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Abstract—
Graphics processing units (GPUs) are becoming an increasingly popular

platform to run applications that require a high computatio n throughput.
They are limited, however, by memory bandwidth and power and, as
such, cannot always achieve their full potential. This paper presents the
PUMA architecture - a domain-specific accelerator designedspecifically
for medical imaging applications, but with sufficient generality to make
it programmable. The goal is to closely match the performance achieved
by GPUs in this domain but at a fraction of the power consumption. The
results are quite promising - PUMA achieves upto 2X the performance of
a modern GPU architecture and has upto a 54X improved efficiency on a
floating-point and memory-intensive MRI reconstruction algorithm.

I. I NTRODUCTION

The advent of programmable graphics processing units, or GPUs, for
general-purpose computing is one of the major steps taken incomputing
over the last few years. These GPGPUs which, in the past, havebeen
predominantly used for gaming and advanced image and video editing,
are now being used by many developers to accelerate inherently parallel
programs in several other domains. Indeed, considerable amounts time
and engineering effort are often spent in order to modify programs so
that they may run effectively on GPUs.

Several different application domains observe remarkablespeedups
when using GPUs, including the following [18]:

• 4X to 100X speedup on medical applications, such as biomedical
image analysis, 3D reconstruction of tissue structures forlarge sets
of microscopic images and accelerating MRI reconstructions.

• 8X to 260X speedup on electronic design automation, such as
power grid analysis and statistical static timing analysis.

• 4X to 327X speedup on physics applications, such as weather
prediction and astrophysics.

• 11X to 100X speed up financial applications such as instrument
pricing using Monte-Carlo methods.

A. The Advantages of GPUs

GPUs have many appealing hardware features. Firstly, they lend
themselves very well to both thread-level and data-level parallelism.
Thread-level parallelism (TLP) is exploited by having a large number
of independent processing elements (PEs) on the GPU, each with its
own set of functional units (FUs) and local storage. Individual threads
can quite cleanly be assigned, either statically by the programmer or
dynamically by the hardware, to each of these PEs and inter-thread
communication is made possible by some form of interconnectfabric
or through local storage such as caches. Programs with a large amount
of data-level parallelism (DLP) can make use of vector-SIMDunits in
these PEs which allow a single instruction to perform an operation
on several data at the same time. DLP can also be extracted in
programs with compute-intensive loops that have little or no inter-
iteration dependencies by executing operations from different iterations
within a single SIMD instruction.

Secondly, GDDR RAM and its increasingly fast successors have
allowed for GPUs to have access to an immense amount of memory
bandwidth. The AMD Radeon HD 4870 - the first GPU to support
GDDR5 memory - has a memory bandwidth of up to 115 GB/s.

Above all, GPUs are commodity hardware products commonly avail-
able as a part of many desktop and laptop computers. The toolsto
program them are also easily available; NVIDIA’s Compute Unified
Device Architecture (CUDA) package, for example, is free todownload
from their website [15]. CUDA is a general purpose parallel computing
architecture which consists of the CUDA instruction set andthe compute
engine in the GPU. It provides a small set of extensions to theC

programming language, which enables straightforward implementation
of parallel algorithms on the GPU. CUDA also supports scheduling
the computation between CPU and GPU, such that serial portions of
applications run on the CPU and parallel portions are mappedto the
GPU.

Individual cores in Intel’s up-and-coming Larrabee processor im-
plement the ubiquitous x86 ISA [23], allowing users to use a host
of already-existing development tools to port their applications to it.
Server products like Tesla [17] with even more compute powerare also
available.

B. The Disadvantages of GPUs

One of the main bottlenecks in applications running on GPUs is the
gap between their computational ability and their memory bandwidth.
While the absolute memory bandwidth available to GPUs is quite high,
it is not growing at the same rate as their theoretical peak performance.
Currently, even one of the latest generation of NVIDIA graphics
processors, the GeForce GTX 280 [16] can only transfer up to 142
GB/s of data despite having a peak performance of 933 GFLOPS [2].
This works out to approximately 0.15 bytes of data, on average, per
floating-point operation.

