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ABSTRACT
Web 2.0 applications written in JavaScript are increasingly
popular as they are easy to use, easy to update and maintain,
and portable across a wide variety of computing platforms.
Web applications receive frequent input from a rich array
of sensors, network, and user input modalities. To handle
the resulting asynchrony due to these inputs, web appli-
cations are developed using an event-driven programming
model. These event-driven web applications have dramati-
cally different characteristics, which provides an opportunity
to create a customized processor core to improve the respon-
siveness of web applications.

In this paper, we take one step towards creating a core
customized to event-driven applications. We observe that
instruction cache misses of web applications are substan-
tially higher than conventional server and desktop workloads
due to large working sets caused by distant re-use. To mit-
igate this bottleneck, we propose an instruction prefetcher
(EFetch) that is tuned to exploit the characteristics of web
applications. We find that an event signature, which cap-
tures the current event and function calling context, is a
good predictor of the control flow inside a function of an
event-driven program. It allows us to accurately predict
a function’s callees and their function bodies and prefetch
them in a timely manner. For a set of real-world web appli-
cations, we show that the proposed prefetcher outperforms
commonly implemented next-2-line prefetcher by 17%. Also,
it consumes 5.2 times less area than a recently proposed
prefetcher, while outperforming it.

Categories and Subject Descriptors
B.3.2 [Memory Structures]: Design Styles—cache mem-
ories
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1. INTRODUCTION
Web 2.0 has revolutionized the way we use personal com-

puters today. Modern websites are extremely dynamic, feed-
ing personalized contents to the users according to their pref-
erences. Web 2.0 has also enabled a new class of client-side
web applications such as web emails, interactive maps, and
social networks. A web application is essentially a program
that runs within a web browser. Web applications are in-
creasingly popular today due to the ease with which users
can run these applications within their web browsers without
having to download and install them on their personal com-
puters. Web applications also allow developers to instantly
update and maintain them. Furthermore, as they can run
within almost any web browser, they are highly portable
across diverse systems ranging from servers and desktops to
tablets and smart phones.

A large fraction of the Web 2.0 content are being pro-
grammed using JavaScript today, as it is commonly sup-
ported in most popular web browsers in use. Web appli-
cations written in scripting languages receive input from
diverse sources such as user clicks, accelerometers, micro-
phones, and other sensors. These rich array of input sources
provide large asynchronicity to the input stream of web ap-
plications. As a result, event-driven programming models
naturally arise among popular web development platforms.
An event-driven model makes it easy to integrate input from
a rich array of sensors and user input modalities.

Event-driven web applications typically execute thousands
of events in a second. Runtime characteristics of the event-
driven web applications developed using scripts are dramat-
ically different from the conventional server or desktop ap-
plications, which have been the primary focus for most pro-
cessor optimizations studied till today.

As Moore’s Law continues to hold true, we may be able
to continue to increase the number of processor cores in a
chip. However, due to the end of Dennard scaling, it is also
likely that we may not be able to power-up and operate all
the processor cores at the same time. Heterogeneous pro-
cessors are a likely solution to mitigate this “dark silicon”
problem [9]. Given that web applications constitute a domi-
nant use for consumer devices, we envision that one or more
of the cores in a heterogeneous multi-core processor could
be “Web Cores” that are customized for executing web ap-
plications.

In this paper, we take the first step towards designing a
WebCore by identifying an important performance bottle-
neck in event-driven web applications, namely, instruction
fetch, and propose an instruction prefetcher, Event Fetch



or EFetch, to mitigate it. We studied several Web 2.0 ap-
plications and discovered that L1 instruction cache misses
to be a critical performance bottleneck. Instruction fetch
is a more severe problem for web applications than it is for
certain server applications that have been used in the past
instruction fetch optimization studies [10, 11]. While the L1
instruction cache misses per kilo-instructions (mpki) is on
the order of 1-3 for conventional applications, it is nearly
25 on average for popular web applications, e.g., Facebook,
Gmail, Amazon, CNN, Google maps.

Event-driven web applications experience poor instruction
cache performance for several reasons. First, the size of
JavaScript code associated with most web sites is very large,
ranging from 200 KB to several megabytes [19]. Second, not
only is their instruction footprint larger than conventional
programs, but they also do not exhibit much temporal local-
ity for instruction addresses. The reason is that, diverse set
of events are invoked in response to external inputs, result-
ing in too many hot functions. Also, each of those events
is designed such that it executes for a fairly short period
of time (thousands of instructions on average, millions in
the worst case) to ensure responsiveness. In a conventional
application, iteration counts of hot loops could be in hun-
dreds of thousands, which causes them to exhibit much more
temporal locality. But, loops in web applications rarely ever
iterate for a long time. Finally, only about a tenth of a func-
tion body gets accessed when a function is invoked. This
combined with rich control flow within a function, results in
poor spatial locality.

L1 instruction cache misses significantly degrade perfor-
mance. On average, across the web applications studied,
performance can be increased by 53% if all L1-I cache misses
are eliminated. Unlike data cache misses, out-of-order exe-
cution cannot hide the latency of an instruction cache miss
that stalls the pipeline. While there is a rich literature on
designing instruction prefetchers to address this problem [12,
18, 27, 22], past prefetcher designs have significant limita-
tions when applied to event-driven programs. They either
rely on spatial locality [12, 22], address access patterns [27],
predictability of branches [8], or require fairly large hard-
ware structures [10].

In this paper, we define event signatures to design a cus-
tom prefetcher for web applications. An event signature is
a hash of current event-identifier and function call context
signature (a hash of call addresses of functions at the top of
call stack). The web browser is responsible for constructing
an identifier for an event and initializing a special hardware
event register before beginning to process an event’s handler.
We observe that the event signature is a good predictor of
the control flow inside a function, which in turn allows us to
predict a function’s callees and their function bodies.

