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Abstract

Recent developments in Non-VolatileMemories (NVMs) have

opened up a new horizon for in-memory computing. Despite

the significant performance gain offered by computational

NVMs, previous works have relied on manual mapping of

specialized kernels to the memory arrays, making it infea-

sible to execute more general workloads. We combat this

problem by proposing a programmable in-memory proces-

sor architecture and data-parallel programming framework.

The efficiency of the proposed in-memory processor comes

from two sources: massive parallelism and reduction in data

movement. A compact instruction set provides generalized

computation capabilities for the memory array. The pro-

posed programming framework seeks to leverage the under-

lying parallelism in the hardware by merging the concepts

of data-flow and vector processing. To facilitate in-memory

programming, we develop a compilation framework that

takes a TensorFlow input and generates code for our in-

memory processor. Our results demonstrate 7.5× speedup

over a multi-core CPU server for a set of applications from

Parsec and 763× speedup over a server-class GPU for a set

of Rodinia benchmarks.
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1 Introduction

Non-Volatile Memories (NVMs) create oppportunities for

advanced in-memory computing. By re-purposing memory

structures, certain NVMs have been shown to have in-situ
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analog computation capabilities. For example, resistive mem-

ories (ReRAMs) store the data in the form of resistance of tita-

nium oxides, and by injecting voltage into the word line and

sensing the resultant current on the bit-line, the dot-product

of the input voltages and cell conductances is obtained using

Ohm’s and Kirchhoff’s laws.

Recent works have explored the design space of ReRAM-

based accelerators for machine learning algorithms by lever-

aging this dot-product functionality [13, 39]. These ReRAM-

based accelerators exploit the massive parallelism and re-

laxed precision requirements, to provide orders of magnitude

improvement when compared to current CPU/GPU archi-

tectures and custom ASICs, in-spite of their high read/write

latency. In this paper, we seek to answer the question, to what

extent is resistive memory useful for more general-purpose

computation?

Despite the significant performance gain offered by com-

putational NVMs, previous works have relied on manual

mapping of convolution kernels to the memory arrays, mak-

ing it difficult to configure it for diverse applications.We com-

bat this problem by proposing a programmable in-memory

processor architecture and programming framework. A gen-

eral purpose in-memory processor has the potential to im-

prove performance of data-parallel application kernels by an

order of magnitude or more.

The efficiency of an in-memory processor comes from

two sources. The first is massive data parallelism. NVMs

are composed of several thousands of arrays. Each of these

arrays are transformed into a single instruction multiple data

(SIMD) processing unit that can compute concurrently. The

second source is a reduction in data movement, by avoiding

shuffling of data between memory and processor cores. Our

goal is to design an architecture, establish the programming

semantics and execution models, and develop a compiler, to

expose the above benefits of ReRAM computing to general

purpose data parallel programs.

The in-memory processor architecture consists of memory

arrays and several digital components grouped in tiles, and

a custom interconnect to facilitate communication between

the arrays and instruction supply. Each array acts as a unit

of storage as well as a vector processing unit. The proposed

architecture extends the ReRAM array to support in-situ

operations beyond dot product (i.e., addition, element-wise

multiplication, and subtraction). We adopt a SIMD execution

model, where every cycle an instruction is multi-casted to

a set of arrays in a tile and executed in lock-step. The In-

struction Set Architecture (ISA) for in-memory computation
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consists of 13 instructions. The key challenge is develop-

ing a simple yet powerful ISA and programming framework

that can allow diverse data-parallel programs to leverage the

underlying massive computational efficiency.

The proposed programming model seeks to utilize the un-

derling parallelism in the hardware by merging the concepts

of data-flow and vector processing (or SIMD). Data-flow ex-

plicitly exposes the Instruction Level Parallelism (ILP) in the

program, while vector processing exposes the Data Level

Parallelism (DLP). Google’s TensorFlow [1] is a popular pro-

gramming model for machine learning. We observe that

TensorFlow’s programming semantics is a perfect marriage

of data-flow and vector-processing that can be applied to

more general applications. Thus, our proposed programming

framework uses TensorFlow as the input.

We develop a TensorFlow compiler that generates binary

code for our in-memory data-parallel processor. The Tensor-

Flow (TF) programs are essentially Data-Flow Graphs (DFG)

where each operator node can have multi-dimensional vec-

tors, or tensors, as operands. A DFG that operates on one

element of a vector is referred to as a module by the compiler.

The compiler transforms the input DFG into a collection

of data-parallel modules with identical machine code. Our

execution model is coarse-grain SIMD. At runtime, a code

module is instantiated many times and processes indepen-

dent data elements. The programming model and compiler

support restricted communication between modules: reduce,

scatter and gather. Our compiler explores several interesting

optimizations such as unrolling of high-dimensional tensors,

merging of DFG nodes to utilize n-ary ReRAM operations,

pipelining compute and write-backs, maximizing ILP within

a module using VLIW style scheduling, and minimizing com-

munication between arrays.

For general purpose computation, we need to support

a variety of compute operations (e.g., division, exponent,

square root). These operations can be directly expressed as

nodes in TensorFlow’s DFG. Unfortunately, ReRAM arrays

cannot support them natively due to their limited analog

computation capability. Our compiler performs an instruc-

tion lowering step in the code-generation phase to trans-

late higher-level TensorFlow operations to the in-memory

compute ISA. We discuss how the compiler can efficiently

support complex operations (e.g., division) using techniques

such as the Newton-Raphson method which iteratively ap-

plies a set of simple instructions (add/multiply) to an initial

seed from the look-up table and refines the result. The com-

piler also transforms other non-arithmetic primitives (e.g.,

square and convolution) to the native memory SIMD ISA.

In summary, this paper offers the following contributions:

• We design a processor architecture that re-purposes

resistive memory to support data-parallel in-memory

computation. In the proposed architecture, memory

arrays store data and act as vector processing units.

We extend the ReRAM memory array to support in-

situ operations beyond the dot product and design a

simple ISA with limited compute capability.

• Wedevelop a compiler that transformsDFGs inGoogle’s

TensorFlow to a set of data-parallel modules and gener-

ates module code in the native memory ISA. The com-

piler implements several optimizations to exploit un-

derlying hardware parallelism and unique features/con-

straints of ReRAM-based computation.

