be stored in the SRFs.

The schema described is a template that is customized for the

particular loop being accelerated. The number, types, adthsvof the
FUs, the widths and depths of the SRFs, and the connections tfre
SRFs to the FUs are all determined from the loop. During ®gith the
loop is first modulo scheduled to meet a given performanceireapent,
and then the details of the LA datapath are determined froen
communication patterns in the scheduled loop.

The control path for the single-function LA consists of atfnstate
machine with Il states corresponding to each of time slotshia
kernel of the modulo schedule. In each state, control sigdakct the
execution of FUs (for FUs capable of multiple operations) aontrol
the MUXes at the FU inputs.

Finally, a Verilog HDL realization of the accelerator is geated by
emitting modules with pre-defined behavioral Verilog dggns that
correspond to the datapath elements. A simulation enviemrs used
to verify that the Verilog properly implements the loop. &g, gate-

Fig. 2: PUMA. Each tile comprises of a programmable loop acceleratéeVe! Synthesis, placement, routing, power analysis arst-ggnthesis

(template pictured) and the control and data memories medjufor its
operation. On-chip routers transfer data between eaclanidethe external
interface.

I1. PUMA

PUMA, Parallel micro-architecture forMedical Applications, is a
tiled architecture as shown in Figure 2. It is specificallysidaed to
maximize power-efficiency when executing medical imagimplaa-
tions while still retaining full programmability. Each ¢ilin PUMA is
an instance of a specialized PLA - a generalized loop acteierThe
PLA tiles are connected to their neighboring tiles and to ekternal
interface through a high-bandwidth mesh of on-chip routers

A. Background

Figure 3 shows the hardware schema for the single-funcoomp I
accelerator [7], [5]. The LA is designed to efficiently exexa modulo
scheduled loop [19] in hardware. The length of the schedané, the
corresponding run-time of the loop, are determined by ithigation

verification are performed on the design.

B. PUMA Architecture

1) Basdine PLA Design: A PLA is generalized loop accelerator,
created by modifying the template datapath shown in Figufegeneric
datapath template for the PLA is illustrated on the righeidl Figure 2
The accelerator is designed for a specific loop at a specifowgfnput,
but contains a more general datapath than the single-amdtA to
allow for different loops to be mapped onto the hardware [8jese
generalizations provide the LA with flexibility in functiafity, storage,
control and communication.

To provide functionality, simple modifications were madeFids in
order for them to support more operations; adders (bottgéntend
floating-point) are generalized to adder/subtracter pféfs-shift units
are generalized to left/right rotators, every FU can ex@aut identity
operation to act like a move instruction, etc. Even loadestmits can
be generalized to integer adder/subtracter units if thegadly had the
functionality to compute indirect addresses. Further,itipeit-muxes to

interval (1) - the number of cycles between the beginnings of sudeess FUs are redesigned to allow for operand-swapping as well.

iterations of the loop. Thus, a lower Il corresponds to at&na@chedule
and increased performance. The modulo schedule contdiase that

repeats every Il cycles and may include operations fromipieltoop

iterations.

The LA is designed to exploit the high degree of parallelismilable
in modulo scheduled loops with a large number of functiorisugifUs).
Each FU performs a specific set of functions that is tailoredthe
particular loop. Each FU writes to a dedicated shift regifite (SRF);
in each cycle, the contents of the registers shift downwerdbe next
register. Point-to-point wires from the registers to FULUitgpallow data
transfer from producers directly to consumers. Multiplgisters may be

The SRFs used in the LA have limited addressability and fixed |
times for variables. To overcome these constraints andiggomore
generality, these SRFs are replaced with rotating-regfdés (RRS).

To improve controllability, the LA's finite state machine rigplaced
with a control memory, the contents of which can be changegdan
the loop that needs to be executed. Further, numerical aatsstvhich
were hard-coded in the LA are instead stored in a literalstegifile.