In addition to the event register, our WebCore architec-
ture has a hardware callee predictor table that keeps track
of the set of callees invoked from a function under an event
signature context. On encountering a previously seen event
signature, WebCore issues prefetch requests to its callees.
A prefetcher is effective only if it can prefetch the cache
blocks ahead of their use. In our design, we prefetch the
next function to be called, going down the program call
graph in a depth-first manner, staying one function ahead
of the program execution. A predictor stack keeps track of
the predicted call graph and validates as the trailing pro-
gram makes progress. In the case of a mispredicted call, a
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Figure 1: Software components of a renderer process
in a browser.

recovery is initiated to start the prefetch from the correct
functional call context.

We study a representative website from each class of web
applications: e-commerce (amazon), interactive maps
(google maps), search (bing), social networking (facebook),
news (cnn), utilities (google docs), and data-intensive ap-
plications (pixlr). We show that WebCore’s prefetcher
(EFetch) outperforms commercially implemented next-2-line
prefetcher by 17%. It also outperforms a recently proposed
prefetcher, PIF [10], while consuming 5.2 times less area.

2. BACKGROUND AND MOTIVATION
In this section, we briefly describe a web browser system

and the event-driven programming model used to write Web
2.0 applications.

2.1 Web Browser Software Architecture
A web browser consists of several processes. For each user

session (“tab”), the browser spawns off a renderer process,
which performs the critical tasks of a browser. A main pro-
cess in the web browser receives events from the external
system and delivers them to the appropriate renderer pro-
cess.

The software components of a renderer process are shown
in Figure 1. They are responsible for tasks such as parsing
HTML content, layout, and paint. When it encounters events
that need to be processed by executing a JavaScript (JS)
program, it invokes the JavaScript engine. The JavaScript
engine starts executing the source code in the interpreted
mode first, and then dynamically compiles hot functions into
native code.

Web applications are written in JavaScript using an event-
driven programming model. Figure 3 shows an example exe-
cution of a web application. A looper thread in the renderer
process constantly polls an event-queue. It dequeues one
event at a time and invokes the necessary JavaScript handler
function to process the event. The events may be generated
internally or in response to an external input. A critical rule
that web developers adhere to is that durations of events
are short. This is necessary to ensure that a web applica-
tion is responsive to the user. If an event has to wait for
any long-latency operation (e.g., downloading a web page),
instead of stalling, the event handler would register an event
callback to be invoked when the long-latency operation has
completed, and then return.

2.2 Motivation for WebCore
Characteristics of event-driven programs are significantly

different from the conventional programs. We studied sev-
eral microarchitectural characteristics of web applications
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Figure 2: (a) Isolating JavaScript Events, (b) L1-I
mpki when executing JS events along with the entire
Renderer (Same Core) or Isolated (Separate Core)

and discovered that instruction cache misses and branch mis-
predictions are significantly higher than most conventional
programs studied in the past.

Web applications suffer from an instruction fetch bot-
tleneck due to the event-driven nature of these programs.
These applications execute a wide range of functions in re-
sponse to different events initiated by the user and the ex-
ternal system. Furthermore, each function in JavaScript ex-
ecutes for only a few hundreds of instructions to ensure re-
sponsiveness. As a result, event-driven JavaScript programs
exhibit little temporal locality. They also tend to expose
relatively less spatial locality due to rich control flow within
the body of a function, which is written to handle a variety
of control states within the web application. Finally, the in-
struction footprint of web applications on average is about
200 KB but could be as high as 2 MB (e.g., google maps).

As the processor industry moves towards heterogeneous
multi-core processors, we envision that one or more cores
could be customized to exploit the characteristics of web
applications. In such a scenario, the JS component of the
web browser would execute on a dedicated processor core
(“Web Core”) different from the one used for executing the
other parts of the renderer process as shown in Figure 2(a).

Figure 2(b) shows the L1 instruction cache (I-cache) mpki
when we execute the JS events along with all the renderer
process. On average, L1 I-cache mpki could be as high as
29. I-cache mpki reduces to about 24 when we execute the
native code produced by the JS engine on a separate core.
Though, by executing the JS events on a separate core, L1
data cache suffers from coherence misses. However, the im-
pact of this is very small, mitigated, in part, by the addi-
tional L1 cache capacity on the separate core. There is a loss
of 2.1% in performance compared to running the JS events
with the renderer process. In our study, we seek to optimize
the I-cache performance of a “Web Core” that is dedicated
to execute the instructions corresponding to the JS events.

Figure 4 shows the I-cache mpki for the several web ap-
plications we studied. For reference, it also shows the av-
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Figure 4: Comparison of L1-I cache mpki

erage mpki we observed for conventional PARSEC [6] and
SPECint 2006 [2] workloads. I-cache mpki for web applica-
tions could be as high as 26 (bing), where for SPECint 2006
it is about 2.

Figure 5 shows the cumulative I-cache L1 miss rates ob-
served due to different cache blocks accessed. As the figure
shows, we need over 10,000 cache blocks to cover 80% of
misses for web applications. However, a few hundred cache
blocks can cover almost all the I-cache misses for the conven-
tional PARSEC programs, or a couple thousand for SPECint
2006 programs. These results indicate the need for an in-
struction prefetcher that is customized to exploit the char-
acteristics of the event-driven JavaScript web applications.

3. DESIGN
In this section we first discuss the key insights, an overview,

and the architecture design of EFetch, an instruction cache
prefetcher for event-driven Web applications.

3.1 Observations and Insights
Our design for prefetching the instruction stream ahead of

its use, banks on our observation that the event signature is
highly correlated with the stream of instructions executed in
event-driven applications. In other words, event signature is
a good predictor of the control flow inside a function, which
in turn allows us to predict a function’s callees and their
function bodies. In fact, we can accurately predict the order
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in which the callees of a function are invoked. By keeping
track of the cache block addresses accessed with the event
signature those cache blocks can be prefetched when the
same event signature is seen again.

But, a prefetcher is good only if it can prefetch the cache
blocks ahead of their use. For this reason, in our design
we also keep track of the functions called (callees) corre-
sponding to an event signature. This way, we can prefetch
the next function to be called, going down the program call
graph (Figure 7) in a depth-first manner, staying ahead of
the program execution.