• Although the in-memory compute ISA is simple and

limited in functionality, we demonstrate that with a

good programming model and compiler, it is possible

to off-load a large fraction of general-purpose compu-

tation to memory. For instance, we are able to execute

in memory an average of 87% of the PARSEC applica-

tions studied.

• Our experimental results show that the proposed ar-

chitecture can provide overall speedup of 7.5× over

a state-of-art multicore CPU for the PARSEC applica-

tions evaluated. It also provides a speedup of 763× over

state-of-art GPU for the Rodinia kernel benchmarks

evaluated. The proposed architecture operates with a

thermal design power (TDP) of 415 W, improves the

energy efficiency of benchmarks by 230× and reduces

the average power by 1.26×.

2 Processor Architecture

Wepropose an in-memory data-parallel processor on ReRAM

substrate. This section discusses the proposed microarchi-

tecture, ISA, and implementation of the ISA.

2.1 Micro-architecture

The proposed in-memory processor adopts a tiled architec-

ture as shown in Figure 1. A tile is composed of clusters of

memory nodes, few instruction buffers and a router. Each

cluster consists of a few memory arrays, a small register

file, and look-up table (LUT). Each memory array is shown

in Figure 1 (b). Internally, a memory array in the proposed

architecture consists of multiple rows of resistive bit-cells,

a set of digital-analog converters (DACs) feeding both the

word-lines and bit-lines, sample and hold circuit (S+H), shift

and adder (S+A) and analog-digital converters (ADCs). The

process of reading and writing to ReRAM memory arrays

remains unchanged. We refer the reader to ReRAM litera-

ture for details [39, 42]. The memory arrays are capable of

both data storage and computation. We explain the com-

pute capabilities of the memory arrays and the role of digital

components (e.g. register file, S+A, LUT) in Section 2.2.

The tiles are connected by an H-Tree router network. The

H-Tree network is chosen to suit communication patterns

typical in our programming model (Section 3) and it also

provides high-bandwidth communication for external I/O.

The clusters inside a tile are connected by a router or a
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Figure 2. In-situ ReRAM array operations.

crossbar topology. A shared bus facilitates communication

inside a cluster. A hierarchical topology inside the tile limits

the network power consumption, while providing sufficient

bandwidth for infrequent communication typical in data-

parallel applications.

Each memory array can be thought of as a vector process-

ing unit with few SIMD lanes. The processor adopts a SIMD

execution model. Each array is mapped to a specific instruc-

tion buffer. All arrays mapped to the same instruction buffer

execute the same instruction. Every cycle, one instruction

is read out of the each instruction buffer and multi-casted

to the memory arrays in the tile. The execution model is

discussed in detail in Section 4.

The processor evaluated in this paper consists of 4,096

tiles, 8 clusters per tile, and 8 memory arrays per cluster.

Each array can store 4KB of data and has 8 SIMD lanes of 32

bits each. Consequently, the processor has aggregate SIMD

width of two million lanes, aggregate memory capacity of

1GB and 494mm2 area. The resolution of ADC and DAC is

set to 5 and 2 bits.

2.2 Instruction Set Architecture

The proposed Instruction Set Architecture (ISA) is simple and

compact. Compared to a standard SIMD ISA, In-memory ISA

does not support complex (e.g. division) and specialized (e.g.

shuffle) instructions because these are hard to do in-situ in-

memory. Instead, compiler transforms complex instructions

to a set of lut, add and mul instructions as discussed later.
The ISA consists of 13 instructions as shown in Table 1. Each

ReRAM arrays executes the instruction locally, hence the

operand addressing modes reference rows inside the array

or local registers. The instructions can have a size of up to 34

bytes. Now we discuss the functionality and implementation

of individual instructions.

1) add The add instruction is an n-ary operation that adds
the data in rows specified by <mask>. The <mask> is a 128-bit

mask which is set for each row in the array that participates

in addition. Figure 2 (a) shows an add operation. The mask

is fed to word-line DACs, which is used to apply a Vdd (’11’)

or Vdd/2 (’10’) to the word-lines. A ’1’ in the mask activates

a row. Each bit-cell in a ReRAM array can be abstractly

thought of as variable resistor. Addition is performed inside

the array by summing up currents generated by conductance

(=resistance−1) of each bit-cell. A sample and hold (S + H)

circuit receives the bit-line current and feeds it the ADC

unit which outputs the digital value for the current. The

result from each bit-line represents the partial sum for bits

stored in that bit-line. Aword or data element is stored across

multiple bit-lines. An external digital shifter and adder (S +

A) combines the partial sums from bit-lines. The final result
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Opcode Format Cycles

add <mask><dst> 3

dot <mask><reg_mask><dst> 18

mul <src><src><dst> 18

sub <mask><mask><dst> 3

shift{l|r} <src><dst><imm> 3

mask <src><dst><imm> 3

mov <src><dst> 3

movs <src><dst><mask> 3

movi <dst><imm> 1

movg <gaddr><gaddr> Variable

lut <src><dst> 4

reduce_sum <src><gaddr> Variable

Table 1. In-Memory Compute ISA. The instructions use

operand addresses specified by either <src>, <dst> or

<gaddr>. The <src> and <dst> is a 8-bit local address (1-

bit indicates memory/register + 7-bit row number/register

number). The <gaddr> is a 4 byte global address (12-bit tile

# + 6-bit array # + 7-bit row # + reserved bits). The <imm>

field is a 16 byte immediate value.

is written back to <dst> memory row or register. Each of

ReRAM crossbar (XB), ADC and S+A takes 1 cycle, resulting

in 3 cycles in total.

2) dot The dot instruction is also an n-ary operation which
emulates a dot product over the data in rows specified by

<mask>. A dot product is a sum of products. The sum is done

using current summation over the bit-line as explained ear-

lier. Each row computes a product by streaming in the multi-

plicand via the word-line DAC in a serial manner as shown

in Figure 2 (b). The multiplicands are stored in register file

and the individual registers are specified using <reg_mask>

field.

Robust current summation over ReRAM bit-lines has been

demonstrated in prior works [20, 43]. We adapt the dot prod-

uct architecture from ISAAC [39] for our add and dot in-
structions. We refer the reader to these works for further

implementation details.

