
When Less Is MOre (LIMO): Controlled Parallelism for
Improved Efficiency

Gaurav Chadha, Scott Mahlke, Satish Narayanasamy
Advanced Computer Architecture Laboratory, University of Michigan

Ann Arbor, MI, USA
{gauravc, mahlke, nsatish}@umich.edu

ABSTRACT

While developing shared-memory programs, programmers often
contend with the problem of how many threads to create for best
efficiency. Creating as many threads as the number of available
processor cores, or more, may not be the most efficient configura-
tion. Too many threads can result in excessive contention for shared
resources, wasting energy, which is of primary concern for embed-
ded devices. Furthermore, thermal and power constraints prevent
us from operating all the processor cores at the highest possible
frequency, favoring fewer threads. The best number of threads to
run depends on the application, user input and hardware resources
available. It can also change at runtime making it infeasible for the
programmer to determine this number.

To address this problem, we propose LIMO, a runtime system
that dynamically manages the number of running threads of an ap-
plication for maximizing peformance and energy-efficiency. LIMO
monitors threads’ progress along with the usage of shared hard-
ware resources to determine the best number of threads to run and
the voltage and frequency level. With dynamic adaptation, LIMO
provides an average of 21% performance improvement and a 2x
improvement in energy-efficiency on a 32-core system over the de-
fault configuration of 32 threads for a set of concurrent applications
from the PARSEC suite, the Apache web server, and the Sphinx
speech recognition system.

Categories and Subject Descriptors

D.4.1 [Operating Systems]: [Scheduling]; D.4.8 [Operating Sys-

tems]: [Modeling and prediction]

Keywords

Dynamic Multi-threading, Dynamic Voltage and Frequency Scal-
ing

1. INTRODUCTION
Due to limited success in improving efficiency of a single core

and continuous technology scaling, chip multiprocessors (CMPs)
have become the standard in providing greater computational power.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CASES’12, October 7-12, 2012, Tampere, Finland.
Copyright 2012 ACM 978-1-4503-1424-4/12/09 ...$15.00.

With CMPs, architects place together many simpler cores on a sin-
gle chip instead of a single large complex core, while still work-
ing within the same power envelope. Running many cores at a
lower voltage/frequency expends less energy. So much so that,
even phones, tablets and other embedded devices today use multi-
core processors (e.g. Qualcomm Snapdragon, Apple A5, Samsung
Exynos, NVIDIA Tegra 3 - all have quad-core processors). This
trend, however, requires programmers to create applications with
sufficient thread level parallelism (TLP) to extract performance ef-
ficiently from the CMPs.

Efficient parallel programming is a difficult task. Many ma-
ture parallel programming paradigms like OpenMP, MPI, Nvidia’s
CUDA, OpenCL, Intel’s Ct, TBB, are now available which make
this job more feasible and help programmers effectively divide their
applications into many threads. However, a very important prob-
lem faced by programmers is how many threads should an applica-
tion be divided into for the best performance and energy-efficiency.
Spawning too few threads might lead to underutilization of CMP
resources, making the application inefficient. Having too many
threads, on the other hand, runs the risk of over-subscribing the
resources which again causes performance and energy losses. This
problem is magnified by the presence of many different CMPs with
varied numbers of cores and configurations (e.g. OMAP 5 vs
NVIDIA Tegra 3).

We observe that technology imposed constraints will further shift
the scales in favor of running fewer threads than the number of
available processor cores. One study found that with a 45 nm
TSMC process, less than 7% of a 300mm2 chip can be operated
at the highest possible frequency for a constant power budget of
80W [34]. Commercial processors allow operating systems to per-
form Dynamic Voltage and Frequency Scaling (DVFS) [11] to in-
crease the frequency of some cores when others are disabled while
still working within a fixed power budget. This strengthens the
case for using less cores for applications where a higher number of
threads does not give a significant performance boost.

A common solution is to set the number of threads equal to the
number of available cores. To improve upon this scheme, previ-
ous work has proposed techniques that profile applications stati-
cally to choose an appropriate number of threads [17,21,22] to im-
prove performance by reducing communication and contention for
shared resources (however, they did not consider power constraints
and DVFS which would further favor running fewer threads, nor
were they looking to increase energy-efficiency of the application).
Unfortunately, static solutions are limited due to several reasons:

• Different Inputs: The same application can exhibit varying
degrees of parallelism and performance scalability for differ-
ent inputs. A static solution would be unsuccessful in pre-

141

0

5

10

15

20

25

30

1 2 4 8 16 32

s
p

e
e
d

u
p

 o
v
e
r

1
 t

h
re

a
d

#threads

blackscholes bodytrack canneal dedup

facesim ferret fluidanimate streamcluster

swaptions vips x264

(a) Without DVFS

0

5

10

15

20

25

30

1 2 4 8 16 32

s
p

e
e
d

u
p

 o
v
e
r

1
 t

h
re

a
d

#threads

blackscholes bodytrack canneal dedup

facesim ferret fluidanimate streamcluster

swaptions vips x264

`

`

(b) With DVFS

Figure 1: Speedup of Parsec benchmarks with different number of threads over their single threaded runs. These benchmarks were run on a
32 core system.

dicting the optimal number of threads for any input it has not
profiled before.

• Changing available system resources: The amount of cache
capacity and bandwidth available to an application’s threads
can change as other applications running in the system con-
sume more or less of these resources. A static solution would
be completely oblivious of these changes and thus incapable
of adapting to these.

• Different hardware configurations: Many different CMPs
exist with varied number of cores and cache/bandwidth con-
figurations. A static solution will have to have profiling data
on all such hardware configurations to be effective which
might quickly become intractable.

• Changing program characteristics during execution: All
of the above remaining constant, an application in itself can
have many different execution phases with significantly dif-
ferent characteristics with regards to cache usage, bandwidth
utilization, degree of parallelism available, etc. leading to
different numbers of optimal threads for different phases.

For the above reasons, static solutions leave much room for im-
provement. In this work, we propose a lightweight run-time sys-
tem, Less Is MOre or LIMO, which changes the number of run-
ning threads of an application dynamically, thus adapting to fine-
grained changes in the best number of threads to run. The objective
of LIMO is to use DVFS and variable active core count to run an
application as efficiently as possible. When many threads exist and
resources are not constrained, maximal threads are run at lower fre-
quency. However, when hardware (e.g., shared L2 cache space) or
software (e.g., lock variables) resources limit parallel performance,
fewer threads are kept active at a higher frequency. For example,
if a thread goes into a spin loop waiting on a shared variable, this
thread is not doing any useful work and can be disabled by clock-
gating or power-gating the core. The power saved from this core
is used to boost the voltage and frequency of the remaining cores
which are doing useful work. The best number of threads to use for
an application particularly those with heterogeneous threads can
change frequently as threads move through different code regions.