However, we should not keep prefetching deep down the
call graph without the program advancing, because of the
following reasons:

• The accuracy of predicting the next function to be ex-
ecuted reduces as we go further ahead of the program
execution. This could lead to erroneous prefetches,
polluting the cache.

• It is likely that by the time the function whose cache
blocks were prefetched very early, gets called, those
cache blocks might have gotten evicted. This not only
results in poorer coverage, but also wastes energy.

3.2 Prefetching Policy
In EFetch, we use the event signature as a key, formed

by a simple XOR of the event-ID with context depth most
recent function call addresses (context depth = 3 in our fi-
nal design). Our design depends on the predictability of the
functions called and the function bodies executed under this
key. So, we keep track of the functions invoked (callees) un-
der different keys. Additionally, the function body addresses
accessed within the callees are also recorded with these keys.

During program execution, on a function call, an event
signature is formed from the event-ID and the call context.
If this event signature has been seen before, the first callee
recorded earlier is predicted to be the next function called
and its predicted function body is prefetched. For example,
in Figure 7, when f1 gets called, g1 is prefetched (step 0 in
Figure 8). Since it is important for the prefetcher to stay
ahead of program execution, the next predicted function is
prefetched. In trying to hide memory latency, the prefetcher
can, potentially, go further down the call graph and prefetch
more functions ahead of time. However, we lose accuracy
in predicting the next function the deeper we go down a
call graph. Also, in our workloads, due to high hit rate
of instructions in the L2 cache, we only need to hide the
L1-I cache miss latency. Thus, we prefetch only the next
predicted function (except in the case of leaf functions).

When the program catches up (step 1), the prefetcher goes
down the callgraph, prefetching the next function (h1). On
returning from a callee, the next callee is prefetched.

f1 

g1 

h1 h2 h1 h3 

i1 i2 

g2 

h4 

f1 Function 

Call from parent 
to callee 

Figure 7: A pre-order traversal of this call graph
shows the order in which the functions are called.

Call	  Stack	   Func,ons	  
Prefetched	  

f1	   g1	  

f1	  g1	   h1	  ,	  h2	  

f1	  g1h1	   -‐	  

f1	  g1	   -‐	  

f1	  g1h2	   i1	  ,	  i2	  
…	  

h2	  
returns	  1

2

4

5

6

7

8

9

3

0

10	  

Call	  Stack	   Func,ons	  
Prefetched	  

f1	  g1	   h3	  	  

f1	  g1h1	   -‐	  

f1	  g1	   -‐	  

f1	  g1h3	   -‐	  

f1	  g1	   -‐	  

f1	   g2	  	  

…	  

Figure 8: Functions prefetched on different points
of program execution

If the prefetched callee is a leaf function, we can predict
the next callee (its sibling) with high accuracy. So, in case
of a leaf function, we prefetch its next sibling (h2 in step 1).
If the sibling is also a leaf function, that gets prefetched too
and so on. The prefetcher stops if the sibling is a non-leaf
function, even if there are more siblings in the callee list
which are leaf functions. This is because, it is unclear how
deep the call graph might go when executing the non-leaf
function, and prefetching upcoming leaf siblings might be
too early.

If a callee gets mispredicted (on a non-leaf function call,
the function called does not match the last prefetched func-
tion), the prefetcher stops and synchronizes itself with the
actual function call stack. Thereafter, prefetches continue
just like before.

3.3 Predicting Callees and Prefetching Future
Accesses

EFetch design architecture has been illustrated in Figure 6.
The event-ID is stored in the event-ID register. It is formed
by the browser using the type of event and the JavaScript
function address. EA is a unit that forms addresses from
their compact stored representation consisting of a base ad-
dress and a bit vector.

The current function call stack of the program is main-
tained in the Call Stack, each entry of which is a function
call address. On a function call, the function call address is
pushed onto the Call Stack and the event signature is com-
puted. The event signature and the function call address is
then used to index in to the Callee Predictor to obtain the
list of callees and their function bodies to be prefetched.

The Callee Predictor records the function bodies and callees
corresponding to different event signatures. To save space,
this information is maintained in two tables (Figure 6), one
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Figure 6: Prefetcher Design Overview.

indexed by the context key - Context Table, the other in-
dexed by the function call address - Function Table. The
list of callees is stored in the Context Table, and their func-
tion bodies to be prefetched is obtained from the Function
Table (Section 3.4).

If an entry is found in the Callee Predictor, the list of
callees is read out, and pushed on to the Predictor Stack
such that the first predicted callee is on the top of the stack.
The Predictor Stack is used to maintain the state of the
prefetcher and synchronize it with the Call Stack. Each
entry of this structure stores a function address and four
status bits (Section 3.4).

The function body addresses of the function at the top of
the Predictor Stack (if it has not been prefetched yet) are
pushed in to the Prefetch Queue. Addresses present in this
queue are then prefetched.

If the prediction of callees was correct, it is guaranteed
that the top of the Predictor Stack matches the next function
the program invokes. Thus, when the program invokes the
next function, the function at the top of the Predictor Stack
is validated, and prefetching under the new event signature
is initiated. When the program returns from a function, the
entry at the top of the Predictor Stack is popped.

If the prefetcher mispredicts the next function to be ex-
ecuted, detected by a mismatch in the function called and
function present at the top of the IPStack, prefetching is
halted. The Predictor Stack is cleared from the top till the
parent of the current function. This is because, except till
the parent of the current function, the prefetcher does not
know how the call graph looks. This way, on a mispredic-
tion, the prefetcher aligns itself with the real Call Stack.

3.4 Design of Hardware Structures
Event-ID register : This register stores the event-ID

uniquely identifying an event. This ID is formed by the
browser using these two pieces of information - the type of
event (mouse click, mouse scroll, timed event, etc.) and
the JavaScript function called to handle the event. Using
a special instruction (added in our design) this event-ID is
stored in the event-ID register.