3) mul The mul instruction is 2-ary operation that per-

forms element-wise multiplication over elements stored in

the two <src> memory rows and stores the result in <dst>.

To implement this instruction we utilize the row of DACs

at the top of the array feeding the bit-lines (Figure 1 (c)).

The multiplicand is streamed in through the DACs serially

2-bits at time and the product is accumulated over bit-lines

as shown in Figure 2 (c). The word-line DACs are set to Vdd

(’11’).

Note that element-wise multiplication was not supported

in prior works on memristor-based accelerators, and is a

new feature we designed for supporting general purpose

data-parallel computation. Since dot product uses the same

multiplicand for all elements stored in a row, it can not be

utilized for element-by-element multiplication. We solve this

problem by using an additional set of DACs for feeding bit-

lines. As in ISAAC, the operation is pipelined into 3 stages:

XB, ADC and S+A, processing 2 bits per cycle, resulting in

18 cycles in total for 32 bit data.

4) sub The sub instruction performs element-wise subtrac-
tion over elements stored in the two set of memory rows

(minuends and subtrahends) specified by <mask>s and stores

the result in <dst>. Subtraction in ReRAM arrays has not

been explored before. We support this operation by draining

the current via word-line as shown in Figure 2 (d). The out-

put voltage for word-line DAC of the subtrahend row is set

to ground allowing for current drain. Hence the remaining

current over the bit-line represents the difference between

minuend and subtrahend. For this operation we reverse the

voltage across memristor bit-cell. Fortunately, several re-

ports on fabricated ReRAM demonstrate the symmetric V/I

properties of memristor with reverse voltage across termi-

nals [36, 44].

5) lut The lut instruction sends the value stored in <src>
as an address to the lookup table (LUT), and write back

the data read from the LUT to <dst>. The multi-purpose

LUT is implemented for supporting high-level instructions.

LUT is utilized for nonlinear functions such as sigmoid, and

initial seeding of division and transcendental functions (Sec-

tion 5.1). The LUT has 512 entries of 8-bit numbers to suffice

the precision requirement of the arithmetic algorithms imple-

mented [16]. LUT is a small SRAM structure which operates

at much higher frequency than ReRAM arrays and hence

shared by multiple arrays. Its contents are initialized by the

host at runtime. lut takes 4 cycles, adding 1 cycle on top of
the basic XB, ADC, S+A pipeline.

6) mov, movi, movg, movs The mov family of instructions
facilitates movement of data between memory rows of an

array, registers, and even across arrays via global addressing

(<gaddr>). The global addresses are handled by the network,

hence the latency of gobal moves (movg) is variable. Imme-
diate values can be stored to <dst> as well via movi instruc-
tion. These instructions are implemented using traditional

memristor read/write operations. The selective mov (movs)
instruction selectively moves data to elements in <dst> based

on an 8-bit mask. Recall that any <dst> row can store 8 32-bit

elements in the prototype architecture.

7) reduce_sum The reduce_sum instruction sums up the
values in the <src> row of different arrays. The reduction is

executed outside the arrays. This instruction utilizes the H-

tree network and the adders in the routers to reduce values

across the tiles.

8) shift / mask The shift instruction shifts each of the
vector element in <src> by <imm> bits. The mask instruction

logically ANDs each of the vector element in <src> with

<imm>. These instructions utilize the digital shift and adder

(S+A) outside the arrays.
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Discussion Our goal is two-fold. First, keep the instruc-

tion set as simple as possible to reduce design complexity

and retain area efficiency (hence memory density). Second,

expose all compute primitives which can be done in-situ

inside the memory array without reading the data out. The

proposed ISA does not include any instructions for looping,

branch or jump instructions. We rely on the compiler to

unroll loops wherever necessary. Our SIMD programming

model ensures small code size, in spite of unrolling. Control

flow is facilitated via condition computation and selective

moves (Section 3). The compute instructions in the ISA are

restricted to add, sub, dot, mul. Our programming model

based on TensorFlow, supports a rich set of compute opera-

tions. Our compiler transforms them to a combination of ISA

instructions (Section 5.1) and hence enables general purpose

computation.

2.3 Precision and Signed Arithmetic

Floating point operations need normalization based on expo-

nent, hence in-memory computation for the floating point

operands encumbers huge complexity.We adopt a fixed point

representation. We give the flexibility for deciding the po-

sition of the decimal point to trade-off between precision

and range. But the responsibility to prevent bit overflow and

underflow is left to the programmers. We developed a testing

tool that can calculate the dynamic range of the input that

assures the required precision. Note that under the condi-

tion that overflow/underflow does not happen, fixed point

representation gives better accuracy compared to floating

point. Section 6 discusses the impact on application output.

For general purpose computation, it is important to sup-

port negative values. Prior work [39] uses a biased repre-

sentation for numbers, and then normalizes the bias via

subtraction outside the memory arrays. This approach is

perhaps reasonable for CNN dot products, because the over-

head of subtraction outside the array for normalizing the

bias, is compensated by multi-row addition within the array.

In general, data-parallel programs’ additions need not span

multiple rows (often 2 rows are sufficient). In such a sce-

nario, subtraction outside the array needs additional array

read which offsets the benefit of biased addition inside the

array.

We observe that for b-bit bit-cells (i.e. 2b resistance levels),

current summation followed by shift+adder across bit-lines

outputs the correct results as long as negative numbers are

stored in 2b ’s complement notation. In our prototype de-

sign, arrays have 2-bit bit-cell, hence addition over negative

numbers stored as 4’complement will yield correct results.

Furthermore it can bemathematically proved that 4’s comple-

ment is exactly equal to 2’s complement in base-4 representa-

tion. Thus there is no need for conversion between number

formats. The same principle holds true for multiplication as

long as the DAC used for streaming in the multiplicand has

same resolution as resistance level of ReRAM bit-cells. In

our design, 2-bit DACs are required.

3 Programming Model

We choose Google’s TensorFlow [1] as the programming

front-end for proposed in-memory processor. By using Ten-

sorFlow, programmers write the kernels which will be of-

floaded to the memory. TensorFlow expresses the kernel as a

Data Flow Graph (DFG). Since TensorFlow is available for va-

riety of programming languages (e.g. Python, C++, Java, Go),

programmers can easily plug in the TensorFlow kernels in

their code. Also, since TensorFlow supports variety of target

hardware systems (e.g. CPU, GPU, distributed system), pro-

grammers can easily validate the functionality of the kernel

and scale the system depending on the input size.