Traditional OS scheduler level techniques employing DVFS only
look for CPU utilization, which if low, the core’s frequency / volt-
age is stepped down to save power. Intel Turbo Boost goes a step

further, and apart from disabling cores as requested by the OS, it in-
creases the frequency / voltage of the remaining active cores. This,
though, is a purely reactive mechanism, coming in to effect after
detecting low CPU utilization on some cores. Distinct from the
above and other related works (Section 5), our work takes measures
to reduce shared resource contention, employ DVFS and increase
performance aggressively and pro-actively. LIMO not only dis-
ables cores with inactive / stalled threads, but also those with active
threads doing useful work, when it determines that fewer threads
running at higher frequency are better for performance. No prior
work ever shuts down a core doing useful work. LIMO also mon-
itors contention in shared resources (shared L2 cache and band-
width) and pro-actively reduces the number of active cores, if they
start getting oversubscribed. Detection of spin loops (such cores
are disabled by LIMO) also sets this work apart. Detecting these
is important as these keep the CPU utilization high without mak-
ing progress in program execution, subverting the OS’ attempt at
shutting down cores running unproductive threads.

2. ROADBLOCKS TO SCALABILITY
It is common for programmers to create as many threads as the

number of processor cores available to execute their program. If
a programmer expects that some threads could block for any rea-
son, then she might create more threads than the number of avail-
able processor cores in the hope that the operating system scheduler
would help her achieve higher performance.

The motivation for our work is that greedily executing as many
threads as the system permits may not always yield the best perfor-
mance.

In this section, we discuss performance scalability issues for
shared-memory programs and motivate our work by illustrating
how executing fewer threads in some instances can yield better per-
formance using micro-benchmarks and PARSEC benchmarks [4].
The experiments discussed in this section were conducted on a 32-
core system containing four 8-core Intel Xeon X7560 processors
each with 24 MB last level L3 shared cache, and 32 GB of main
memory.

2.1 Lack of Parallelism
Depending on the program input, the amount of parallelism avail-

able in an application can vary. As a result, it is possible that a

142

0

2

4

6

8

10

12

14

16

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

s
p

e
e
d

u
p

 o
v
e
r

1
 t

h
re

a
d

#threads

(a) Bandwidth limited

0

5

10

15

20

25

30

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

s
p

e
e
d

u
p

 o
v
e
r

1
 t

h
re

a
d

#threads

(b) Working set fits in cache

0

5

10

15

20

25

30

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

s
p

e
e
d

u
p

 o
v
e
r

1
 t

h
re

a
d

#threads

(c) Working set is too large

0

1

2

3

4

5

6

7

8

9

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

s
p

e
e
d

u
p

 o
v
e
r

1
 t

h
re

a
d

#threads

(d) Working set of fewer threads fits in cache

0

5

10

15

20

25

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

s
p

e
e
d

u
p

 o
v
e
r

1
 t

h
re

a
d

#threads

(e) Destructive sharing

0

1

2

3

4

5

6

1 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

s
p

e
e
d

u
p

 o
v
e
r

1
 t

h
re

a
d

#threads

(f) Synchronization stalls

Figure 2: Speedups (with DVFS) of micro-benchmarks over their single threaded runs on a 32 core system.

programmer creates more threads than necessary to expose paral-
lelism, which could lead to contention for shared-data, resulting in
decreased performance. There are two ways in which contention
for shared-data could hurt performance. One is due to the cost of
synchronization waits, and the other is due to the frequent transfer
of data from one processor core to another.

Lack of parallelism leads to increased synchronization wait time.
If a synchronization operation is implemented as a busy-wait (e.g.
using a spin loop), it causes the processor core executing the busy-
wait operation to waste power which could have been utilized to
increase the frequency of the other cores performing useful work.
If a synchronization operation yields a processor core on wait, there
is the cost of context switching that thread in and out. Thus, when
more threads contend for synchronization resources, performance
of the application can degrade. Figure 2(f) shows the performance
of a micro-benchmark that exhibits this behavior. All the threads of
the program concurrently compute factorial of a number and add it
to a shared variable protected by a single lock. Performance drops
when we increase the number of threads beyond four while exe-
cuting on a 32-core system. When we slightly modified the same
program by removing the lock, we observed the behavior shown
in Figure 2(e). Performance scales slightly better, but eventually
starts decreasing after 24 threads. The reason for this performance
drop is not due to contention to synchronization variable, but due
to the contention to shared-data that tracked the sum of all the fac-
torials. Thus, in addition to synchronization cost, frequent transfer
of shared-data between threads could also degrade performance as
it could cause frequent coherence invalidations of the cache block
containing the shared-data.

If parallelism in an application varies based on input, a program-
mer would not be able to determine the optimal number of threads
to achieve the best performance. Thus, it is important for a runtime
system to observe these above effects and control the number of
concurrently executed threads to achieve higher performance.

2.2 Lack of Sufficient Shared System
Resources

Concurrent threads contend for shared physical resources in a
system. Shared caches, on-chip network and memory bandwidth
are some of the heavily contended shared resources.

2.2.1 Shared Cache

To study the effects on the shared last level cache (24 MB L3
in our 32-core system), we created a micro-benchmark where each
thread walks over its private array with a stride of one cache line
size and summed over the elements. The working set (WS) size of
a thread was controlled by fixing the maximum array index while
keeping the total size of the array constant across all three cases
discussed below.

• Working set fits in cache (Figure 2(b)): Not considering
other scalability limiting factors, if the WS of an application
fits in the shared cache, executing the maximum number of
threads would yield best performance.

• Working set is very large without data reuse (Figure 2(c)):
If one thread’s WS size exceeds that of the last level cache
(LLC) or there is no data reuse (e.g. streaming applications
such as video decoders), more threads could yield higher per-
formance by initiating more memory requests in parallel and
thereby exploit memory level parallelism (MLP).

• Working set with fewer threads fits into the shared-cache

(Figure 2(d)): It’s a common case where the WS of fewer
threads fits in the shared cache, but not of too many threads.
It is important to have a runtime mechanism that can adapt
the number of concurrent threads to attain high performance.

2.2.2 Memory Bandwidth

Applications with poor locality (such as streaming applications)
require high memory bandwidth. As we had discussed earlier,
these applications tend to benefit from more threads to exploit MLP.
However, as their demand increases to a point when the on-chip
network and memory bandwidth are saturated, then we may start
to see performance degradation due to destructive interference be-
tween memory requests. Figure 2(a) shows the performance of a
program that sums the values of elements spread over a very large
array.