Further, the total power consumption of these GPUs, is enormous. The
GeForce GTX 280, for example, while having a tremendous amount of
compute ability, consumes 236W of power resulting in a very low MIPS-
per-mW power-efficiency ratio at peak performance. Inside GPU cores,
the main power-consuming components are general storage elements
such as register files and scratchpad memories. This is not necessarily
a drawback with GPUs, specifically, but rather with most general-
purpose programming devices. The interconnect required toaccess
random elements in register files is quite power-hungry, andthe more
read and write ports a register file has, the higher its power consumption.
Consequently, register files that feed vector-SIMD FUs and must output
several elements at once consume significant amounts of power.

Though power is not necessarily a significant drawback for users
interested in using these devices for video game graphics acceleration,
it is not a desirable choice when on a limited power source, inan
embedded system or in a high-temperature environment. To address
these disadvantages, many designers turn to customized anddomain-
specific hardware.

C. The Quest for Programmable and
Specialized Hardware

A wide range of architectures, in addition to GPUs, have been
designed before to address the problem of providing high performance
computation efficiently. These solutions maintain or sacrifice pro-
grammability to various degrees depending on the domain they target.
Figure 1 shows the performance (on the y-axis) and programmability (on
the x-axis) expectations from various architecture styles. The numbers
next to each of the ovals shows the approximate performance-power
ratio offered by each of these solutions.

General purpose processors (GPPs) which fall on the lower right
corner of the figure, are highly programmable solutions but are limited
in terms of the peak performance they can achieve. Further, structures
like instruction decoders and caches that are needed to support pro-
grammability consume energy. This results in a very low computational
efficiency of about 1 MIPS-per-mW, for example, for the IntelPentium-
M processor.
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Fig. 1: Comparison of peak performance, power efficiency, and programma-
bility of different architecture design styles.

On the other end of the spectrum are Application-specific Integrated
Circuits (ASICs). ASICs are custom-designed specifically for a particu-
lar problem, without extraneous hardware structures. Thus, ASICs have
a high computational density with hardwired control, resulting in high
computation efficiency up to 1,000 to 10,000 times more than that of
GPPs. The space between these two extremes is populated by different
solutions that have varying degrees of programmability.

Application specific instruction-set processors (ASIPs) are processors
with custom extensions for a particular application or application-
domain. They can be quite efficient when running the applications for
which they are designed, and they are also capable of runningany
other application, though with reduced efficiency. Examples include
processors from Tensilica and ARC, transport triggered architectures [3]
and custom-fit processors [9].

Domain loop accelerators are designed to execute computation inten-
sive loops present in media and signal processing domains. Their design
is close to that of VLIW processors, but with a much higher number
of function units, and consequently, a higher peak performance. Very
long instruction words in a control memory direct all FUs every cycle.
However, domain loop accelerators (LAs) have less flexibility than GPPs
because only highly computationally-intensive loops map well to them.
Some examples of architectures in this design space are RSVP[1] and
CGRAs [14].

Coarse-grain adaptable architectures have coarser-grainbuilding
blocks compared to FPGAs, but, like FPGAs, still maintain bit-level
reconfigurability. The coarser reconfiguration granularity improves the
computation efficiency of these solutions. However, non-standard tools
are needed to map computations onto them and their success have been
limited to the multimedia domain. PipeRench [10], RaPiD [6]are some
examples of coarse-grain adaptable architectures.

D. Programmable Loop Accelerators

The programmable solutions shown in Figure 1 are all “universally”
programmable, allowing any loop to be mapped on to them, although at
varying degrees of efficiency. There is a wide gap between theefficiency
that can be achieved by ASICs and the efficiency that can be achieved by
these programmable solutions. There are, for example, instances where
there is a narrow requirement of flexibility. Using any of these above
solutions is overkill for these instances as these solutions sacrifice too
much efficiency for the needed flexibility. Further, most of the middle-
ground solutions listed above do not offer any support for fast floating-
point computation, which limits the number of applicationsthat they
can be used for.