TensorFlow (TF) offers a suitable programming paradigm

for data parallel in-memory computing. First, nodes in TF’s

DFGs can operate on multi-dimensional matrices. This fea-

ture embeds the SIMD programming model and facilitates

easy exposure of Data Level Parallelism (DLP) to the com-

piler. Second, irregular memory accesses are restricted by

not allowing subscript notation. This feature benefits both

programmers and compilers. Programmers do not have to

convert high-level data processing operations (e.g., vector

addition) into low-level procedural representations (e.g., for-

loop with memory access). The compiler can fully under-

stand the memory access pattern. Third, the DFG naturally

exposes Instruction Level Parallelism (ILP). This can be di-

rectly used by a compiler for Very Long Instruction Word

(VLIW) style scheduling to further utilize underlying paral-

lelism in the hardware without implementing complex out-

of-order execution support. Finally, TensorFlow supports

a persistent memory context in nodes of the DFG. This is

useful in our merged memory and compute architecture for

storing persistent data across kernel invocations.

Our programming model and compilation framework sup-

port the following TensorFlow primitives (See Table 2 for

the list of supported TF nodes.):

Input nodes The proposed system supports three kinds

of input: Placeholder, Const, and Variable. Placeholder is a

non-persistent input and will not be used for future module

invocations. Const is used to pass constants whose values

are known at compile time. Scalar constants are included in

ISA, and vector constants are stored in either the register file

or an array based on the type of their consumer node in the

DFG. Variable is the input with persistent memory context,

of which data can be used and updated in the future kernel

invocations. Variables are initialized at kernel launch time.

Operations The framework supports a variety of complex

operation nodes including transcendental functions. We dis-

cuss the process of lowering these operation nodes into na-

tive memory ISA in Section 5.1.
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Input nodes Const Placeholder Variable

Arithmetic Operations
Abs Add ArgMin Div Exp FloorDiv Less Mul RealDiv Sigmoid
Sqrt Square Sub Sum Conv2D� ExpandDims� MatMul� Reshape� Tensordot�

Control Flow etc. Assign AssignAdd Gather Identity Pack Select Stack NoOp

Table 2. Supported TensorFlow Nodes. (� has restrictions on function/data dimension.)
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Figure 3. Execution Model.

Control Flow Control flow is supported by a select instruc-

tion. A select instruction takes three operands and generates

output as follows:

O[i] = Cond[i] ? A[i] : B[i].
A select instruction is converted into multiple selective move

(movs) instructions. The Condition variable is precomputed
and used to generate the mask for the selective moves.

Reduction, Scatter, Gather A reduction node is supported

by the compiler and natively in the micro-architecture. Scat-

ter and gather operations are used to implement an indirect

reference to the memory address given in the operand. These

operations generate irregular memory accesses and require

synchronizations to guarantee consistency. Because of the

non-negligible overhead, these operations should be used

rarely.We observe inmany cases that these operations can be

eliminated before offloading the kernel by sending gathered

data from CPU.

4 Execution Model

The proposed architecture processes data in a SIMD execu-

tion model at the granularity ofmodule. At runtime, different

instances of a module execute the same instructions on dif-

ferent elements of input vectors in a lock-step manner. Our

compiler generates a module by unrolling a single dimen-

sion of multi-dimensional input vectors as shown in Figure 3.

Intuitively, a DFG generated by TensorFlow can represent

one module. At kernel launch time, the number of module

instances are dynamically created in accordance with the

input vector length.

The proposed execution model allows restricted communi-

cation between instances of modules. Such communication is

only allowed using scatter/gather nodes or reduction nodes

in the DFG. We find these communication primitives are

sufficient to express most TensorFlow kernels.

Each module is composed of one or more Instruction

Blocks (IB) as shown in Figure 3. An IB consists of a list

of instructions which will be executed sequentially. Concep-

tually, an IB is responsible for executing a group of nodes in

the DFG. Multiple IBs in a module may execute in parallel

to expose ILP. The compiler explores several optimizations

to increase the number of concurrent IBs in a module and

thereby exposes the ILP inside a module.

We view rows in the ReRAM array as a SIMD vector unit

with multiple lanes or SIMD slots. Each IB is mapped to

a single lane or one slot. To ensure full utilization of all

SIMD lanes in the array, the runtime maps identical IBs from

different instances of the same module to an individual array

as shown in the last row of Figure 3. This mapping results in

correct execution because all instances of a module have the

same set of IBs. Furthermore, IBs of a module are greedily

assigned to nearby arrays so that the communication latency

between IBs is minimized.

5 Compiler

The overall compilation flow is shown in Figure 4. Our com-

piler takes Google’s TensorFlow DFG in the protocol buffer

format as an input, optimizes it to leverage parallelism that

the in-memory architecture offers, and generates executable

code for the in-memory processor ISA. The compiler first an-

alyzes the semantics of input DFG which has vector/matrix

operands and creates a module with a single IB with required

control flow. Several optimizations detailed later expand a

module to expose intra-module parallelism by decomposing

and replicating the instructions in the single IB into multiple

IBs and merging redundant nodes. This is followed by in-

struction lowering, scheduling of IBs in a module, and code

generation. Instruction lowering transforms complex DFG

nodes into simpler instructions supported by in-memory

processor ISA. Instruction lowering is also done by promot-

ing the specific instructions (e.g. ABS) to general ones (e.g.,

MASK) and expanding the instruction into a set of native

memory ISA instructions.
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Figure 4. Compilation Flow.

Figure 5. Node Merging.
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IB Expansion

Figure 6. IB Expansion.

The compiler tool-chain is developed using Python 3.6 and

C++. The compiler front-end uses TensorFlow’s core frame-

work to parse the TensorFlow Graph. TensorFlow nodes

supported at this time are listed in Table 2.

5.1 Supporting Complex Operations

The target memory ISA is quite simple and supports limited

number of compute instructions as described in Section 2.2.