2.3 Dark Silicon Favors Fewer Threads
While it is true that with shrinking device sizes, more and more

transistors can be integrated on a chip, increasing the number of

143

cores on a processor, multicore scaling has become thermal and
power limited. What this means is that though manufacturers can
still increase the number of cores in a processor, not all of them can
be turned on at their maximum frequency at the same time [9, 34],
leading to the term dark silicon. This limitation can be seen in
commodity processors today, such as the quad-core Intel Core-i7
systems. These processors employ Intel Turbo Boost Technology
[11]. However, the frequency / voltage and the number of cores
active can only be changed in discrete steps.

In this work we start with disabling cores not doing useful work.
The power “saved” from such cores can be used to boost the fre-
quency of the remaining active cores, thus helping improve the per-
formance of applications that do not show good scalability. Fre-
quency scaling is done according to the following power equation:

P = ACV
2
F (1)

where P is power, A is the activity factor, i.e. the fraction of the
circuit that is switching, C is the switched capacitance, V is the
supply voltage and F is the clock frequency. A is a constant, and
assuming we scale voltage and frequency together,

P ∝ F
3

(2)

Thus for every reduction in the number of active cores by half the

frequency can be boosted by a factor of 2
1

3 . Figure 1(a) shows the
performance scalability of PARSEC benchmarks for sim-large
input on our 32-core system. The optimal number of threads that
yields the best performance for an application is indicated using a
black dot. We observe that only two programs, streamcluster
and facesim perform better when executed with fewer than 32
threads. However, when we assume DVFS to increase the fre-
quency of the configuration that runs fewer than 32-threads (2.268
GHz for 4-cores, 1.8 GHz for 8-cores, 1.429 GHz for 16-cores),
five out of eleven applications perform better with fewer than 32-
threads.

However, it is difficult to know apriori the best number of threads
to execute for a given application, as it also depends on the program
input and system configuration. Also, the same number of threads
may not be the best answer throughout the execution of an appli-
cation as it could have different phases exhibiting varied character-
istics. In this paper, we propose a scheme that dynamically varies
the number of active cores and their frequencies depending on par-
allelism available in the application and also application’s demand
for the shared-cache resource.

3. LIMO
LIMO is a runtime system that dynamically changes the num-

ber of running threads of an application to deliver higher perfor-
mance and energy-efficiency when compared to running threads on
all available processor cores. Section 2 listed in detail the different
factors that affect a multi-threaded application’s scalability. LIMO
monitors synchronization stalls, demand for shared cache and off-
chip memory bandwidth to determine the number of threads to exe-
cute. If LIMO decides to execute fewer threads than the number of
available processor cores, it applies DVFS to boost the frequency
of the active cores.

3.1 Design Overview
The application is allowed to create as many threads as the pro-

grammer had specified (for the applications we analyze, we create
as many threads as the number of available processor cores). Thus,
one thread is created per processor core. For example, in a 32-core

CMP, the application starts out by running 32 threads, one on each
core.

activeThreads ():

for each thread t that stalls:

disableCore (t)

activeThreadsCount--

for each thread t that is now ready:

add t to readyThreadsSet

Figure 3: Algorithm for determining the number of threads that can
do useful work

wsThreads ():

if quantum instructions executed since last call:

wsSize = WSEstimator ()

maxWSSize = wsThreshold x L2CacheSize

wsSizePerThread = wsSize/avgNumActiveCores

wsThreadsCount = maxWSSize/wsSizePerThread

else:

wsThreadsCount is not updated

Figure 4: Algorithm for determining the maximum number of
threads that can run without causing thrashing in the L2 cache

runningThreads ():

// This is called if

// 1. one or more threads are stalled or are ready

// 2. quantum instructions executed since last call

activeThreads ()

wsThreads ()

maxThreadsCount =

min (activeThreadsCount, wsThreadsCount)

if maxThreadsCount < activeThreadsCount:

disable (activeThreadsCount -

maxThreadsCount) cores

if maxThreadsCount <= thresholdLower:

increase frequency

else if maxThreadsCount > activeThreadsCount:

if maxThreadsCount >=

(activeThreadsCount +

readyThreadsSet.size):

enable all threads in readyThreadsSet

else:

enable (maxThreadsCount -

activeThreadsCount) threads

if maxThreadsCount >= thresholdUpper:

decrease frequency

Figure 5: Algorithm for determining the number of threads to run
and the frequency

LIMO monitors the threads’ progress (Figure 3). If any thread
stalls (in a synchronization function, blocking I/O call or is sus-
pended), the core on which this thread was running is disabled
and the number of active threads (activeThreadsCount) is reduced.
Since this thread is clearly not making any forward progress, dis-
abling that core saves power and leaves room in the fixed power
budget to increase the voltage and frequency of the remaining cores.
Similarly, when previously stalled threads can now do useful work,
they are added to a set keeping track of all ready but not executing
threads (readyThreadsSet).

To reduce contention over the shared cache, LIMO uses esti-
mates of the working set (WS) size of the application [8] (WSEsti-

mator) and keeps it from oversubscribing the cache (Figure 4). Af-
ter every quantum of 100 million instructions, the WS of the appli-
cation evaluated over the last period is used in the decision of how
many threads to run over the current period. If the WS of the appli-
cation is too big to fit in the shared L2 cache causing thrashing and
reducing efficiency, estimates of the WS size of configurations with
lower number of threads are calculated using simple linear scaling

144

of the WS size with the number of threads (our algorithm does not
need the exact WS size, and thus this estimate is adequate). We
found out empirically that even a configuration whose estimated
WS size exceeds the L2 cache capacity by 40% (wsThreshold) can
deliver good performance. Using this, the algorithm calculates the
maximum number of threads to run (one whose estimated WS size
does not exceed the L2 cache capacity by more than wsThreshold),
wsThreadsCount.

As detailed in Figure 5, at the end of each quantum of instruc-
tions or when a thread either gets stalled or becomes ready, the al-
gorithm uses the minimum of wsThreadsCount and activeThread-

sCount as the maximum number of threads that can run (max-

ThreadsCount). Employing DVFS, we can boost the frequency /
voltage when fewer cores are active and get better performance and
energy-efficiency.

Thread

stalls

Thread

stalls

Thread

stalls

frequency increased cores disabled

Thread

wakes

cores enabled, frequency decreased

Figure 6: An example of varying the number of running cores in
the case of 8 threads.