Call stack : This structure maintains the current func-
tion call stack of the program. Each entry in this stack is
a function call address. On every function call, the call ad-
dress of the function is pushed on to this stack. Conversely,
on every return, the entry at the top of the stack is popped

out. It has 32 entries. If the structure overflows, the oldest
entries are discarded.

Prefetch Queue : Prefetch requests are made from this
structure. It maintains a queue of L1-I cache block addresses
to be prefetched. We observe that the L1-I cache blocks ac-
cessed in a function are contiguous with a few discontinu-
ities. Therefore, we record pairs of a base address with an
associated bit vector representing the nearby blocks, similar
to the scheme used in [10].

Callee Predictor : This structure is used to record the
function bodies and callees with respect to event signatures.
This is a combination of two tables (Figure 6), one indexed
by the event signature - Context Table, the other indexed
by the function address - Function Table. Each entry in the
Function Table is a list of two base addresses (offsets from
the function address at cache line granularity), pointing at
different points in the function body. Each entry in the Con-
text Table is an ordered list of three unique callees (ordered
by their first call) and two bit vectors for each callee. These
are callees of the function at the top of the call stack for this
event signature (Figure 6). The callees and the bit vectors
are read from the Context Table. The callee address is used
to index in to the Function Table. The base addresses read
out from the Function Table combined with the bit vectors
form the function body addresses to be prefetched. Both
tables have 4k entries each.

Predictor Stack : It maintains the state of the prefetcher
and is used to synchronize it with the Call Stack. This is
a 32-entry stack, each entry of which stores a function call
address and four status bits. Following is a description of
what each bit implies if it is set :

• Prefetch bit : Instruction cache blocks of this function
have been pushed on to the prefetch queue.

• Leaf bit : This is a leaf function.

• Parent Executing bit : This is a function whose prefetch
requests have been pushed on to the Prefetch Queue;
it has completed execution, but its parent has not.

• Mispredict bit : There has been a misprediction and
this is the last correctly predicted function.

3.5 Prefetching Algorithm and Example
In our design we predict the instructions to be fetched by

predicting the next function to be called. Here, the top of
the stack means the first entry in the Predictor Stack that
does not have its Parent Executing bit set.



On a function call (Figure 9(a)), given the current function
call context and the event-ID, the event signature is formed.
If the top of the Predictor Stack matches the function called,
it implies the prediction was correct. The event signature is
used to index in to the Callee Predictor. If there is no entry,
nothing is done. If there is an entry, the prefetcher reads
the list of callees and pushes them in reverse order in to the
Predictor Stack. This is so that the callees can be popped
off the stack in the order in which they are predicted to be
called.

If there is a mismatch, we try to match the function called
with any entry in the Predictor Stack going up from the top.
If it matches any entry, it means this function has been called
again in the same invocation of its parent, and that we have
prefetched it before. So nothing more is to be done.

If the current function does not match any entry, it means
the prefetcher mispredicted the current function call. In this
case, prefetching is halted and the Predictor Stack is cleared
until the parent of the current function. This is because,
except till the parent of the current function, the prefetcher
does not know how the call graph looks. Prefetching restarts
once either the parent returns, or if by using the current
function as part of the event signature, the prefetcher can
make predictions.

On all occasions, if the top of the Predictor Stack has
not been prefetched, prefetch requests for its function body
addresses are made. Its Prefetch bit is then set marking
that it has been prefetched. The prefetcher now waits for
the program to catch up. We do not want to prefetch too far
ahead of the program execution, unless it is a leaf function,
in which case its sibling is prefetched as well.

Similarly, on a function return (Figure 9(b)), if the top
of the Predictor Stack matches the function returned, its
Parent Executing bit is set and its callees, if any, are popped.
If there is a mismatch however, we try to match the function
returned with any entry in the Predictor Stack going up
from the top. If we find a match, it means the function has
completed a previous call, and nothing more is to be done.

If the Mispredict bit of the top of the Predictor Stack is
set, it implies that a callee was mispredicted and the Predic-
tor Stack had already been cleared up till this entry before.
Otherwise, if the top of the Predictor Stack has not been
prefetched, follow the last step of the algorithm as in the
case of a function call.

In our design, a prefetch request is made only if the cache
block is not present in the L1-I cache.

Figure 8 shows which function is prefetched relative to
program execution. Following the algorithms described in
Figures 9(a) and 9(b), Figure 10(a) shows a step-by-step
walk-through of the states of the Predictor Stack as an ex-
ample program executes. At the start of the call graph (Fig-
ure 7), the Predictor Stack has f1 at the top of the stack and
it has already been prefetched (Prefetch bit set).

In Step 1, when g1 is called, it matches the top of the
stack, implying the prediction was correct. Its callees are
pushed on to the stack. h1 is prefetched. Since it’s a leaf
function, the next callee, h2 is also prefetched. This is not a
leaf function, so prefetching stops, waiting for the program
to catch up. Similarly, when h2 is called in step 4, both of
its callees being leaves are prefetched, without waiting for
the call to the first callee i1.

When h1 is called again in step 6, it does not match the top
of the stack. However, it does match an earlier entry since it

//	  On	  a	  func)on	  (f)	  call	  
1.	  	  	  	  if	  top	  (Predictor	  Stack)	  ==	  f	  

	  	  a.   Callees	  of	  f,	  if	  any,	  are	  pushed	  on	  to	  the	  Predictor	  Stack	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  in	  reverse	  order	  
2.	  	  	  	  else	  if	  f	  matches	  any	  entry	  in	  the	  Predictor	  Stack	  going	  	  
	  	  	  	  	  	  	  	  up	  from	  top	  (Predictor	  Stack)	  

	  	  	  	  	  	  	  	  //	  f	  was	  called	  and	  prefetched	  before.	  	  
	  	  	  	  	  	  	  	  //	  Nothing	  more	  to	  be	  done	  