Natively, the arrays can execute dot product, addition, multi-

plication and subtraction. However, general purpose compu-

tation requires supporting a diverse set of operations ranging

from division, exponents, transcendental functions, etc. We

support these complex operations by converting them into

a set of LUT, addition and multiplication instructions based

on algorithms used in Intel IA-64 processors [14, 19].

The compiler uses either Newton-Raphson or Maclaurin-

Goldschmidt methods that iteratively apply a set of instruc-

tions to an initial seed from the look-up table and refine

the result. Our implementation chooses the best algorithms

based on the precision requirement. We could have used sim-

pler algorithms (e.g., SRT division), but we employ iterative

algorithms because (1) bit shift cannot be supported in the

array, so for each bit shift operation the values need to be

read out and written back, (2) supporting bit-wise logical

operations (and, or) are challenging because of multi-level re-

sistive bit-cells, and (3) simple algorithms often require more

space, which is challenging for the data carefully aligned in

the array.

Finally, the compiler also lowers convolution nodes in

the DFG to the native memory ISA. Prior works [39] have

mapped convolution filter weights to the array and per-

formed dot product computation by streaming in the input

features. Because filters used for general-purpose programs

are typically small (e.g. 3x3 for HotSpot and Sobel filter), we

map the input data to the array and stream in the filter. This

approach reduces buffering for the input data and improves

array utilization. Furthermore, the compiler decomposes the

convolution into a series of matrix-vector dot-products done

simultaneously on different input matrix slices, thereby re-

ducing the convolution time significantly.

5.2 Compiler Optimizations

Node Merging A node merging pass is introduced to fill

the gap between the capabilities of the target in-memory

architecture and the expressibility of the programming lan-

guage. The proposed in-memory ISA can support compute

operations over n-operands. A node merging pass promotes

a series of 2-operand compute nodes in the DFG of a module,

to a single compute node with many operands as shown in

Figure 5. The maximum number of operands n is limited

by the number of array rows and the resolution of ADCs.

ADCs consume a significant fraction of chip power, and their

power consumption is proportional to their resolution. Our

compiler can generate code for an arbitrary resolution n

and the chip architects can choose a suitable n based on the

power budget.

The node merging pass also combines certain combina-

tions of nodes to reduce intermediate writes to memory

arrays. For example, a node which feeds its results to a mul-

tiplication node need not write back the results to memory.

This is because multiplicand is directly streamed into the

array from registers.

InstructionBlock Scheduler Independent Instruction Blo-

cks (IBs) inside a module can be co-scheduled to maximize

ILP as shown in the third row of Figure 3. Our compiler
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adapts the Bottom-Up-Greedy (BUG) algorithm [15] for sched-

uling IBs. BUG was first used in the Bulldog VLIW com-

piler [15] and has been adapted in various schedulers for

VLIW/data-flow architecture, e.g. Multiflow compiler [29]

and compiler for the tiled data-flow architecture, WaveScalar

[30]. Our implementation of the BUG algorithm first tra-

verses the DFG through a bottom-up path, collecting candi-

date assignments of the instructions. Once the traversal path

reaches the input (define) node, it traverses a top-down path

to make a final assignment, minimizing the data transfer

latency by taking both the operand location and successor

location into consideration. We modify the original BUG

algorithm to introduce the notion of in-memory computing,

where a functional unit is identical to the data location. We

also modified the algorithm to take into account read/write

latency, network resource collision latency, and operation

latency.

InstructionBlock (IB) Expansion Instruction Blocks that

use multi-dimensional vectors as operands can be expanded

into several instruction blocks with lower-dimension vec-

tors to further exploit ILP and DLP. For example, consider a

program that processes 2D matrices of dimension sizes [2,

1024]. The compiler will first convert the program to a mod-

ule which will be instantiated 1,024 times and executed in

parallel. Each module will have an IB that processes 2D vec-

tors. The expansion pass will further decompose the module

into 2 IBs that process 1D scalar value.

The expansion pass traverses the nodes in a module’s DFG

in a bottom-up/breath-first order and detects the subtrees

that process multi-dimensional vectors of the same size. The

subtree regions detected are expanded. To ensure the dimen-

sions are consistent between the sub-tree regions, pack and

unpack pseudo operations are inserted between these re-

gions. Pack and unpack operations are later converted to

mov instructions. A simplified example is shown in Figure 6.

Pipelining A significant fraction of the compute instruc-

tions goes through two phases: compute and write-back.

Unfortunately, these two phases are serialized, since an ar-

ray cannot compute and write simultaneously. Our compiler

breaks this bottleneck by pipelining these phases and en-

suring the destination address for the write-backs are in a

separate array. By using two arrays, one array computes

while writing back the previous result to the other array. In

the worst case, this optimization lowers the utilization of

arrays by half. Thus, this optimization is beneficial when the

number of modules needed for the input data is lower than

the aggregate SIMD capacity of the memory chip.

Balancing Inter-Module and Intra-Module Parallelism

Some of the optimizations discussed above attempt to im-

prove performance by exposing parallelism inside a module.

Because of Amdahl’s law, increasing the number of IBs in

a module will not result in linear speedup. Depending on

Benchmark Input data shape # IB insts.

P
A
R
S
E
C Blackscholes [4, 10000000] 163

Canneal [2, 600, 4096] 6

Fluidanimate [3, 17, 229900] 294

Streamcluster [2, 128, 1000000] 6

R
o
d
in
ia

Backprop [16, 65536] 117

Hotspot [1024, 1024] 26

Kmeans [34, 494020] 91

StreamclusterGPU [2, 256, 65536] 6

Table 3. Evaluated workloads. Numbers in bracket indicates

size of respective x,y,z dimensions

the data characteristics, the SIMD slots assigned to a module

may not be fully utilized in every cycle. In fact, expanding

a module could slow down the total execution time when

the number of IBs across all module instances exceeds the

aggregate SIMD slots in the memory chip. In such a scenario,

multiple iterations may be needed to process all module

instances, resulting in a performance loss.

Our compiler can generate code for arbitrary upper bounds

on the number of IBs per module, and can flexibly tune the

intra-module parallelism with respect to inter-module par-

allelism. We develop a simple analytical model to compute

the approximate execution time given the number of IBs

per module and number of module instances. The number

of module instances is dependent on input data size, and is

only known at runtime. Thus, the optimal code is chosen at

runtime based on the analytical model and streamed in to

the memory chip from host.