As discussed in section 2.3 in current systems voltage, frequency
and the number of active cores can only be changed in discrete
steps and not continuously. In our system we assume 4, 8, 16 or
32 cores can be active at a time (active core levels). This gives
three core number thresholds at which the frequency and voltage
can be stepped up or down. Assuming IPC/core remains constant
while decreasing the number of active cores (a rather conservative
assumption since the strain on shared resources decreases), and
that performance scales linearly with frequency (an approximate
assumption, which is adequate here since we use this only to obtain
core number thresholds for our heuristic and not for any actual per-
formance evaluation), we find out the core number thresholds using
n1f1 = n2f2, n2 = ⌊n1f1

f2
⌋ where ni is the number of active cores

and fi the frequency at which they are run. If maxThreadsCount is
below the next lower core number threshold for the current num-
ber of active cores (thresholdLower), some active or ready cores
are disabled and the frequency is increased. A similar approach is
employed if maxThreadsCount is greater than thresholdUpper.

For example, suppose initially all 32 threads were doing useful
work. After some time, 12 of those threads are stalled, leaving
only 20 threads that are doing useful work (activeThreadsCount =
20). If the frequency at which 32 cores run is 1.134 GHz, keeping
the power budget constant and assuming we scale both voltage and
frequency together and linearly, 16 cores can run at a maximum
frequency of 1.429 GHz following 2. 16 cores running at 1.429
GHz will perform better than 20 cores running at 1.134 GHz. This
is because, let’s say IPC/core at 1 Ghz is a. 16 cores running at
1.429 GHz give a performance of 16 x 1.429 x a = 22.864a, whereas
20 cores running at 1.134 GHz give a performance of 20 x 1.134

GHz x a = 22.68a. Figure 6 shows an example of the mechanism
for 8 threads.

We have designed and used distinct mechanisms to detect dif-
ferent roadblocks to scalability, because as shown in Section 2 the
action to be performed (increase or decrease the number of active
cores) varies with the cause of reduced performance.

3.2 Implementation
LIMO assumes support from the operating system (OS), hard-

ware and compiler to gather required information and make deci-
sions on the number of active cores that can achieve high perfor-
mance.

LIMO relies on two specific pieces of runtime information. First,
we need hardware support to determine the working set size of
a thread, which would allow LIMO to determine the number of
threads that can be executed without degrading the performance
due to shared-cache capacity constraints.

Second, we need to know the number of threads that can make
progress. The operating system already has information about
threads that block by invoking a system call. If a synchroniza-
tion operation is implemented as a blocking wait, then when a
thread needs to stall waiting for a synchronization operation to
succeed it invokes an operating system call to block itself (e.g.
sys_futex()). However, we need additional support for detect-
ing threads that block due to busy-wait (spin loop).

Instead of assuming runtime support to detect spin loops, we pro-
pose to use static analysis to conservatively determine loops that
are likely to be spin loops. The analysis finds loops where the
conditional variables can be guaranteed to be not modified within
the loop body. Once the compiler finds a spin loop in an applica-
tion, it transforms it to include a check in the spin loop that checks
how many times the loop has iterated. If the number of iterations
exceeds a threshold (three in our experiments), the compiler in-
serts a special system call to yield the thread to the operating sys-
tem, which would inform the operating system that the thread has
blocked due to a spin loop. The thread is scheduled back by the
operating system after one time quantum has expired.

Thus, the OS has access to information about how many threads
are in a state where they can make useful progress. Also, the OS
reads from our performance counter that keeps track of the esti-
mated working set size of the application. Based on this infor-
mation, the operating system decides to activate the appropriate
number of cores (based on the algorithm discussed in Section 3.1).
Either when the current interval (used for WS estimation) ends,
or when a thread’s state changes, OS recalculates the number of
cores that should be activated. It signals the hardware specifying
the number of cores and the frequency they can operate at. When
more threads are in the active state where they can make useful
progress, the OS applies its baseline scheduling policies to ensure
fairness between the threads.

We assume on-chip switching regulators [15] for DVFS, which
can change a processor’s power state in 30ns. We also use the work-
ing set estimator described in [8]. The memory addresses accessed
(at cache line granularity) are hashed into n-buckets, represented
by an n-bit vector, using a randomizing hash function. Given the
fraction (f) of buckets filled, the working set size can be estimated

as
log(1−f)

log(1− 1

n
)
. This calculation is done afer every period of 100 mil-

lion executed instructions. This information can be stored in spe-
cial registers and read by the OS when executing the scheduling
algorithm.

3.3 Fine grained monitoring
With the ability of fast change of processor power states, LIMO

145

adapts to fine-grained changes in program characteristics. By dis-
abling (clock-gating) the cores it exploits even small windows of
energy saving opportunities and boosts performance by reducing
contention in shared resources. Since the cores are clock-gated,
they preserve their state and there is no need of a context switch.
This facilitates fast wake up of cores (30 ns), and thus the overhead
of this scheme is very low (even so, it is included in our results).

4. EXPERIMENTAL EVALUATION
We used full system simulators to design and evaluate our scheme,

capturing and negotiating the effects of our scheme on the entire
system.

4.1 Methodology
We used a modified timing simulator FeS2 [28], with support

for shared L2 caches, that uses the full system simulator Simics
[25]. FeS2 is a cycle-accurate x86 simulator with support for run-
ning multi-threaded programs. It includes a detailed processor core
model. Ruby from the gem5 project [5], is used to model the mem-
ory subsystem including non-blocking caches, memory controllers,
main memory, etc. We simulated the effects of the design presented
in section 3 with our simulation infrastructure. Hardware modifica-
tions are proposed in our design, necessitating the use of simulators
for this study.

We evaluate our scheme on benchmarks from the PARSEC bench-
mark suite [4], Apache HTTP server program (httpd) and Sphinx
(speech recognition) from the ALP benchmark suite [20]. Blacksc-
holes, dedup, facesim, ferret, fluidanimate, streamcluster, swap-
tions and vips from Parsec were run with the input simlarge. Apache
server was benchmarked using Surge [2].

While we have not evaluated our scheme with multiprogram work-
loads, for such scenarios we propose that each application be allot-
ted a fixed number of maximum cores that it can use, partitioning
the total number of cores among applications. Within each such
partition, our scheme presented in this paper can be used as it is.

Our design monitors and is capable of detecting oversubscrip-
tion of shared resources (bandwidth, L2 cache) and synchronization
stalls. Other factors limiting scalability were discussed in section
2. However, we did not observe all those scalability limiting factors
in real benchmarks, and hence this section discusses only the ones
we did.

The full system simulator used is too slow to simulate these
benchmarks for the entire duration of their executions. So, first we
executed the benchmarks in their entirety on Simics. Using stores
as an execution progress metric, we took checkpoints at regular
intervals during these runs. Thereafter, starting from these check-
points, we ran timing simulations with FeS2 for 80 million useful

instructions (dynamic instructions executed in user mode, exclud-
ing the ones executed in a spin loop). All statistics were cleared
after 20 million such instructions, giving sufficient time for the
caches to warm up. The benchmarks were sampled in this way
so that we would observe different phases of execution of the pro-
gram showing different characteristics. (Note: Working set esti-
mation may not occur a second time in our simulation window of
a single checkpoint. This is fine since working sets don’t change
significantly in shorter execution spans.)