3.	  	  	  	  else	  	  
	  	  	  	  	  	  	  	  //	  the	  func)on	  call	  was	  mispredicted	  
	  a.	  	  	  The	  Predictor	  Stack	  is	  cleared	  un)l	  the	  parent	  of	  f	  	  
	  b.	  	  	  The	  Mispredict	  bit	  of	  top	  (Predictor	  Stack)	  is	  set	  
c.	  	  	  f	  is	  pushed	  onto	  the	  Predictor	  Stack	  
	  d.	  	  	  The	  Prefetch	  bit	  of	  f	  is	  set	  	  

4.	  	  	  	  if	  fx	  (=	  top	  (Predictor	  Stack))	  has	  not	  been	  prefetched	  	  
	  	  	  	  	  	  	  	  (its	  Prefetch	  bit	  is	  not	  set)	  

	  a.	  	  	  Prefetch	  fx	  
	  b.	  	  	  Set	  its	  Prefetch	  bit	  
	  c.	  	  	  if	  fx	  is	  a	  leaf	  func)on	  (its	  Leaf	  bit	  is	  set)	  
	   	  i.   fx	  =	  sibling	  of	  fx	  not	  been	  prefetched,	  go	  to	  step	  4a	  	  

	  
(a) Algorithm followed on a function call

//	  On	  a	  func)on	  (f)	  return	  
1.	  	  	  	  if	  top	  (Predictor	  Stack)	  ==	  f	  

	  a.	  	  	  	  Its	  Parent	  Execu2ng	  bit	  is	  set	  
	  	  	  	  	  	  	  	  //	  f	  has	  returned	  but	  its	  parent	  has	  not.	  Its	  parent	  is	  the	  
	  	  	  	  	  	  	  	  //	  new	  top	  (Predictor	  Stack)	  
	  b.   Its	  callees,	  if	  any,	  are	  popped	  from	  the	  Predictor	  Stack 	  	  

2.	  	  	  	  else	  if	  f	  matches	  any	  entry	  in	  the	  Predictor	  Stack	  going	  	  
	  	  	  	  	  	  	  up	  from	  top	  (Predictor	  Stack)	  

	  	  	  	  	  	  	  //	  f	  has	  completed	  a	  previous	  call	  
	  	  	  	  	  	  	  //	  Nothing	  more	  to	  be	  done	  

3.	  	  	  	  if	  Mispredict	  bit	  of	  top	  (Predictor	  Stack)	  is	  set	  
	  	  	  	  	  	  //	  a	  callee	  was	  mispredicted	  
	  	  	  	  	  	  //	  Nothing	  more	  is	  done	  	  

4. 	  	  	  if	  fx	  (=	  top	  (Predictor	  Stack))	  has	  not	  been	  prefetched	  	  
	  	  	  	  	  	  	  	  (its	  Prefetch	  bit	  is	  not	  set)	  

	  a.	  	  	  Prefetch	  fx	  
	  b.	  	  	  Set	  its	  Prefetch	  bit	  
	  c.	  	  	  if	  fx	  is	  a	  leaf	  func)on	  (its	  Leaf	  bit	  is	  set)	  
	   	  i.  fx	  =	  sibling	  of	  fx	  not	  been	  prefetched,	  go	  to	  step	  4a	  	  

	  
(b) Algorithm followed on a function return

Figure 9: Prefetching Design Algorithms

was its second call by its parent - g1. This is, therefore, not
a misprediction. This function has already been prefetched.

The above is a case where the prefetcher always predicted
correctly. Figure 10(b) shows a case where everything pro-
ceeds as before until h3 is called, at which point a mispre-
diction is detected, since the next predicted callee is h6.

When h3 is called in step 8 the top of the stack does not
match the function called or any entries with their Parent
Executing bit set. A misprediction is detected - the Predic-
tor Stack is cleared until g1; it’s Mispredict bit is set, and
the newly called function (h3) is pushed on to the Predic-
tor Stack, with it’s Prefetch bit set. This way the Predictor
Stack is synchronized with the Call Stack.

When h3 returns, the top of the stack (g1) has a Mispre-
dict bit set, so nothing more is done.

4. METHODOLOGY
In this work we have attempted to evaluate the behav-

ior of event-driven JavaScript (JS) web workloads. This
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Figure 10: Prefetching example

nature of JavaScript execution is not captured by existing
JavaScript benchmark suites like Octane [1] and Sunspider
[3]. Real-world JavaScript web workloads, as executed in
the rendering of popular web pages, bear little resemblance
to the benchmark suites, as shown in [19]. An important
difference is the lack of event-driven execution in existing
benchmark suites. For the above reasons, for this work, we
have created workloads from real web sites, studied their
characteristics and evaluated our design using them.

4.1 Web Applications
Figure 11 lists the 7 real web applications that we have

used in this study. These websites were chosen since they
are both important and popularly visited, and they cut
across a diverse range of tasks users typically perform on
the web browser. Our applications cover e-commerce (ama-
zon.com), search (bing.com), news (cnn.com), social net-
working (facebook.com), mapping (maps.google.com), on-
line document editing (docs.google.com) and online image
editing (pixlr.com).

Web	  Site	   Ac*ons	  performed	   #events	  
executed	  

#	  JS-‐Execute	  
instruc*ons	  

amazon	  
(amazon.	  
com)	  

Search	  for	  a	  pair	  of	  
headphones,	  click	  on	  one	  
result,	  go	  to	  a	  related	  item	  

7,787	   432,875,253	  

bing	  
(bing.com)	  

Search	  for	  the	  term	  “Roger	  
Federer”,	  go	  to	  new	  results	  

4,858	   258,961,747	  

cnn	  
(cnn.com)	  

Click	  on	  the	  headline,	  go	  to	  
world	  news	  

13,409	   1,230,395,548	  

K	  
(facebook.	  

com)	  

Visit	  own	  homepage,	  go	  to	  
communiMes,	  go	  to	  pictures	  

9,305	   2,165,554,555	  

gmaps	  
(maps.google.

com)	  