This work advocates an open area in the design space where a
non-trivial amount of programmability is provided in termsof intra-
processor communication, functionality and storage, but the application

Benchmark #instrs %FP Data Req’d
bytes

instr

MRI.FH 38 42 0.95

MRI.Q 34 35 1.06

CT.segment 26 42 1.38

CT.laplace 20 30 1.20

CT.gauss 22 32 1.09

TABLE I: Medical application characteristics

and domain-specific design, as a whole, resembles an ASIC more than a
processor. The design point is labeled Programmable Loop Accelerator,
or PLA (not to be confused with programmable logic array). The
specifics of the PLA are described in Section III-A.

II. TARGETING MEDICAL APPLICATIONS

Medical imaging devices are generally large, bulky and expensive
machines that have very limited portability and consume large amounts
of power. There is an increasing focus on reducing the power of
these medical imaging devices [20]. In order to address thisissue,
this work focuses on principle components of Computed Tomography
(CT) and Magnetic Resonance Imaging (MRI) image processingand
reconstruction.

A CT scan involves capturing a composite image from a series of
X-Ray images taken from various angles around a subject. It produces
a very large amount of data that can be manipulated using a variety
of techniques to best arrive at a diagnosis. Oftentimes, this involves
separating different layers of the captured image based on their radio-
densities. A common way of accomplishing this is by using a well-
known image-processing algorithm known as “image segmentation”.

In essence, image segmentation allows one to partition a given image
into multiple regions based on any of a number of different criteria
such as edges, colors, textures, etc. Being able to partition images in
this manner allows for studying of isolated sections of the image rather
than of all the information that was captured.

The segmentation algorithm used in this work has three main floating-
point-intensive components: Graph segmenting (CT.segment), Lapla-
cian filtering (CT.laplace) and Gaussian convolution
(CT.gauss).

Laplacian filtering highlights portions of the image that exhibit a rapid
change of intensity and is used in the segmentation algorithm for edge
detection. Gaussian convolution is used to smooth texturesin an image
to allow for better partitioning of the image into differentregions.

An MRI scan, instead of using X-Rays, uses a strong magnetic and
radio frequency fields to align, and alter the alignment of, hydrogen
atoms in the body. The hydrogen atoms then produce a rotatingmagnetic
field that can be detected by the MRI scanner and converted to an image.
The main computational component of reconstructing an MRI image is
calculating the value of two different vectors, known here as MRI.FH
andMRI.Q, respectively (explained in more detail in [13], [24]).

Table I shows some characteristics of the benchmarks in consider-
ation. All of these benchmarks are floating-point-intensive and require
large amounts of data for the computation they perform, especially when
compared to the 0.15 bytes/instruction supported by the GTX280 GPU
mentioned earlier. The main loops in these benchmarks are “do-all”
loops - there are no inter-iteration dependences.

Prior work in this field has predominantly focused on using com-
mercial products to accelerate medical imaging. For instance, in [11],
the authors port “large-scale, biomedical image analysis”applications
to multi-core CPUs and GPUs, and compare different implementation
strategies with each other. In [21], the authors study imageregistration
and segmentation and accelerate those applications by using CUDA
on a GPU. In [24], the authors use both the hardware parallelism and
the special function units available on an NVIDIA GPU to dramatically
improve the performance of an advanced MRI reconstruction algorithm.
There are several other such examples of novel work in this field.

In contrast with such research, this work focuses on designing a
new, highly efficient, microarchitecture and architecturewith the specific
hardware requirements of medical imaging in consideration.
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Fig. 2: PUMA. Each tile comprises of a programmable loop accelerator
(template pictured) and the control and data memories required for its
operation. On-chip routers transfer data between each tileand the external
interface.

III. PUMA

PUMA, Parallel micro-architecture forMedical Applications, is a
tiled architecture as shown in Figure 2. It is specifically designed to
maximize power-efficiency when executing medical imaging applica-
tions while still retaining full programmability. Each tile in PUMA is
an instance of a specialized PLA - a generalized loop accelerator. The
PLA tiles are connected to their neighboring tiles and to theexternal
interface through a high-bandwidth mesh of on-chip routers.