The hardware configuration parameters are modelled after a Core-
i7 system, with private L1 caches and shared L2 cache. Simics
simulated a 32 core machine, running unmodified Fedora 5, kernel
2.6.15-1. While 32 cores might seem excessive for embedded de-
vices today, the market trend shows that this might not be a distant
possibility. ARM Cortex A15 (to be released this year) will have 8

cores, which is an eight fold increase in the number of cores in the
last 3 years.

Following equation 2 we ran 4, 8, 16, 32 cores at 2.268, 1.8,
1.429, 1.134 GHz respectively. The simulated machine had 32
cores for all configurations simulated. To simulate 4, 8 and 16
cores, the remaining cores are simply not simulated in Simics.

4.2 Results
In this section we present our findings regarding the performance

of the proposed scheme (LIMO) for the benchmarks discussed above.
We measure performance of the benchmarks in terms of useful

instructions committed per nano second. Useful instructions are
dynamic instructions executed in user mode, excluding the ones
executed in a spin loop. Henceforth, in this paper we will refer
to useful instructions as instructions. Synchronization stalls is the
total amount of time spent by all the threads stalled in synchroniza-
tion functions (e.g. waiting on a lock). If synctot is the total time
spent by all threads stalled in synchronization functions aggregated
across all threads, usefultot is the total time spent by all threads
doing useful work aggregated across all threads, then

%sync stall =
synctot

usefultot + synctot
× 100

The benchmark ferret performs image similarity search. It has
been parallelized using the pipeline model with six stages. The
first and the last stage for input and output of data respectively.
The middle four parallel stages are for image segmentation, fea-
ture extraction, indexing of candidate sets and ranking. The dis-
tinctively different tasks need to be done by threads from different
stages makes them highly heterogeneous. Figure 7(a) shows the
performance of different thread configurations for ferret in terms
of instructions committed per nanoseconds (IPS). Each line in the
plot has nine discrete points (nine checkpoints) representing pro-
gressing execution on the x-axis. The different configurations are 8
threads active (8t), 16 threads active (16t), 32 threads active (32t),
64 threads in the system (64t), variable number of threads active
with hardware managed DVFS like Turbo Boost (TB_DVFS) and
our scheme (LIMO). For all configurations except 64t, number of
threads active equals number of cores active. 64t has 64 threads
running on 32 cores. LIMO has a variable number of cores active
varying dynamically over the course of execution of the applica-
tion, and has a maximum of 32 threads in the system.

As can be seen from Figure 7(a), except LIMO, no one con-
figuration performs the best always. 16t is best for checkpoint 5,
whereas 8t performs the best for checkpoint 3. LIMO does very
well and performs better than all the others for most checkpoints
and as good as 8t for the remaining (checkpoints 4 and 8). Figure
7(e) shows %sync stall for ferret. For checkpoints 1, 2, 5, 6 and
7, in configurations 16t and 32t a large number of threads spend
a considerable amount of time stalled because of synchronization
constructs. LIMO recognizes this and disables some cores (almost
all of whose threads are stalled and not doing any useful work),
letting fewer cores (which can do useful work) run at a higher fre-
quency, while still working within the same constant power budget.
Figure 8 clearly shows the average number of cores active is much
lower than 32 for LIMO. It can thus deliver better performance than
any other configuration.

However, as discussed in section 2 synchronization stalls is just
one of many factors affecting scalability. 8t performs particularly
well on checkpoints 3, 4 and 9. Figure 7(c) shows 8t having
markedly fewer L2 load misses on precisely those checkpoints. The
working set for 8 threads fits better in the L2 cache, whereas for
configurations with higher thread numbers, the working set be-

146

0

2

4

6

8

10

12

14

16

1 2 3 4 5 6 7 8 9

in
s

tr
u

c
ti

o
n

s
 p

e
r

n
s

checkpoint number

8t 16t 32t 64t LIMO

(a) Performance of ferret

0

5

10

15

20

25

1 2 3 4 5

in
s
tr

u
c
ti

o
n

s
 p

e
r

n
s

checkpoint number

4t 8t 16t 32t LIMO

(b) Performance of httpd

0

50000

100000

150000

200000

250000

300000

350000

400000

1 2 3 4 5 6 7 8 9

#
L

2
 l

o
a
d

 m
is

s
e
s

checkpoint number

8t 16t 32t 64t LIMO

(c) L2 load misses for ferret

0

50000

100000

150000

200000

250000

300000

1 2 3 4 5
#
L

2
 L

o
a
d

 M
is

s
e
s

checkpoint number

4t 8t 16t 32t LIMO

(d) L2 load misses for httpd

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9

%
 s

y
n

c
h

ro
n

iz
a

ti
o

n
 s

ta
ll
s

checkpoint number

8t 16t 32t 64t LIMO

(e) Synchronization stalls for ferret

0

2

4

6

8

10

12

14

16

1 2 3 4 5

%
 s

y
n

c
h

ro
n

iz
a
ti

o
n

 s
ta

ll
s

checkpoint number

4t 8t 16t 32t LIMO

(f) Synchronization stalls for httpd

Figure 7: Execution statistics of different numbers of threads and LIMO on a 32 core system for ferret and httpd

comes too large, significantly decreasing the efficacy of the L2
cache. LIMO, having information on the working set size for one
configuration, estimates that the working set of 8 threads can fit
much better in the L2 cache. It, thus picks 8 threads almost all the
time for these three checkpoints thus delivering high performance.
Further proof of the analysis just presented can be found in the fact
that high performance of LIMO accompanies very low percentage
of synchronization stalls and close to the lowest number of L2 load
misses among all configurations.

The Apache httpd server benchmark shows very different char-
acteristics than ferret. It uses a work pool parallelization model,
where each incoming request is handled by a different free thread.
The number of threads that Apache can spawn thus limits the num-
ber of requests it can serve concurrently. For a heavy load of in-
coming requests, there is always work for the threads to do and
consequently there are few synchronization stalls (Figure 7(f)). 16t
is mostly the answer for best performance (Figure 7(b)), perform-
ing better than 32t but, unlike ferret it is not because of synchro-
nization stalls. L2 load misses (Figure 7(d)), on the other hand,

are significantly higher for 32t compared to other configurations.
The penalty imposed by such a high number of L2 load misses
eclipses the benefit obtained from parallel computation with more
threads. 16 threads with a higher frequency and a smaller working
set are able to make much better use of the L2 cache and deliver
higher performance. On an average LIMO picks close to 16 threads
throughout the execution of the application and thus gets perfor-
mance that is very close to 16t. However, it still tries to disable
cores and increase the frequency whenever the number of active
cores goes below a threshold. This ends up hurting performance
slightly, compared to always keeping as many cores active as can
do useful work with a maximum of 16 cores (essentially what 16t
does).