To generalize communication, the PLA has a bus (in additiothé
point-to-point connections) that connects all the RRs kohal FUs. To
reduce the hardware cost of having a potentially long bsswitlth is
limited to one operand, but has a predictable latency of goec



Maximize:

ZieTa ZjeTﬁ Cij Vavp:a# B
Subject to:

) Xy =5 i € [0,#FUs)
(2) Xi=1 i€ [0,#FUs)
(3 Ci=1 i € [0, #FUs)
4 Xij = Xji i,j € [0,#FUs)
(5) Cij = Cji i,j € [0, #FUs)
(6) Ciyy <Xiyj+1L;  i,j€[0,#FUs)

Fig. 4: ILP formulation for FU arrangement on the PUMA ring

2) PUMA PLA: The PLA bus is not always a viable solution. One

main disadvantage with the bus is that it is not a scalableatisaol
for larger PLAs with many FUs. Further, the bus only carriesirgyle
operand per cycle, limiting the amount of programmabiligitable in
the PLA and the sequences of opcodes that can be executethllepa
To overcome these limitations, the intra-PLA communiaatfabric
in PUMA is changed to a ring. A ring allows for as many operatadse

Benchmark Peak Perf. | Peak Perf. | B/W | #Tiles
GFLOps GIOps GB
sec sec sec
MRl . FH 7.2 5.4 16.2 9
MRl . Q 5.4 5.4 16.2 9
CT. segnent 4.95 2.25 16.2 9
CT. | apl ace 2.7 3.15 10.8 14
CT. gauss 3.15 3.6 10.8 14

TABLE II: Characteristics of the individual accelerators for eachche
mark.

there must always be a path between any two FUs with exactly
(#] connections between them This constraint was used to
prevent insular sets of 5 FUs or sets of 5 FUs connected linear
rather than in a ring (i.e. without a direct connection betwéhe

two ends). While this problem might occur in theory, the pre-
existing connections put in place by the synthesis systesvepi

it from happening in practice and these constraints wereverh

to reduce the size of the ILP.

Once the optimal solution is obtained, the values of Xhe variables

transferred as there are co_nnections to FUs. It does halimitations, provide a unique ring arrangement.
however. The assumed single-cycle latency to transfer dateeen
two arbitrary points in the PLA using the bus is no longer dakhs C. PUMA System Architecture

it takes one cycle to transfer an operand from one ring CAiUIEC  Tjleq architectures have been used in several other pspjecch
(or ring stop) to anothgr. Also, the longer the distance aeramd 55 Raw [25], TRIPS [22], MorphoSys [12], Merrimac [4], etac®
needs to travel on the ring, the more FUs that have to execoi® m 4, grchitecture was chosen for PUMA (as shown in Figure 2) for
instructions to propagate the operand along at each ring Jibese 5 fo different reasons. The replication of identical tireeans that
added instructions can potgntlally increase the loop'sdele length application need not be restricted to run on only a fewcifipe
and reduce the accelerator's performance. o portions of the processor, making compilation for PUMA easT his

In PUMA, the ring architecture actually consists of six 8n@hree s especially useful if the processor is used to execute emrstike
sets of two rings going in opposite dlrectlons): The firstafeatngs has application. For example, in the CT scan benchmarks uses eage
a Bus/FU connector (or ring-stop) at every single FU. Theosdcset  gegmentation can be executed on one part of the image on some
of rings has a ring-stop at all the odd-numbered FUs, andtting $et tjjes; transfer the resultant data to other tiles for fitigriand perform
of rings has a ring-stop at all the even-numbered FUs. Théstfely segmentation on a different part of the image. Further,icafibn of
connects an FU/RF pair to its two neighbors and also to itghteirs’ 5 single PLA design simplifies the top-level system design makes
neighbors; i.e. every FU can communicate with itself or waither testing and verification easier.

FUs one or two positions on either side of it on the ring. Witilst  The programming and execution model of PUMA closely follows
configuration, the number of cycles required to transmibdatween hat of modern-day general-purpose GPU processors. LikERER,

any two arbitrary FUs is no more thgit5”*1, and regardless of the PUMA is intended to be mainly used to accelerate compunite,
ordering of FUs on the ring, every possi%le producer-coresupairing  highly-parallel loops, but is able to execute all the othetions of the
can be executed, provided sufficient time. program as well, albeit at reduced performance.