6 Methodology

Benchmarks We use a subset of benchmarks from PAR-

SEC multi-threaded CPU benchmark suite [8] and Rodinia

GPU benchmark suite [11] as listed in Table 3. We re-write

the kernels of the benchmarks in TensorFlow code and then

generate in-memory ISA code using our compiler. We choose

to port the applications which could be easily transformed

to Structure of Array (SoA) code for the ease of porting to

TensorFlow and a data-parallel architecture. We leave the

remaining benchmarks to future work. For the benchmarks

which use floating point numbers in the kernel, we assess the

effect of converting it into fixed point numbers. By tuning

the decimal point placement, we ensure that the input data

is in the dynamic range of fixed point numbers. We ensure

that the quality of result requirement defined by the bench-

mark is met. We use the native dataset for each benchmark

and compare it with the native execution on the CPU and

GPU baseline systems. The size of the input for each kernel

invocation ranges from 8MB to 2GB.

Area and Power Model All power/area parameters are

summarized in Table 4. We use CACTI to model energy and

area for registers and LUTs. The energy and area model for

ReRAM processing unit, including ReRAM crossbar array,
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Component Params Spec Power Area(mm2)

ADC resolution 5 bits 64 mW 0.0753

frequency 1.2 GSps

number 64 × 2

DAC resolution 2 bits 0.82 mW 0.0026

number 64 × 256

S+H number 64 × 128 0.16 mW 0.00025

ReRAM number 64 19.2 mW 0.0016

Array

S+A number 64 1.4 mW 0.0015

IR size 2KB 1.09 mW 0.0016

OR size 2KB 1.09 mW 0.0016

Register size 3KB 1.63 mW 0.0024

XB bus width 16B 1.51 mW 0.0105

size 10 × 10

LUT number 8 6.8 mW 0.0056

Inst. Buf size 8 × 2KB 5.83 mW 0.0129

Router flit size 16 0.82 mW 0.00434

num_port 9

S+A number 1 0.05 mW 0.000004

1 Tile Total 101 mW 0.12

Inter-Tile number 584 0.81 W 2.50

Routers

Chip total 416 W 494mm2

Table 4. In-Memory Processor Parameters

sample-and-hold circuits, shift-and-add circuits are adapted

from the ISAAC [39]. We employ energy and power model

in [2] for the on-chip interconnects and assume an activity

factor of 5% for TDP (given that the network operates at

2 GHz and memory at 20 MHz). The benchmarks show an

order of magnitude lower utilization of network. ADC/DAC

energy and power are scaled for 5-bit and 2-bit precision [27].

While the state-of-the art ReRAM device supports 4 to 6 re-

sistance levels [6], strong non-uniform analog resistance due

to process variation makes it challenging to program ReRAM

for analog convolution, resulting in convolution errors [12].

We conservatively limit the number of cell levels to two and

use multiple cells in a row to represent one data.

PerformanceModel For determining the IMP performance,

we develop a cycle accurate simulator which uses an inte-

grated network simulator [22]. Note ReRAM array executes

instructions in order, instruction latency is deterministic,

network communication is rare, and compiler schedules in-

struction statically after accounting for network delay. Thus

estimated performance for IMP is highly accurate.

7 Results

7.1 Configurations Studied

In this section we evaluate the proposed In-Memory Pro-

cessor (IMP), and compare it to state-of-art CPU and GPU

baselines. We use an Intel Xeon E5-2697 v3 multi-socket

Parameter CPU (2-sockets) GPU (1-card) IMP

SIMD slots 448 3840 2097152

Frequency 3.6 GHz 1.58 GHz 20 MHz

Area 912.24mm2 471mm2 494mm2

TDP 290 W 250 W 416 W

Memory
7MB L2; 70MB L3 3MB L2 1GB

64GB DRAM 12GB DRAM RRAM

Table 5. Comparison of CPU, GPU, and IMP Parameters

server as CPU baseline and Nvidia Titan XP as the GPU base-

line. The IMP configuration (shown in Table 4) evaluated has

4,096 tiles and 64 128×128 ReRAM arrays in each tile.

Table 5 compares important system parameters of the

three configurations analyzed. IMP has significantly higher

degree of parallelism. IMP enjoys 546× (4681×) more SIMD
slots than GPU (CPU). The massive parallelism comes at

lower frequency, IMP is 80× (180×) slower than GPU (CPU)

in terms of clock cycle period. IMP is approximately area

neutral compared to GPU, and about 2× lower area than the

2-socket CPU system. The TDP of IMP is significantly higher,

however we will show that IMP has lower average power

consumption and energy consumption (Section 7.3).

7.2 Operation Study

Figure 7 presents the operation throughput of CPU, GPU,

and IMP, measured by profiling microbenchmarks of add,

multiply, divide, sqrt and exponential operations. We com-

pile the microbenchmarks with -O3 option and parallelize it

using OpenMP for the CPU. We find IMP achieves orders of

magnitude improvement over the conventional architectures.

The reason is two fold: massive parallelism and reduction

in data movement. The proposed architecture IMP has 546×
(4681×) more SIMD slots compared to GPU (CPU) as shown

in Table 5. Although IMP has lower frequency, it more than

compensates this disadvantage by avoiding data movement.

CPU and GPU have to pay a significant penalty for reading

the data out of off-chip memory and passing it along the

on-chip memory hierarchy to compute units.

IMP speedup is especially higher for the simple operations.

The largest operation throughput is achieved by addition

(2,460× over CPU and 374× over GPU), which has smallest

latency in IMP. On the other hand, division and transcenden-

tal functions take many cycles to produce the results. For

example, it takes 62 cycles for division and 115 cycles for ex-

ponential, while addition takes only 3 cycles. Therefore, the

throughput gain becomes smaller for complex operations.

While CPU and IMP per-operation throughput reduces for

higher latency operations, GPU throughput increases. This is

because the GPU performance is bounded by the memory ac-

cess time, and unary operators (exponential and square root)

have less amount of data transfer from the GPU memory.