In Figure 9, we show the performance of TB_DVFS, 64t and
LIMO relative to 32t for all benchmarks. A system with an Intel
Turbo Boost like hardware is represented by TB_DVFS. As ex-
pected, it is not able to capture the benefits of pro-active and low
latency disabling of threads and subsequent change in voltage and
frequency levels. However, it does well for streamcluster, since

147

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9

a
v

g
.
n

u
m

b
e
r

o
f

c
o

re
s
 a

c
ti

v
e

checkpoint number

blackscholes dedup facesim ferret fluidanimate

streamcluster swaptions vips httpd sphinx

Figure 8: Number of cores active on average during the execution.

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

s
p

e
e

d
u

p
 o

v
e

r
3

2
t

TB_DVFS 64t LIMO

Figure 9: Speedup for all benchmarks over 32t.

this benchmark does not exhibit varying characteristics during its
execution. 64t represents what the operating system could do to
address synchronization stalls. In this configuration there are 2
threads per core. If a thread stalls, the OS will always have a thread
that is not running anywhere else to schedule on this core. How-
ever, this can be beneficial only if the application performs better
with 64 threads compared to 32, and if threads don’t stall too fre-
quently, since otherwise the context switch overhead can outweigh
the benefits of switching threads on cores. However, as can be seen
from Figure 9, 64t is unable to deliver any performance benefits,
and in fact hurts performance in most cases. Lack of scalability,
as shown in Figure 1, provides a compelling reason for this trend.
While this might indicate 32 cores is over-kill for the benchmarks
chosen in this study, we argue that lack of scalability is a real prob-
lem which will get exposed, if not at 32 cores with a different set
of benchmarks, but definitely at a higher number of cores. For in-
stance, if we had limited our study to a maximum of 8 cores, most
of the benchmarks wouldn’t have shown a problem with scalability,
which gets exposed at 32 cores.

LIMO is the best performing configuration for all checkpoints
(Figure 9). The benefits of this scheme get explored specially in
cases where there is high variability in the execution characteristics
of benchmarks, like ferret and sphinx. However, even for bench-
marks like streamcluster, httpd and fluidanimate, LIMO shows ben-
efits. The performance characteristic of streamcluster portrays an
important use-case for LIMO, where the programmer is unaware
of the best number of threads to run. LIMO recognizes that it runs
best with 2 threads, even if there are 32 cores available.

Figure 11 shows that not only does LIMO improve performance
of multi-threaded applications, but it is also highly energy efficient.
Here energy efficiency is defined as (energy consumed by running
32 threads)/(energy consumed by LIMO). All energy numbers were
obtained using McPat [24].

4

8

8

4

8

16

32 32

16

16

32

16

32 32 32

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

blackscholes ferret fluidanimate

s
p

e
e
d

u
p

 o
v

e
r

3
2
t

test simdev simsmall simmedium simlarge LIMO

Figure 10: Speedup for blackscholes, ferret and fluidanimate over
32t. test, simdev, simsmall and simmedium are sample
inputs to the benchmarks that a static profiler could be trained on.
simlarge is the actual input used for final performance measure-
ments. The numbers over corresponding bars represent the best
number of threads chosen.

Figure 10 compares LIMO with possible static profiling schemes.
We ran each of the parsec benchmarks with five different inputs,
for 4, 8, 16 and 32 threads. Possible static profiling schemes would
choose the number of threads that performed the best, as the right
number of threads to run for best performance. As can be seen
from Figure 10, different inputs give different answers for the right
number of threads to run for best performance. LIMO performs the
best regardless of the profile-guided answers. Blackscholes shows
good scalability at least up to 32 threads and does not show vari-
ation in the right number of threads to run even during the course
of execution of the program. Therefore, LIMO picks 32 threads
to run almost all the time and performs as well as 32t. Ferret, as
shown earlier shows significant variations due to both synchroniza-
tion stalls and cache capacity problems. LIMO exploits the oppor-
tunities presented due to such variations and outperforms all other
thread configurations. The performance of LIMO is also significant
in the case of fluidanimate. Fluidanimate shows good scalability
up to 32 threads, like blackscholes. However, unlike blackscholes,
it exhibits variations in execution characteristics and thus the best
number of threads to run, which is exploited by LIMO delivering
better performance than any static choice of active threads.

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

e
n

e
rg

y
 i

m
p

ro
v

e
m

e
n

t
o

v
e

r
3

2
t

TB_DVFS 64t LIMO

Figure 11: Energy efficiency for all benchmarks over 32t.

5. RELATED WORK
More threads do not always lead to better performance is the

cornerstone of the motivation for this work. Other researchers have
also observed this fact. Table 1 summarizes notable differences
between LIMO and selected previous related works.

Previous works related to ours can be categorized in the follow-
ing three categories.

148

Work Choose optimal
#threads

Variable #threads at
runtime

DVFS Heterogeneous
threads

No initial/apriori
profiling

Heterogeneous re-
sources

LIMO X X X X X

Li and Martinez [23] X X X

Suleman, et. al. [32] X

Jung, et. al. [12] X X X X

Lee, et. al. [21] X

Lee, et. al. [22] X

Suleman, et. al. [31] X

Bhattarjee, Martonosi
[3]

X X

Table 1: Comparison with related work

5.1 Variable number of threads
These previous works vary the number of active threads to run

for an application.
Li and Martinez proposed a system in [23] which optimized

power consumption of an application given a performance target.
The optimization space is two-dimensional - varying the frequency
/ voltage and the number of cores. A combination of binary search
algorithm along with a hill-climbing heuristic is employed to de-
termine the best number of threads and frequency. The number of
threads is varied during the execution of the program, but only to
achieve the performance target with minimum power consumption
on average. LIMO does not need to do a space search and varies
the number of active threads during runtime to adapt to chang-
ing program characteristics and over the course of execution of the
program. [23] sets a performance target to meet, which is hard to
estimate. LIMO, on the other hand, tries to deliver the best per-
formance possible while working within a constant power budget
(dictated by TDP).

Feedback driven threading by Suleman, et. al. [32] presents solu-
tions for two cases manifested by multi-threaded applications, one
where the performance is limited by off-chip bus bandwidth and the
other when it is limited by synchronization. They have built mod-
els to predict the right number of threads to run, which are trained
through profiling initial few iterations of the loop in the applica-
tion. The models used assume data parallel, homogeneous threads
in the application. Similarly, Jung, Han, et. al. [12] propose a so-
lution to mitigate shared resource contention in SMT architectures.
Even though, they change the number of threads dynamically for
performance, they rely on OpenMP library to automatically adjust
thread decomposition and their scheme only works on data-parallel
loops. These works, addressing data-parallel applications, are lim-
ited in scope compared to LIMO, which is applicable for applica-
tions with heterogeneous threads. Also, LIMO employs DVFS to
boost frequency when fewer cores are active.