Search	  for	  driving	  direcMons	  
between	  two	  addresses,	  
get	  public	  transit	  direcMons,	  
get	  biking	  direcMons	  

7,298	   2,722,470,912	  

gdocs	  
(docs.google.	  

com)	  

Open	  a	  spreadsheet,	  insert	  
data,	  add	  5	  values	  

1,714	   808,941,337	  

pixlr	  
(pixlr.com/
editor)	  

Add	  various	  filters	  to	  an	  
image	  uploaded	  from	  the	  
computer	  

465	   26,424,174	  

Figure 11: Web Sites visited and actions taken, and
a measure of the size of the benchmarks

Core	   4-‐wide,	  1.66	  GHz	  OoO,	  96-‐entry	  ROB,	  16-‐entry	  LSQ	  

L1-‐(I,D)-‐Cache	   32	  KB,	  2-‐way,	  64	  B	  lines,	  2	  cycle	  hit	  latency,	  LRU	  

L2	  Cache	   2	  MB,	  16-‐way,	  64	  B	  lines,	  21	  cycle	  hit	  latency,	  LRU	  

Main	  Memory	   4	  GB	  DRAM,	  101	  cycle	  access	  latency,	  12.8	  GB/s	  bandwidth	  

Branch	  Predictor	   PenQum	  M	  branch	  predictor	  
15	  cycle	  mis-‐predict	  penalty	  

2k-‐entry	  Global	  Predictor,	  256-‐entry	  iBTB	  
2k-‐entry	  BTB,	  256-‐entry	  Loop	  Branch	  Predictor	  

Interconnect	   Bus	  

Energy	  modeling	   Vdd	  =	  1.2	  V,	  45	  nm	  

Figure 12: Details of the architecture simulated

The actions taken on visiting each site (a browsing ses-
sion), are meant to represent a typical behavior of a user on
a short, but complete visit to the site. We kept the browsing
sessions short, partly because it becomes logistically difficult
to capture and study long-term uses of web applications, but
also because some of these websites would typically be used
in this manner. For example, searching for specific informa-
tion or reading news headlines.

4.2 Workload Setup
We instrumented the open source web browser Chromium,

running on Ubuntu 12.04. It uses the V8 JavaScript engine,
also used in Google Chrome. Our instrumentation setup
works as follows:

• We first, instrumented the C++ code used to imple-
ment the V8 JavaScript engine in Chromium. This
helped us separate out the JavaScript part from the
rest of the browser in the execution stream.

• Next we visit a website and perform the actions de-
scribed in Figure 11. In order to create a workload
that is repeatable, we captured the instruction trace
of the browser 1, using the trace-recording component

1specifically, the Renderer component of the web browser



of SniperSim [7]. This generates binary trace files con-
taining information about the instructions executed,
the direction of branches and the memory addresses
accessed.

• Finally, we fed these instruction traces, into the Sniper-
Sim simulator, and evaluated our design.

The architecture simulated is based on a mobile system -
Exynos 5250. The architectural configuration is detailed in
Figure 12.

In our experiments we have simulated the code executed
by the web browser for JavaScript execution. This also in-
cludes native code executed as part of library calls.

5. RESULTS
In this section we first validate the premises our design is

based on, going on to evaluate it, comparing it with previ-
ously proposed instruction prefetcher designs.

5.1 Prefetch Accuracy and Coverage
The basic premises that our design is based on are that

event signatures are highly correlated with the control flow
inside functions and that they are repetitive.

The first premise implies that both the body of the func-
tion and its callees are also highly correlated with the event
signature. The second premise ensures that event signatures
can be used to predict the callees and the function bodies.
We, therefore, keep track of the list of callees of a function
and their function bodies associated with the event signa-
ture.

We use the following two metrics to validate the design
choices made in our prefetching scheme.

• Prefetch accuracy is defined as the percentage of
prefetch hits (blocks that were prefetched and later
were a hit in the cache) over all prefetch requests is-
sued.

• Coverage is the percentage of misses that became
prefetch hits as a results of prefetching - (#prefetch
hits)*100/(#prefetch hits + #misses).

Each data point in all plots discussed in this section shows
an average over all benchmarks.

5.1.1 Callee Set Prediction Accuracy
Any advantage to be gained from our design banks on the

predictability of the list of callees using the event signature,
since having made this prediction correctly, the prefetcher
can prefetch the bodies of the functions predicted.

The list of callees is ordered by the first call to that callee.
Maintaining an ordered list is important, since we are trying
to predict the very next function to be called, staying one
function ahead of program execution.

In Figure 14, we evaluate the predictability of the most
recently seen callee set for that event signature. Here, a pre-
diction is called accurate, if both the callees and their order
is predicted correctly. As is evident from the figure, predict-
ing that the last seen callee set for that event signature is
going to be the next callee set is highly accurate.

5.1.2 Predicting Function Body
Having predicted the next function (callee) to be executed,

it is important for the prefetcher to be able to predict the
correct part of the function body to prefetch. Due to varying
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Figure 13: Variation in Coverage and Accuracy with
varying Function Call Context Depth, Function His-
tory and Prefetch Depth. The diamond marks the
final design choice

control flow within a function, different parts of the function
body may get executed on different calls.

Given that, event signature is a good predictor for callees,
it is expected that it will be a good predictor for function
bodies. However, this prediction is not perfect, consequently
different parts of the function body might execute with the
same event signature. This opens up another dimension to
this problem - how much of the executed function body his-
tory to keep track of with the event signature. In Figure
13(b), we explore precisely this point. Here, a function his-
tory of n, means that we keep track of and prefetch the func-
tion body addresses executed the last n times this function
was called with the same event signature. This figure shows
a study of an ideal case, where a predicted I-cache block is
brought in to the cache only when it is needed. There is no
notion of timeliness - a block is considered prefetched as soon
as it is predicted. This figure shows that the function body
seen the last time is a good predictor of the function body
going to be executed next. Using more history, does not
significantly help cover more misses (coverage does not im-
prove), but loses accuracy since it is prefetching more cache
blocks that are not accessed.