In order to best maintain generality, we chose to arrangeFls PUMA is currently envisioned to be in one of two forms: eittzer
along the ring to allow maximum connectivity and to disttibthe var- discrete core on a PCI-Express (or similar) card externahéomain
ious types of FUs as evenly as possible. This was done by fatimg processor core (as pictured in Figure 2), or on the same ditheas
the problem as an integer linear program (ILP) as shown imr€ig. main processor, connected either through memory or via @a-high

In the objective function],, and Tz are two different sets of FUs, bandwidth, on-chip bus. For the purposes of this work, westgsumed
each set having all and only the FUs of a particular type. Timsaripts the former model, for more fair, direct comparisons to theent state
1 andj are FU IDs and”;; is a binary variable that i$ if a connection of the art GPGPUs.
exists between FW and FUj;. Essentially, this objective function aims
to maximize the number of connections between differeredyqf FUs,
subject to the following constraints: A. Setup

« In constraint set (1).X;; is a binary variable that i$ if FU i is All the PLAs in this work were synthesized for (and run at) a
“positioned” adjacent to FY, implying that they are connected byfrequency of 450 MHz. The logic synthesis was done using Bsy®
the ring. Every FU, therefore, is “positioned” next to 5 atlidJs: Design Compiler 2006-06 and Synopsys Physical Compile6-20®)
itself, its two neighbors and the two additional FUs neigilp targeting a 65nm process technology with a nominal suppliage of
its neighbors. 0.9 Wolts. Energy numbers were obtained using SynopsyseHiime-

« Constraint sets (2) and (3) specify that every FU is “posii’ PX 2006-12. For the purposes of this study, we assume thatk pe
next to and connected to itself. memory bandwidth of 142 GB/s is available to each PUMA system

« Constraint sets (4) and (5) specify that all added connestare This is the same amount of bandwidth afforded to the NVIDIAXGT
bidirectional. 280 processor.

« In constraint set (6)J;; is a binary number that i5 if a connection .
between FUi and FUj has already been inserted by the synthesR PLA Characteristics
tool. This constraint enforces the rule that a connectiomvéen PUMA systems were built using PLAs for each of the five bench-
FU ¢ and FU; can only exist if they are either “positioned” nextmarks in considerations (five systems, each composed Ilgniife
to each other or are already connected. multiple tiles of a single type of PLA). Table Il shows varfou

o A 7th set of constraints was initially used which specifiedtth characteristics of these accelerators. The “Peak Perfinuts show

IV. EXPERIMENTS AND RESULTS
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Fig. 6: Normalized
MRl . FH
raw performance available to all applications. The columrttee right

the throughput when executing floating-point operationd &meger  gpqys what the bandwidth-limited performance is while estem is

operations, respectively, in billions of operations perosel. The next ,nning the benchmark that it was designed for. These theat@nd

column shows the minimum bandwidth required by each appita re4jized performances are quite close, differing on awetagless than
to prevent starvation. Finally, the last column shows thaltoumber 4o,

of t||§s Off ?.?Ch PLA ﬁhat W?L“d be ptrgs?nt tm a t'.DUMtA system. tThe Figure 8 shows a set of columns for each benchmark, where each
n#.m. ert ort e?tvk\]/as chosen 1o prglv%? g as arvallont,hg tlai(frplos column indicates the normalized run-time of the benchmaritferent
eficient use of the resources availapie. or example, EDRUOTUIES  p| As These values are normalized to the run-time of the lreack

in a system withVRI . FH tiles is [ 55 ], or 9. , on a PLA designed for it. All of the benchmarks could be schetiu
Figure 5 shows the normalized performance difference b®tweyith an || of 1. Therefore, there are often considerable ctidns in

the non-generalized and generalized loop acceleratoms®aRIious 1 time when the smaller benchmarks are executed on PLeigrda

benchmarks, to illustrate the effects of the modificatioredento the ¢q, e larger benchmarks. The most dramatic example isifferehce

baseline accelerator to i_ncrease programmability. Eadhefifferent ;, the run-times of theCT. gauss benchmark on theT. | apl ace

benchmarks were compiled for théRl . FH accelerator. _ and MRl . FH systems. The opposite, of course, also holds: the larger
The left column for each benchmark shows its normalized p&fenchmarks suffer a significant increase in run-time whescating

formance. The benchmarksRi . Q CT. | apl ace and CT. gauss o5 p|As designed for smaller benchmarks. Of note is the reiffee
suffered a 50% reduction in performance; i.e. their Il vall®@d t0 i, the run-times of th&Rl . FH benchmark on the€T. | apl ace and
be doubled, from 1 to 2, in order for them to execute on theliv@#se g FH systems.

loop-accelerator. The benchmatk. segnent could not be compiled Figure 9 shows a similar graph to that in Figure 8, but shovtivey

for the MRI . FH accelerator at all. i - -
For each benchmark, the column on the right shows the achie avneéaogne;Ln:;g()j/egic;nnseudrr}gcri cﬁﬁ;:tg;ant&%gkgaﬁ]: eez(ér:g;amn
performance on the generalized accelerator, with the rerelwodifica- |, o5 primarily determined by the size of each benchmark. thightwo

tions specified in section l1I-B1. As shown, these modifmasi allowed \1r| benchmarks consuming the most regardless of which Plgy th
all the benchmarks to run at full performance, at minimum II. ran on.