There has been a recent work by Lee and Kim [21], which works
on a similar problem as LIMO. However, LIMO differs from their
work as theirs does not employ DVFS, is for applications running
on GPUs, involves exhaustive exploration of search state space and
it does not change the number of threads dynamically.

Additionally, an important point that separates LIMO from the
above works is that it does not assume anything about the nature of
the multi-threaded application. It could be a data-parallel applica-
tion with identical threads or a pipeline parallel one with heteroge-
neous threads, etc.

5.2 Scheduling constant number of threads
There is a large body of work concerned with thread schedul-

ing on multi-core architectures for reducing data communication
costs and contention for shared resources: caches, off-chip mem-
ory bandwidth, etc.

Thread Tailor [22] by Lee and Clark assumes there are many

threads per core in a system. It colocates threads on cores such
that data communication among them is minimized. Thereafter,
they are run just like an OS schedules threads in an oversubscribed
system. Kumar, et. al. [17] propose mechanisms (to reduce data
communication costs) to be included in the compiler that helped
overlap communication of data with computation by identifying the
pattern of communication in the algorithm.

A significant body of work has devised schemes dictating par-
titioning of shared cache among cores, assigning / scheduling of
threads to cores as well as frequency throttling of cores to min-
imize contention for the shared cache, front-side bus (FSB) and
prefetching units [6, 13, 14, 16, 26, 29, 30, 33, 35].

This body of work addresses a similar problem as LIMO - reduc-
ing contention in shared resources for improved performance or en-
ergy efficiency. But they assume that all threads need to run. LIMO
differs from them in that it tries to improve performance through
changing the number of active threads (often running fewer than
maximal threads) and boosting frequency working within a con-
stant power budget.

5.3 Heterogeneous hardware resources
There is still other work concerned with thread scheduling and

mapping to cores on heterogeneous CMPs. The work by Bhat-
tacharjee and Martonosi [3] designs thread criticality predictors.
These are used to pick the thread most critical for performance,
which can then be sped up through DVFS, load shedding or allo-
cating more resources for that thread. Suleman, et. al. [31] as-
sumed a CMP with one big core and many smaller cores. They
proposed executing all critical sections in an application on the big
core, speeding up critical section execution and essentially reduc-
ing synchronization stalls. Similarly, [1, 7, 10, 18, 19, 27] propose
schemes for intelligent thread scheduling and mapping on hetero-
geneous CMPs.

LIMO differs from these works in that it runs fewer threads with
increased frequency whenever it is beneficial for performance. It
also changes the active thread count dynamically.

6. CONCLUSIONS
Applications today need to be multi-threaded to take advantage

of the multi-core processors seen everywhere in computing. Even
though mature programming methodologies have made the difficult
task of writing efficient and correct parallel programs easier, pro-
grammers still have to face the hard task of determining the number
of threads to create for best performance. Too many threads can
saturate shared resources, degrading performance. Too few threads
might make insufficient use of the resources available making the
application inefficient. In an attempt to solve the problem of find-
ing the best number of threads to run for an application for pefor-
mance, we propose LIMO - a dynamic runtime system that moni-
tors threads’ progress, dynamically changes the number of running
threads adapting to fine grained changes in application character-

149

istics and employs DVFS to boost frequency of the active cores
when some others are disabled while still working within a con-
stant power budget.

Through this system, we aim to relieve the programmer from the
job of determining the best number of threads to run. An applica-
tion can be simply started with as many threads as the number of
cores on any hardware and our scheme strives to deliver the best
performance in so far as the number of running threads is con-
cerned. Using mutlithreaded applications from the Parsec bench-
mark suite, Apache httpd server and Sphinx from ALP benchmark
suite we show an average performance improvement of 21% and a
2x improvement in energy-efficiency over the default configuration
of running 32 threads on a 32 core system.

7. ACKNOWLEDGMENTS
We would like to thank the anonymous reviewers for their valu-

able comments. This research was supported by National Science
Foundation grants CNS-0964478 and CCF-0916770 and funding
from Intel Corporation.

8. REFERENCES

[1] M. Annavaram, E. Grochowski, and J. Shen. Mitigating amdahl’s law through
epi throttling. In Proceedings of the 32nd annual international symposium on

Computer Architecture, ISCA ’05, pages 298–309, Washington, DC, USA,
2005. IEEE Computer Society.

[2] P. Barford and M. Crovella. Generating representative web workloads for
network and server performance evaluation. In Proceedings of the 1998 ACM

SIGMETRICS joint international conference on Measurement and modeling of

computer systems, SIGMETRICS ’98/PERFORMANCE ’98, pages 151–160,
New York, NY, USA, 1998. ACM.

[3] A. Bhattacharjee and M. Martonosi. Thread criticality predictors for dynamic
performance, power, and resource management in chip multiprocessors. In
Proceedings of the 36th annual international symposium on Computer

architecture, ISCA ’09, pages 290–301, New York, NY, USA, 2009. ACM.

[4] C. Bienia, S. Kumar, J. P. Singh, and K. Li. The parsec benchmark suite:
Characterization and architectural implications. Technical Report TR-811-08,
Princeton University, January 2008.

[5] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu,
J. Hestness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell,
M. Shoaib, N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator.
SIGARCH Comput. Archit. News, 39(2):1–7, Aug. 2011.

[6] D. Chandra, F. Guo, S. Kim, and Y. Solihin. Predicting inter-thread cache
contention on a chip multi-processor architecture. In Proceedings of the 11th

International Symposium on High-Performance Computer Architecture, pages
340–351, Washington, DC, USA, 2005. IEEE Computer Society.

[7] L. De Giusti, E. Luque, F. Chichizola, M. Naiouf, and A. De Giusti. Amtha: An
algorithm for automatically mapping tasks to processors in heterogeneous
multiprocessor architectures. In Proceedings of the 2009 WRI World Congress

on Computer Science and Information Engineering - Volume 02, pages
481–485, Washington, DC, USA, 2009. IEEE Computer Society.

[8] A. S. Dhodapkar and J. E. Smith. Managing multi-configuration hardware via
dynamic working set analysis. In Proceedings of the 29th annual international

symposium on Computer architecture, ISCA ’02, pages 233–244, Washington,
DC, USA, 2002. IEEE Computer Society.