5.1.3 Function Call Context Depth
Using function call context (and event-ID) to predict the

callees of a function and their function bodies being the cor-
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Figure 14: Callee Set Prediction Accuracy

nerstone of our design, how much of the call stack (number of
functions) to use to form the event signature is a vital ques-
tion. It is logical to believe that using more functions to form
the event signature will result in better accuracy in predict-
ing callees and function bodies, since we have more precise
context information. However, there can be two problems
with using a deeper context history

• It might take long for the prefetcher to learn the differ-
ent contexts. Whenever we do not have the context in
our table, we can not prefetch anything, thereby losing
coverage.

• Using a deeper context history, results in the prefetcher
using potentially stale information for a shallower con-
text.

In our studies we found out that the first potential prob-
lem does not have a significant effect on our scheme. The
prefetcher sees and is thus able to learn the frequently used
long contexts fairly early. The second potential problem,
does have significant effects. A shallower context can ap-
pear in multiple deeper contexts. Therefore, if we use a
deep context, we are likely to see older history (stale in-
formation) for the shallower context. As we have seen from
the discussion in Section 5.1.2, using recent history results in
better predictions. Using too deep a context is also counter-
intuitive, since in that case we would be trying to correlate
functions that may not necessarily have any bearing on the
control flow of a child function. For e.g. library function
calls like printf(). Its usage is common across a wide range
of user functions, and it is internal call stack might have
little correlation to the main() function.

Figure 13(a) validates the above hypotheses. Coverage re-
duces with increasing context depth without any noticeable
change in accuracy.

5.1.4 Predicting Ahead of Program Execution
As discussed earlier, it is important for the prefetcher to

stay ahead of program execution.
However, there are two issues with trying to prefetch too

early - first, the cache block might get evicted by the time
the program needs it; second, prediction accuracy of the
prefetcher drops the further it goes ahead of the program,
thereby issuing erroneous prefetches, causing pollution in the
cache. Figure 13(c) confirms precisely the above arguments.

In our workloads, the L2 miss rate for instructions is 2.8%,
thus for most L1-I misses we only need to prefetch early
enough to hide L2 access latency. A prefetch depth of 1 is
thus sufficient.

5.1.5 Final Design Choice
In our final design we use a context depth of 3 and a

prefetch depth of 1. We only keep track of the last seen
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Figure 16: Performance achieved compared to No
Prefetching (NP) as the baseline

callee set and function body. A diamond marks our final
design parameters in the earlier plots.

5.2 Performance
In this section we will compare and contrast our design

with other relevant designs.

• NP is a design with no instruction prefetcher. This is
our baseline.

• N2L prefetches the next 2 cache lines.

• CGP is our implementation of Call Graph Prefetching
[5].

• PIF is our implementation of the Proactive Instruction
Fetch [10].

• RDIP is our implementation of Return-Address-Stack
directed instruction prefetching [13].

• EFetch is our design.

In Figure 15, we show the number of prefetch hits, misses
and erroneous prefetches as a percentage of the sum of
prefetch hits and load misses. EFetch issues far fewer erro-
neous prefetches than PIF. Erroneous prefetches are those
prefetches that never get hit before they are evicted. They
hurt performance by polluting the cache kicking out poten-
tially useful blocks, wasting L1-L2 bandwidth and conse-
quently wasting energy. Unlike EFetch, PIF, which main-
tains a temporal stream of cache block accesses, has no way
of knowing when the event signature has changed, and thus,
keeps prefetching off the end of the temporal stream. This
scheme ensures high coverage, but also suffers from low ac-
curacy. EFetch also issues some erroneous prefetches since
it assumes the last seen callee set and their function bodies
will be the same as this time for a particular event signature,
which is not always true. However, it recovers quickly - on
the very next function call or return. N2L does not perform
well. This is to be expected due to the small function sizes,
large number of function calls and complex control flow in-
side functions.

EFetch performs better than RDIP, by achieving better
coverage, even though it loses out slightly in accuracy. RDIP
achieves better accuracy since its signatures are able to point
at discrete call sites within functions. However, for web
workloads, this leads to a very large number of signatures
that need to be kept track of, overflowing their table size,
causing loss in coverage. Also, RDIP only keeps track of L1-I
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Figure 17: Energy expended compared to No
Prefetching (NP) as the baseline

cache misses. The exact misses can change between dynamic
instances of signatures, due to cache capacity and conflict
misses. EFetch keeps track of all L1-I cache accesses. For
web workloads, it is still able to keep hardware costs down
due to small function sizes and better compaction of cache
addresses.

Figure 16 shows the performance improvement of the dif-
ferent designs. EFetch performs as well or better than the
other designs on all benchmarks. L1I-64KB has an L1 in-
struction cache of 64KB, roughly equal to the sum of the
L1-I cache size in our baseline (NP) and the hardware stor-
age overhead of EFetch. On average, EFetch outperforms
L1I-64KB by 15%, N2L by 17%, CGP by 8.9%, PIF by
3.9% and RDIP by 11.5%.

5.3 Storage Overheads
We use 4K entry tables - context table, function table.

Each entry in the context table stores 3 callee addresses and
2 bit vectors, along with a tag. Callee addresses are stored
in the form of offsets in to the function table, using 12 bits
each. The tag is 14 bits long. Therefore, a context table
entry is 56 bits long.

Each entry in the function table stores 2 base addresses
in the form of offsets from the function address, plus a tag.
An offset needs 4 bits, tag is 14 bits in size, so each entry is
22 bits.

Both tables have 4k entries each, so a total storage of
4k*(56 + 22) bits = 39 kB is required. Comparing this with

Design Structure Size
(KB)

Access
Energy
(pJ)

Static
Power
(mW)

CGP [5]
Call Graph

32 44.8 28.6
History Cache

PIF [10]
History Buffer 136 39.3 119.9
Index Table 68 25 62.2

RDIP [13] Miss Table 63 32.6 49

EFetch
Callee

39 21.5 33.9
Predictor Table

Table 1: Energy and power estimates used for hard-
ware structures

PIF, which needs 136 kB for the history buffer and 68 kB
for the index table for a storage overhead of 204 kB, we get
similar or better performance for 5.2 times less hardware
storage cost.