A. Background

Figure 3 shows the hardware schema for the single-function loop
accelerator [7], [5]. The LA is designed to efficiently execute a modulo
scheduled loop [19] in hardware. The length of the schedule,and the
corresponding run-time of the loop, are determined by theinitiation
interval (II) - the number of cycles between the beginnings of successive
iterations of the loop. Thus, a lower II corresponds to a shorter schedule
and increased performance. The modulo schedule contains akernel that
repeats every II cycles and may include operations from multiple loop
iterations.

The LA is designed to exploit the high degree of parallelism available
in modulo scheduled loops with a large number of function units (FUs).
Each FU performs a specific set of functions that is tailored for the
particular loop. Each FU writes to a dedicated shift register file (SRF);
in each cycle, the contents of the registers shift downwardsto the next
register. Point-to-point wires from the registers to FU inputs allow data
transfer from producers directly to consumers. Multiple registers may be
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Fig. 3: Template for single-function loop accelerator.

connected to each FU input; a multiplexer (MUX) is used to select the
appropriate one. Since the operations executing in a moduloscheduled
loop are periodic, the selector for this MUX is essentially amodulo
counter. In addition, a central register file (CRF) holds static live-in
register values that cannot be stored in the SRFs.

The schema described is a template that is customized for the
particular loop being accelerated. The number, types, and widths of the
FUs, the widths and depths of the SRFs, and the connections from the
SRFs to the FUs are all determined from the loop. During synthesis, the
loop is first modulo scheduled to meet a given performance requirement,
and then the details of the LA datapath are determined from the
communication patterns in the scheduled loop.

The control path for the single-function LA consists of a finite state
machine with II states corresponding to each of time slots inthe
kernel of the modulo schedule. In each state, control signals direct the
execution of FUs (for FUs capable of multiple operations) and control
the MUXes at the FU inputs.

Finally, a Verilog HDL realization of the accelerator is generated by
emitting modules with pre-defined behavioral Verilog descriptions that
correspond to the datapath elements. A simulation environment is used
to verify that the Verilog properly implements the loop. Finally, gate-
level synthesis, placement, routing, power analysis and post-synthesis
verification are performed on the design.

B. PUMA Architecture

1) Baseline PLA Design: A PLA is generalized loop accelerator,
created by modifying the template datapath shown in Figure 3. A generic
datapath template for the PLA is illustrated on the right side of Figure 2
The accelerator is designed for a specific loop at a specific throughput,
but contains a more general datapath than the single-function LA to
allow for different loops to be mapped onto the hardware [8].These
generalizations provide the LA with flexibility in functionality, storage,
control and communication.

To provide functionality, simple modifications were made toFUs in
order for them to support more operations; adders (both integer and
floating-point) are generalized to adder/subtracter units, left-shift units
are generalized to left/right rotators, every FU can execute an identity
operation to act like a move instruction, etc. Even load-store units can
be generalized to integer adder/subtracter units if they already had the
functionality to compute indirect addresses. Further, theinput-muxes to
FUs are redesigned to allow for operand-swapping as well.

The SRFs used in the LA have limited addressability and fixed life-
times for variables. To overcome these constraints and provide more
generality, these SRFs are replaced with rotating-register files (RRs).

To improve controllability, the LA’s finite state machine isreplaced
with a control memory, the contents of which can be changed based on
the loop that needs to be executed. Further, numerical constants which
were hard-coded in the LA are instead stored in a literal register file.

To generalize communication, the PLA has a bus (in addition to the
point-to-point connections) that connects all the RRs to all the FUs. To
reduce the hardware cost of having a potentially long bus, its width is
limited to one operand, but has a predictable latency of one cycle.