[9] H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and D. Burger.
Dark silicon and the end of multicore scaling. In Proceeding of the 38th annual

international symposium on Computer architecture, ISCA ’11, pages 365–376,
New York, NY, USA, 2011. ACM.

[10] A. Fedorova, J. C. Saez, D. Shelepov, and M. Prieto. Maximizing power
efficiency with asymmetric multicore systems. Commun. ACM, 52:48–57,
December 2009.

[11] Intel. Intel turbo boost technology in intel core microarchitecture (nehalem)
based processors, 2008.

[12] C. Jung, D. Lim, J. Lee, and S. Han. Adaptive execution techniques for smt
multiprocessor architectures. In Proceedings of the tenth ACM SIGPLAN

symposium on Principles and practice of parallel programming, PPoPP ’05,
pages 236–246, New York, NY, USA, 2005. ACM.

[13] D. Kaseridis, J. Stuecheli, J. Chen, and L. John. A bandwidth-aware
memory-subsystem resource management using non-invasive resource profilers
for large cmp systems. In High Performance Computer Architecture (HPCA),

2010 IEEE 16th International Symposium on, pages 1 –11, jan. 2010.

[14] D. Kaseridis, J. Stuecheli, and L. K. John. Bank-aware dynamic cache
partitioning for multicore architectures. In Proceedings of the 2009

International Conference on Parallel Processing, ICPP ’09, pages 18–25,
Washington, DC, USA, 2009. IEEE Computer Society.

[15] W. Kim, M. S. Gupta, G. yeon Wei, and D. M. Brooks. Enabling onchip
switching regulators for multi-core processors using current staggering. In In

Proceedings of the Work. on Architectural Support for Gigascale Integration,
2007.

[16] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn. Using os observations to
improve performance in multicore systems. Micro, IEEE, 28(3):54 –66,
may-june 2008.

[17] R. Kumar, G. Agrawal, and G. Gao. Compiling several classes of
communication patterns on a multithreaded architecture. In Parallel and

Distributed Processing Symposium., Proceedings International, IPDPS 2002,

Abstracts and CD-ROM, pages 18 –23, 2002.

[18] R. Kumar, D. Tullsen, N. Jouppi, and P. Ranganathan. Heterogeneous chip
multiprocessors. Computer, 38(11):32 – 38, nov. 2005.

[19] R. Kumar, D. M. Tullsen, and N. P. Jouppi. Core architecture optimization for
heterogeneous chip multiprocessors. In Proceedings of the 15th international

conference on Parallel architectures and compilation techniques, PACT ’06,
pages 23–32, New York, NY, USA, 2006. ACM.

[20] M. lap Li, R. Sasanka, S. V. Adve, Y. kuang Chen, and E. Debes. The alpbench
benchmark suite for complex multimedia applications. In In Proc. of the IEEE

Int. Symp. on Workload Characterization, pages 34–45, 2005.

[21] J. Lee, V. Satish, K. Compton, M. Schulte, and N. S. Kim. Improving the
throughput of power-constrained gpus through adaptive voltage, frequency, and
core scaling. In PACT’11, 2011.

[22] J. Lee, H. Wu, M. Ravichandran, and N. Clark. Thread tailor: dynamically
weaving threads together for efficient, adaptive parallel applications. In
Proceedings of the 37th annual international symposium on Computer

architecture, ISCA ’10, pages 270–279, New York, NY, USA, 2010. ACM.

[23] J. Li and J. F. Martinez. Dynamic power-performance adaptation of parallel
computation on chip multiprocessors. In HPCA’06, pages 77–87, 2006.

[24] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi.
Mcpat: an integrated power, area, and timing modeling framework for
multicore and manycore architectures. In Proceedings of the 42nd Annual

IEEE/ACM International Symposium on Microarchitecture, MICRO 42, pages
469–480, New York, NY, USA, 2009. ACM.

[25] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg,
J. Hogberg, F. Larsson, A. Moestedt, and B. Werner. Simics: A full system
simulation platform. Computer, 35:50–58, 2002.

[26] A. Merkel, J. Stoess, and F. Bellosa. Resource-conscious scheduling for energy
efficiency on multicore processors. In Proceedings of the 5th European

conference on Computer systems, EuroSys ’10, pages 153–166, New York, NY,
USA, 2010. ACM.

[27] T. Y. Morad, U. C. Weiser, A. Kolodny, M. Valero, and E. Ayguade.
Performance, power efficiency and scalability of asymmetric cluster chip
multiprocessors. IEEE Comput. Archit. Lett., 5:4–, January 2006.

[28] N. Neelakantam, C. Blundell, J. Devietti, M. M. K. Martin, and C. Zilles. Fes2:
A full-system execution-driven simulator for x86, 2008.

[29] M. K. Qureshi and Y. N. Patt. Utility-based cache partitioning: A low-overhead,
high-performance, runtime mechanism to partition shared caches. In
Proceedings of the 39th Annual IEEE/ACM International Symposium on

Microarchitecture, MICRO 39, pages 423–432, Washington, DC, USA, 2006.
IEEE Computer Society.

[30] G. E. Suh, S. Devadas, and L. Rudolph. A new memory monitoring scheme for
memory-aware scheduling and partitioning. pages 117–128, 2002.

[31] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt. Accelerating critical
section execution with asymmetric multi-core architectures. In Proceeding of

the 14th international conference on Architectural support for programming

languages and operating systems, ASPLOS ’09, pages 253–264, New York,
NY, USA, 2009. ACM.

[32] M. A. Suleman, M. K. Qureshi, and Y. N. Patt. Feedback-driven threading:
power-efficient and high-performance execution of multi-threaded workloads
on cmps. SIGPLAN Not., 43:277–286, March 2008.

[33] D. K. Tam, R. Azimi, L. B. Soares, and M. Stumm. Rapidmrc: approximating
l2 miss rate curves on commodity systems for online optimizations. In
Proceeding of the 14th international conference on Architectural support for

programming languages and operating systems, ASPLOS ’09, pages 121–132,
New York, NY, USA, 2009. ACM.

[34] G. Venkatesh, J. Sampson, N. Goulding, S. Garcia, V. Bryksin,
J. Lugo-Martinez, S. Swanson, and M. B. Taylor. Conservation cores: reducing
the energy of mature computations. In Proceedings of the fifteenth edition of

ASPLOS on Architectural support for programming languages and operating

systems, ASPLOS ’10, pages 205–218, New York, NY, USA, 2010. ACM.

[35] S. Zhuravlev, S. Blagodurov, and A. Fedorova. Addressing shared resource
contention in multicore processors via scheduling. In Proceedings of the

fifteenth edition of ASPLOS on Architectural support for programming

languages and operating systems, ASPLOS ’10, pages 129–142, New York,
NY, USA, 2010. ACM.

150