Figure 8 and 9 show the operation latency of addition and

multiplication for different input size. We compare the ex-

ecution time of single-threaded CPU, multi-threaded CPU
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Figure 7. Operation throughput (log

scale).
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Figure 8. Addition Latency.

������

������

������

������

�����	

�����


������

������

�����


������

� �� ����� ����	� �������

�
�
�
�
�
�
�
	

�
�
�

��������	�
��


��� ��	��� ��� ���

Figure 9.Multiplication Latency.
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Figure 10. Operation energy.
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Figure 11. Kernel speedup.

����

����

����

����

����

����

��� ���

���

��� ��� ���

���

��� ��� ���

���

��� ��� ���

���

���

�	
��
���	�
 �	���
���
�� �
���
	 ����
��	�
���

�
�
�
�
�
�
�
	


�
�

�


�
�
�
�
�
�
�
�
�
�



������ ����	�
����
 �
� ������������������

Figure 12.CPUApplication performance.

(OpenMP), and GPU. IMP offers the highest operations per-

formance among the three architectures, even for the small-

est input size (4KB).

Figure 10 shows the energy consumption for each oper-

ation. Because of the high operation latency and the large

energy consumption of ADC, we observe higher energy con-

sumption for the complex operations relative to GPU. Ulti-

mately, the instruction mix of the application will determine

the energy efficiency of the IMP architecture.

7.3 Application Study

In this section we study the application performance. First,

we analyze kernel performance shown in Figure 11. For CPU

benchmarks, the figure shows performance for hot kernels

in PARSEC benchmarks. We assume that non-kernel code of

PARSEC benchmarks are executed in the CPU. Note that this

data transfer overhead is taken into account in the results of

IMP. The GPU benchmarks from Rodinia are relatively small,

hence we regard them as application kernels. We observe a

41× speedup for CPU benchmarks and 763× speedups for

GPU benchmarks.

GPU benchmarks obtain higher performance improve-

ment in IMP because of the opportunity to use dot product

operations and higher data level parallelism. On the other

hand, the speedup for kmeans is limited to 23×. kmeans
deals with Euclidean distance calculation of 34 dimensional

vectors, and this incurs many element-wise multiplications.

Although kmeans shows significant DLP available in the dis-

tance calculations, we could not fully utilize the DLP of the

application because of the capacity limitation of the IMP’s

SIMD slots. This series of multiplications of distance calcu-

lation increases its critical latency and limits the speedup.

As suggested in the operation throughput evaluation on Fig-

ure 7, IMP achieves higher performance especially when the

kernel has significant DLP and many simple operations. We

observe in general mul, add, and movl instructions are most

common, while movg, reduce_sum and lut are less frequent.

For example, a blackscholes kernel has 14% add, 21% mul,

and 58% local move instructions. The rest are mask and lut.

The performance results for the overall PARSEC applica-

tion are presented in Figure 12. For this result, we assume

two scenarios: (1) IMP (memory) assumes IMP is integrated

into the memory hierarchy and the memory region for the

kernel is allocated in IMP. (2) IMP (accelerator) is a configu-

ration when IMP is used as an accelerator and requires data

copy as GPUs do. While we believe IMP (memory) is the

correct configuration, IMP (accelerator) is a near-term easier

configuration which can be a first step towards integrating

IMP in host servers.

On average, IMP (accelerator) yields a 5.55× speedup and

IMP (memory) provides 7.54× for the Region of Interest (ROI).

We observe that 41× kernel speedup does not translate to

similar application speedup due to Amdahl’s law. Figure 12

also shows the breakdown of the execution time, which is

divided into kernel, data loading, communication on NoC,

and the non-kernel part of the ROI. The non-kernel part

is mainly composed of time for barrier and unparalleled

parts of the program. It can be seen that 88% of execution

time can be off-loaded to IMP. We also observe that large

fraction of the execution time on ReRAM is used for data

loading (4× of the kernel at maximum). Thus, as suggested
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Figure 13. Energy consumption.
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Figure 14. Average power.
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Figure 15. Compiler optimizations.

Config Blackscholes Fluidanimate Canneal Streamcluster Backprop Hotspot Kmeans Streamcluster

MaxDLP 665 / 1 1015 / 1 7220 / 1 2698 / 1 1028 / 1 1081893 / 1 3623 / 1 5386 / 1

MaxILP 377 / 5 437 / 9 1216 / 1212 159 / 129 184 / 32 3125 / 1024 134 / 38 287 / 257

MaxArrayUtil 665 / 1 437 / 4 1228 / 444 2698 / 1 171 / 27 1024 / 3125 1584 / 3 1169 / 6

Lifetime (years) 8.89 20.1 32.2 22.1 15.7 250 5.88 12.8

Table 6. (1) IB latency (cycles) and # of IBs for different optimization targets. (2) Lifetime

before, in-memory accelerator is better coupled with the

existing memory hierarchy to avoid data loading overhead.

We also find the NoC time is not the bottleneck, because of

the efficient reduction scheme supported by the reduction

tree network integrated in the NoC.

Figure 13 shows the total energy consumption of the entire

application (thus includes both kernel and non-kernel energy

for PARSEC). We find 7.5× and 440× energy efficiency for

CPU benchmarks and GPU benchmarks, respectively. This

energy reduction is partly due to energy efficiency of IMP for

kernel’s instruction mix and partly due to reduced execution

time.

Figure 14 shows the average power consumption of the

benchmarks. The TDP of IMP is high when compared to

GPU and CPU (Table 5). ADCs are the largest contributer

to peak power. The required resolution for ADCs is a func-

tion of maximum number of operands supported for n-ary

instructions in our ISA. To contain the TDP, we limit the

ADC resolution to 5-bits and thereby limiting the number of

operands for n-ary instructions (add, dot). While this may

affect the performance of a customized dot-product based

machine learning accelerator significantly, it is not a serious

limitation for general purpose computation. Although IMP’s

TDP is high due to the ADC power consumption, the aver-

age power consumption is dependent on the instruction’s

requirement for ADC resolution. For example, the ADCs con-

sume less power for instructions with fewer operands. We

find that the average resolution for ADC is 2.07 bit (maximum

resolution is 5-bit). Overall, the average power consumption

for IMP is estimated to be 70.1 W. The average power con-

sumption measured for the benchmarks in the baseline is

81.3 W.

7.4 Effect of Compiler Optimizations

We introduce three optimization targets to the compiler and

evaluate how each optimization affects the results. The first

optimization target is MaxDLP, which creates one IB per

module to maximize DLP. This policy is useful when the data

size is larger than the SIMD slots IMP offers. However, the

module does not have an opportunity to exploit ILP in the

program. Also, IB expansion is not applied for this policy.