Maximize:

∑
i∈Tα

∑
j∈Tβ

Cij ∀α∀β : α 6= β

Subject to:

(1)
∑#F Us

j=0
Xij = 5 i ∈ [0, #FUs)

(2) Xii = 1 i ∈ [0, #FUs)
(3) Cii = 1 i ∈ [0, #FUs)
(4) Xij = Xji i, j ∈ [0, #FUs)
(5) Cij = Cji i, j ∈ [0, #FUs)
(6) Cij ≤ Xij + Iij i, j ∈ [0, #FUs)

Fig. 4: ILP formulation for FU arrangement on the PUMA ring

2) PUMA PLA: The PLA bus is not always a viable solution. One
main disadvantage with the bus is that it is not a scalable solution
for larger PLAs with many FUs. Further, the bus only carries asingle
operand per cycle, limiting the amount of programmability available in
the PLA and the sequences of opcodes that can be executed in parallel.

To overcome these limitations, the intra-PLA communication fabric
in PUMA is changed to a ring. A ring allows for as many operandsto be
transferred as there are connections to FUs. It does have itslimitations,
however. The assumed single-cycle latency to transfer databetween
two arbitrary points in the PLA using the bus is no longer valid, as
it takes one cycle to transfer an operand from one ring connection
(or ring stop) to another. Also, the longer the distance an operand
needs to travel on the ring, the more FUs that have to execute move
instructions to propagate the operand along at each ring stop. These
added instructions can potentially increase the loop’s schedule length
and reduce the accelerator’s performance.

In PUMA, the ring architecture actually consists of six rings (three
sets of two rings going in opposite directions). The first setof rings has
a Bus/FU connector (or ring-stop) at every single FU. The second set
of rings has a ring-stop at all the odd-numbered FUs, and the third set
of rings has a ring-stop at all the even-numbered FUs. This effectively
connects an FU/RF pair to its two neighbors and also to its neighbors’
neighbors; i.e. every FU can communicate with itself or withother
FUs one or two positions on either side of it on the ring. With this
configuration, the number of cycles required to transmit data between
any two arbitrary FUs is no more than⌈#FUs

4
⌉, and regardless of the

ordering of FUs on the ring, every possible producer-consumer pairing
can be executed, provided sufficient time.

In order to best maintain generality, we chose to arrange theFUs
along the ring to allow maximum connectivity and to distribute the var-
ious types of FUs as evenly as possible. This was done by formulating
the problem as an integer linear program (ILP) as shown in Figure 4.

In the objective function,Tα and Tβ are two different sets of FUs,
each set having all and only the FUs of a particular type. The subscripts
i andj are FU IDs andCij is a binary variable that is1 if a connection
exists between FUi and FUj. Essentially, this objective function aims
to maximize the number of connections between different types of FUs,
subject to the following constraints:

• In constraint set (1),Xij is a binary variable that is1 if FU i is
“positioned” adjacent to FUj, implying that they are connected by
the ring. Every FU, therefore, is “positioned” next to 5 other FUs:
itself, its two neighbors and the two additional FUs neighboring
its neighbors.

• Constraint sets (2) and (3) specify that every FU is “positioned”
next to and connected to itself.

• Constraint sets (4) and (5) specify that all added connections are
bidirectional.

• In constraint set (6),Iij is a binary number that is1 if a connection
between FUi and FUj has already been inserted by the synthesis
tool. This constraint enforces the rule that a connection between
FU i and FUj can only exist if they are either “positioned” next
to each other or are already connected.

• A 7th set of constraints was initially used which specified that

Benchmark Peak Perf. Peak Perf. B/W #Tiles
GF LOps

sec

GIOps

sec
GB
sec

MRI.FH 7.2 5.4 16.2 9

MRI.Q 5.4 5.4 16.2 9

CT.segment 4.95 2.25 16.2 9

CT.laplace 2.7 3.15 10.8 14

CT.gauss 3.15 3.6 10.8 14

TABLE II: Characteristics of the individual accelerators for each bench-
mark.

there must always be a path between any two FUs with exactly
⌈#FUs

4
⌉ connections between them This constraint was used to

prevent insular sets of 5 FUs or sets of 5 FUs connected linearly
rather than in a ring (i.e. without a direct connection between the
two ends). While this problem might occur in theory, the pre-
existing connections put in place by the synthesis system prevent
it from happening in practice and these constraints were removed
to reduce the size of the ILP.

Once the optimal solution is obtained, the values of theXij variables
provide a unique ring arrangement.