5.4 Energy
We evaluated the energy expended by the different in-

struction prefetcher designs using McPat 0.8 [14]. CACTI
5.3 [26] was used to determine the per-access energy and
static power of the additional hardware structures as shown
in Table 1.2 Figure 17 shows that EFetch uses less energy
than all other designs, owing to its better trade-off between
prefetcher accuracy and coverage. We noticed from our eval-
uation that the energy consumed by hardware structures
added for instruction prefetching is very minimal, ranging
from 0.01% of the total energy consumed for EFetch to 1.06%
for PIF. Thus, to minimize energy consumed, it is not the
additional hardware structures that need to be optimized,
but the erroneous prefetches.

6. RELATED WORK
Instruction fetch stalls cause a significant performance

degradation, leading to a rich-body of work trying to solve
this problem. The earliest solutions to this problem in-
cluded next-line prefetching, taking advantage of sequen-

2We have validated these numbers with the authors of RDIP



tial instruction fetch [4]. This initial idea was expanded
upon and next-N-line and instruction stream prefetchers
were proposed [12, 18, 27, 22] using varying kinds of events
to control the aggressiveness and lookahead of the prefetcher.
Next–line prefetchers are simple and work well for sequential
code. However, they have poor accuracy and are not able to
prefetch ahead in time for code with frequent branches and
function calls.

To be able to more effectively prefetch instructions ahead
of time in branch and call heavy code, several branch pre-
dictor based prefetchers [8, 20, 21, 24] have been proposed.
Run-ahead execution [16], wrong-path instruction prefetch-
ing [17] and using an idle thread [15] or speculative threads
[25, 28] can be used to generate future instruction accesses.
Ferdman et. al. [10] showed that by using the instruction
fetch sequence instead of the commit sequence, these ap-
proaches suffer from interference caused by wrong-path exe-
cution. Also these don’t have sufficient lookahead when the
branch predictor traverses loops.

The discontinuity prefetcher [23] handles fetch disconti-
nuities. It’s able to alleviate some of the issues with other
branch-predictor based prefetchers by operating at an in-
struction block granularity. But it’s lookahead is limited to
one fetch discontinuity to avoid over-prediction. The branch
history guided prefetcher (BHGP) [24] keeps track of branch
instructions and imminent instruction cache misses, which
are prefetched upon the next occurrence of the branch. How-
ever, they cannot differentiate between different invocations
of the same branch (which will have a bearing on the branch
outcome and instruction cache misses seen) leading to lower
coverage or accuracy. Our work, differs from the above in
that it targets event-driven web applications, where each
event can be completely independent of the others, thereby
executing completely different code from one event to the
next. Also, we use event-ID and the function call stack
to predict the callees of function and their function bodies,
and thus is neither affected by wrong-path execution nor is
unable to differentiate between different invocations of the
same function.

PIF [10] addresses the limitations of branch-predictor di-
rected prefetching by recording temporal instruction com-
mitted streams and fetch misses. By using the committed
stream of instructions, it remains unaffected by the pre-
dictability of individual branches and wrong-path instruc-
tions. To similarly be able to avoid disruptions caused by
wrong-path instructions, our scheme updates the state of
the prefetch structures as call and return instructions com-
mit. Instead of using temporal streams of instructions, we
utilize the event-ID and call graph information to predict
the instruction cache blocks.

PIF needs to keep track of a large window of instructions
committed to be able to predict the temporal stream accu-
rately. The size of the hardware structures exceeds 200 kB,
while our design needs less than 40 kB.

A recently proposed instruction prefetcher, RDIP [13], ex-
ploits the information stored in the return address stack
(RAS) and uses the return addresses of functions called,
to predict and thereby prefetch the next segment of func-
tion executed. This scheme was evaluated on traditional
server workloads. RDIP relies on function call context be-
ing a good predictor of the next function called. Unlike
RDIP, EFetch targets event-driven web applications. To
do so, it utilizes the event-ID along with the function call

context (event signature) to predict the next function exe-
cuted. In addition to differences discussed in Section 5.2,
EFetch prefetches only the part of the function body exe-
cuted the last time with the same event signature, avoiding
erroneous prefetches. RDIP, on the other hand, accumulates
L1-I cache misses incurred over all previous instances when
the signature was seen.

Annavaram, Patel and Davidson used the current function
to guide instruction prefetching for database applications in
[5]. EFetch, on the other hand is designed for event-driven
web applications. By making use of the event-ID and mul-
tiple functions in the call context, EFetch is able to differen-
tiate between invocations to the same function, and there is
merit in this scheme, since it is a good predictor of varying
control flow inside the function. Also, EFetch fetches only
that part of the function body, that it predicts will get ex-
ecuted. This is of significant importance for event-driven
web workloads which are composed of a large number of
very small functions, with some frequently executed very
large functions. Importantly, on a single invocation of these
large functions, only a small part of them is executed and it
is composed of discontiguous I-cache blocks. An approach
like the one in [5], would hurt performance by, on the one
hand, fetching I-cache blocks beyond the boundary of small
functions, and on the other hand, fetching contiguous cache
blocks of the few very large functions, even though many of
these I-cache blocks will go unused.

7. CONCLUSION
Event-driven web applications are becoming a dominant

set of programs used in client-side computing. Unfortu-
nately, processor architecture optimizations studied in the
past are not designed to take advantage of the unique char-
acteristics of event-driven web applications.

In this paper we identified L1 instruction cache misses
to be an important performance bottleneck in the web ap-
plications. This issue is significantly more severe than it is
for conventional applications. We proposed a new prefetcher
that used event signatures (formed from function calling con-
text and event-ID) to accurately prefetch instruction cache
blocks. We demonstrated that the proposed prefetcher out-
performs past designs, and also has modest storage require-
ments.
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