The second optimization target isMaxILP, which fully uti-

lizes the ILP and lets IB expansion expand all multi-dimensio-

nal data in the module. This will create largest number of IBs

per module and shortest execution time for single module.

However, because of the sequential part of the IB, array uti-

lization becomes lower. This policy can increase the overall

execution time when the kernel is invoked multiple times

due to insufficient SIMD slots in IMP.

The third optimization target,MaxArrayUtil, maximizes

the array utilization considering the number of SIMD slots

needed by input data. For example, if the incoming data

consumes 30% of the total SIMD slots in IMP, each module

can use 3 IBs to fully utilize all the arrays while avoiding

multiple kernel invocations. The compiler optimizes under

the constraint of maximum IBs available per module

Table 6 shows the maximum IB latency and the number

of IBs per module. Figure 15 presents the execution time

of different optimization policies normalized to MaxDLP

(baseline). MaxArrayUtil represents the best possible per-

formance provided by the compiler optimizations under re-

source constraints imposed by IMP. Overall it provides an

average speedup of 2.3×.
Two other optimizations not captured by above graph

are node merging and pipelining. On average, the module

latency is reduced by 13.8% with node merging and 20.8%

with pipelining.

7.5 Memory Lifetime

We evaluate the memory lifetime by calculating the write

intensity of the benchmarks (last row in Table 6). Based on

the assumption in [26], we consider the ReRAM cells to wear

out beyond 1011 writes. The compiler balances the writes to
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the arrays by assigning and using ReRAM rows in a round-

robin manner. Assuming the arrays are continuously used

for kernel computation (but not while the host is processing),

the median of expected lifetime is 17.9 years.

8 Related Work

To the best of our knowledge this is the first work that

demonstrates the feasibility of general purpose computing

in ReRAM based memory. Below we discuss some of the

closely related works.

ReRAM Computing Since ReRAMs have been introduced

in [42], several works have leveraged its dot-product com-

putation functionality for neuromorphic computing [25, 34].

Recently, ISAAC [39] and PRIME [13] use ReRAMs to acceler-

ate several Convolutional Neural Networks (CNNs). ISAAC

proposes a full-fledged CNN accelerator with carefully de-

signed pipelining and precision handling scheme. PRIME

studies a morphable ReRAM based main memory architec-

ture for CNN acceleration. PipeLayer [41] further supports

training and testing of CNN by introducing efficient pipelin-

ing scheme. Aside from CNN acceleration, ReRAM arrays

have been used for accelerating Boltzmann machine [9] and

perception network [45]. While it has been shown analog

computation in ReRAM can substantially accelerate the ma-

chine learning workloads, none have targeted general pur-

pose computing exploiting the analog computation function-

ality of ReRAM. Another interesting work, Pinatubo [28], has

modified peripheral sense-amplifier circuitry to accomplish

logical operations like AND and OR. While this approach

appears promising to build complex arithmetic operations,

doing arithmetic on multi-bit ReRAM cells using bitwise op-

erations comes with several challenges. Orthogonal to this

work, we extend the set of supported operations at low cost.

ReRAM has also been explored to implement logic using

Majority-Inverter Graph (MIG) logic [7, 32, 40]. In this ap-

proach each ReRAM bit-cell acts as a majority gate. Since

resistive bit-cell is acting as a logic gate, it cannot store

data during computation. Let us refer to this approach as

ReRAM bit-cell as logic. A critical difference between this

approach and ours is that we leverage in-situ operations

where operations are performed in memory over the bit-

lines without reading data out. The ReRAM bit-cell as logic

approach is a flavor of near-memory computing technique

where input data is read out of memory and fed to another

memory location which acts as a logic unit, thus requiring

data-movement.

Furthermore, operations using majority gates can be ex-

tremely slow, requiring huge number of memory accesses

to implement even simple functions. For example, a multi-

ply is implemented using ≈56000 majority-gate operations
(majority-gate operation requires one memory cycle) and

419 ReRAM cells [40]. Our approach implements a multi-

ply in 18 memory cycles without requiring any additional

ReRAM cells. While we demonstrated that IMP architec-

ture/programming framework can work with large real-

world general purpose data-parallel applications, ReRAM as

logic approach [7] has been demonstrated for only sequen-

tial micro-kernels (e.g. hamming, sqrt, square etc) with no

comparison to CPU or GPU systems.

Near-Memory Computing Past processing-in-memory

(PIM) solutions move compute near the memory [4, 5, 10, 17,

18, 24, 31, 33, 35, 38, 46, 47]. The proposed architecture lever-

ages an emerging style of in-memory computing referred

to as bit-line computing [3]. Since, bit-line computing re-

purposes memory structures to perform computation in-situ,

it is intrinsically more efficient than near-memory comput-

ing which augments logic near memory. More importantly,

it unlocks massive parallelism at near-zero silicon cost.

Recentworks have leveraged bit-line computing in SRAM [3,

21, 23] and DRAM [37, 38]. These works have demonstrated

only a handful of compute operations (bit-wise logical, match

and copy) making them limited in applicability for general

purpose computing. Furthermore this work is the first to

develop a programming framework and compiler for in-

memory bit-line computing. Our software stack can be uti-

lized for leveraging bit-line computing in other memory

technologies.

9 Conclusion

This paper proposed novel general-purpose ReRAM-based In-

Memory Processor architecture (IMP), and its programming

framework. IMP substantially improves the performance and

energy efficiency for general-purpose data parallel programs.

IMP implements simple but powerful ISA that can lever-

age the underlying computational efficiency. We propose

the programming model and the compilation framework,

in which users use TensorFlow to develop a program and

maximize the parallelism using the compiler’s toolchain. Our

experimental results show IMP can achieve 7.5× over PAR-

SEC CPU benchmarks and 763× speedup over Rodinia GPU

benchmarks.
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