C. PUMA System Architecture

Tiled architectures have been used in several other projects, such
as Raw [25], TRIPS [22], MorphoSys [12], Merrimac [4], etc. Such
an architecture was chosen for PUMA (as shown in Figure 2) for
a few different reasons. The replication of identical tilesmeans that
the application need not be restricted to run on only a few specific
portions of the processor, making compilation for PUMA easier. This
is especially useful if the processor is used to execute a stream-like
application. For example, in the CT scan benchmarks used here, image
segmentation can be executed on one part of the image on some
tiles, transfer the resultant data to other tiles for filtering, and perform
segmentation on a different part of the image. Further, replication of
a single PLA design simplifies the top-level system design and makes
testing and verification easier.

The programming and execution model of PUMA closely follows
that of modern-day general-purpose GPU processors. Like GPGPUs,
PUMA is intended to be mainly used to accelerate compute-intensive,
highly-parallel loops, but is able to execute all the other sections of the
program as well, albeit at reduced performance.

PUMA is currently envisioned to be in one of two forms: eithera
discrete core on a PCI-Express (or similar) card external tothe main
processor core (as pictured in Figure 2), or on the same die asthe
main processor, connected either through memory or via an ultra-high
bandwidth, on-chip bus. For the purposes of this work, we have assumed
the former model, for more fair, direct comparisons to the current state
of the art GPGPUs.

IV. EXPERIMENTS AND RESULTS

A. Setup

All the PLAs in this work were synthesized for (and run at) a
frequency of 450 MHz. The logic synthesis was done using Synopsys
Design Compiler 2006-06 and Synopsys Physical Compiler 2006-06,
targeting a 65nm process technology with a nominal supply voltage of
0.9 Volts. Energy numbers were obtained using Synopsys PrimeTime-
PX 2006-12. For the purposes of this study, we assume that a peak
memory bandwidth of 142 GB/s is available to each PUMA system.
This is the same amount of bandwidth afforded to the NVIDIA GTX
280 processor.

B. PLA Characteristics

PUMA systems were built using PLAs for each of the five bench-
marks in considerations (five systems, each composed entirely of
multiple tiles of a single type of PLA). Table II shows various
characteristics of these accelerators. The “Peak Perf.” columns show
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Power
efficiency of benchmarks relative to

MRI.FH

the throughput when executing floating-point operations and integer
operations, respectively, in billions of operations per second. The next
column shows the minimum bandwidth required by each application
to prevent starvation. Finally, the last column shows the total number
of tiles of each PLA that would be present in a PUMA system. The
number of tiles was chosen to prevent data starvation, to make the most
efficient use of the resources available. For example, the number of tiles
in a system withMRI.FH tiles is ⌈ 142

16.2
⌉, or 9.

Figure 5 shows the normalized performance difference between
the non-generalized and generalized loop accelerators across various
benchmarks, to illustrate the effects of the modifications made to the
baseline accelerator to increase programmability. Each ofthe different
benchmarks were compiled for theMRI.FH accelerator.

The left column for each benchmark shows its normalized per-
formance. The benchmarksMRI.Q, CT.laplace and CT.gauss
suffered a 50% reduction in performance; i.e. their II values had to
be doubled, from 1 to 2, in order for them to execute on the baseline
loop-accelerator. The benchmarkCT.segment could not be compiled
for theMRI.FH accelerator at all.

For each benchmark, the column on the right shows the achieved
performance on the generalized accelerator, with the hardware modifica-
tions specified in section III-B1. As shown, these modifications allowed
all the benchmarks to run at full performance, at minimum II.

Figure 6 shows a graph similar to that in Figure 5, but shows
the normalized efficiency in terms of the accelerator’s performance-
to-power ratio. Due to the increase in overall performance provided
by the generalizations, the benchmarksMRI.Q, CT.laplace and
CT.gauss had a significant increase in efficiency despite the power
overhead of the additions. TheMRI.FH benchmark, however, which
would not experience any improved performance from the generaliza-
tions loses efficiency due to the increase in the accelerator’s power
consumption. On average, the generalizations increased the accelerator’s
efficiency increased by approximately 40%.