" Figure ? sr:jowfsr a graph t5|m||ar tfoﬂ:hat In lF'g‘t”e, 5, but shows 10 1ost important thing to note on this graph is that the most
e normalized efficiency in terms of the accelerator's qranince- energy-efficient system is the one designed K&l . Q The main

Lo-pt(;]wer ratlo.I.Dut.e to ”t"ﬁ |nbcrears]e |rn1k§|verall Cq_errorrqanmlpeg reason for this is that of the five benchmarks in considematib is
y the generalizations, the benchma®l . Q CT. | apl ace and o 5ne that is closest to being the “average benchmark’s T
CT. gauss had a S|gqlf|cant increase in efficiency despite the POW&fear from the data presented in Table II. Its data:compat® ris
overlréeadt of the additions. THeR! . dFH bfenchmark,f howtehver, which o jite close to the average among the benchmarks providingod g
would not experience any improved performance from the igdiza- balance between the more compute-intensive benchmarkthandore

tions IOS?.S efguency d”etﬁ) the |nc|(ea?e |n.the accelazlinmvtver’ data-intensive benchmarks. Its integer and floating-pbirtughput are
consumption. On average, the generalizations increasegcttelerator's jentical providing a balance between the more floatingtgiatensive

efficiency increased by approximately 40%. benchmarks and the more integer-intensive benchmarks.
C. System Characteristics

We evaluated five different PUMA system designs, one for eagi Commodity GPGPU Comparison
PLA design. Each system had a different number of tiles, base While other architectures may certainly be used for this @iom
the bandwidth requirement of each benchmark as specifiedbieTl. GPGPUs are the solutions that are currently in use in manyicaled
Figure 7 shows the total performance offered by the PUMAesyst imaging applications and, therefore, the most suitablepasison point.
designed around each of the different PLAs, measured instvals of For this reason, we assessed the performance and efficidnfiyeo
MIPS. For each benchmark, the column on the left shows th& pedVIDIA GPUs.
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(1]

(2]
(3]
(4]
(5]

operations) on th&Rl . FH PUMA system and on various NVIDIA GPUs [6]

based on the GT200 architecture

Figure 10 shows the result of direct performance compasidme:

(7]

tween anVRl . FH PUMA system and the GPUs in consideration. The

column on the left shows the total compute capability of eatlthe
processors. The column on the right shows the realized pesiace
while executing thévRI . FH benchmark, accounting for bandwidth re-
strictions. PUMA achieves a very small fraction of the peakfigrmance

(8]

El

offered by the GPUs, between 8.6% of the dual-GPU GTX 295 and

21.8% of the GTS 250.

This gap changes dramatically, however, when accountimgthfe
bandwidth-intensive nature of the application in questPdMA deliv-

[10]

[11]

ers between 63% (on the dual-GPU GTX 295) and 2X the performan

(on the GTS 250) of the GPUs.

The case for PUMA is further underscored by examining the &P
power efficiency, as shown in Figure 11. This graph shows h@amym
times more efficient, in terms of number of operations per Watt, PUM[13] A. Mahesri et al.
systems are relative to the GPUs in consideration. Thesesvahnge
from 20X, for the most complex benchmark running on the mo
efficient GPU, to 54X, for the least complex benchmark rugnom

the least efficient GPU.

V. CONCLUSION

The PUMA architecture is a power-efficient accelerator eyste-
signed specifically for efficient medical image reconsinrctlt consists
of tiles of programmable loop accelerators - ASICs with abldardware
to support general-purpose computing - designed arounddimputa-
tion requirements of the image reconstruction domain. Adiegtions in
this domain are normally executed on very high-performaBP&PUs,
the latest NVIDIA GPU architecture was used to gauge theopednce

Y1z

tha

[15]
[16]
[17]
[18]
(19]

[20]

and efficiency of PUMA. The results are very encouraging - RUM[21]

achieves up to 2 times the performance of a modern GPU actiniee

and has up to 54 times the power efficiency.
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