C. System Characteristics

We evaluated five different PUMA system designs, one for each
PLA design. Each system had a different number of tiles, based on
the bandwidth requirement of each benchmark as specified in Table II.

Figure 7 shows the total performance offered by the PUMA systems
designed around each of the different PLAs, measured in thousands of
MIPS. For each benchmark, the column on the left shows the peak
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raw performance available to all applications. The column on the right
shows what the bandwidth-limited performance is while eachsystem is
running the benchmark that it was designed for. These theoretical and
realized performances are quite close, differing on average by less than
4%.

Figure 8 shows a set of columns for each benchmark, where each
column indicates the normalized run-time of the benchmark on different
PLAs. These values are normalized to the run-time of the benchmark
on a PLA designed for it. All of the benchmarks could be scheduled
with an II of 1. Therefore, there are often considerable reductions in
run-time when the smaller benchmarks are executed on PLAs designed
for the larger benchmarks. The most dramatic example is the difference
in the run-times of theCT.gauss benchmark on theCT.laplace
and MRI.FH systems. The opposite, of course, also holds: the larger
benchmarks suffer a significant increase in run-time when executing
on PLAs designed for smaller benchmarks. Of note is the difference
in the run-times of theMRI.FH benchmark on theCT.laplace and
MRI.FH systems.

Figure 9 shows a similar graph to that in Figure 8, but showingthe
average energy consumed per iteration by each benchmark while run-
ning on PLAs designed for other benchmarks. The energy consumption
was primarily determined by the size of each benchmark, withthe two
MRI benchmarks consuming the most regardless of which PLA they
ran on.

The most important thing to note on this graph is that the most
energy-efficient system is the one designed forMRI.Q. The main
reason for this is that of the five benchmarks in consideration, it is
the one that is closest to being the “average benchmark”. This is
clear from the data presented in Table II. Its data:compute ratio is
quite close to the average among the benchmarks providing a good
balance between the more compute-intensive benchmarks andthe more
data-intensive benchmarks. Its integer and floating-pointthroughput are
identical, providing a balance between the more floating-point-intensive
benchmarks and the more integer-intensive benchmarks.

D. Commodity GPGPU Comparison

While other architectures may certainly be used for this domain,
GPGPUs are the solutions that are currently in use in many medical
imaging applications and, therefore, the most suitable comparison point.
For this reason, we assessed the performance and efficiency of five
NVIDIA GPUs.
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Figure 10 shows the result of direct performance comparisons be-
tween anMRI.FH PUMA system and the GPUs in consideration. The
column on the left shows the total compute capability of eachof the
processors. The column on the right shows the realized performance
while executing theMRI.FH benchmark, accounting for bandwidth re-
strictions. PUMA achieves a very small fraction of the peak performance
offered by the GPUs, between 8.6% of the dual-GPU GTX 295 and
21.8% of the GTS 250.

This gap changes dramatically, however, when accounting for the
bandwidth-intensive nature of the application in question. PUMA deliv-
ers between 63% (on the dual-GPU GTX 295) and 2X the performance
(on the GTS 250) of the GPUs.

The case for PUMA is further underscored by examining the GPUs’
power efficiency, as shown in Figure 11. This graph shows how many
times more efficient, in terms of number of operations per Watt, PUMA
systems are relative to the GPUs in consideration. These values range
from 20X, for the most complex benchmark running on the most
efficient GPU, to 54X, for the least complex benchmark running on
the least efficient GPU.

V. CONCLUSION

The PUMA architecture is a power-efficient accelerator system de-
signed specifically for efficient medical image reconstruction. It consists
of tiles of programmable loop accelerators - ASICs with added hardware
to support general-purpose computing - designed around thecomputa-
tion requirements of the image reconstruction domain. As applications in
this domain are normally executed on very high-performanceGPGPUs,
the latest NVIDIA GPU architecture was used to gauge the performance
and efficiency of PUMA. The results are very encouraging - PUMA
achieves up to 2 times the performance of a modern GPU architecture
and has up to 54 times the power efficiency.
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