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ABSTRACT
Complex algorithms and increased functionality are expanding the
computation demands of embedded systems. Hardware accelera-
tors are commonly used to meet these demands by executing crit-
ical application loop nests in custom logic, achieving performance
requirements while minimizing hardware cost. Traditionally, these
loop accelerators are designed in a single-function manner, wherein
each loop nest is implemented as dedicated hardware. This pa-
pers focuses on hardware sharing across loop nests by creating
multi-function loop accelerators, or accelerators capable of execut-
ing multiple algorithms. A compiler-based system for automati-
cally synthesizing multi-function loop accelerator architectures from
high level specifications is presented. We compare the effectiveness
of three synthesis approaches with varying levels of complexity:
unioned, phase-ordered, and integrated. Experiments show that in-
telligently designed multi-function accelerators achieve substantial
hardware savings over their single-function counterparts on loop
kernels taken from multimedia and signal processing domains.

1. INTRODUCTION
The markets for wireless handsets, PDAs, and other portable de-

vices continue to grow explosively. The growth is fueled by new
functionality, added capabilities, and higher bandwidth. These de-
vices demand higher performance and more energy-efficient com-
puter systems to satisfy the user requirements. To achieve these
challenging goals, specialized hardware in the form of loop accel-
erators are commonly used for the compute-intensive portions of
applications that would run too slowly if implemented in software
on a programmable processor. Low-cost design, systematic verifi-
cation, and short time-to-market are critical objectives for design-
ing these accelerators. Automatic synthesis of hardware accelera-
tors from high-level specifications has the potential to solve these
problems.

There is also a growing push to increase the functionality of
special-purpose hardware. Many applications that run on portable
devices, such as wireless networking, do not have one dominant
loop nest that requires acceleration. Rather, these applications are
composed of a number of compute-intensive algorithms, includ-
ing filters, transforms, encoders, and decoders. Further, increasing
functionality, such as supporting streaming video or multiple wire-
less protocols, places a larger burden on the hardware designer to
support more functionality. Dedicated accelerators for each criti-
cal algorithm could be created and included in a system-on-chip.
However, the inability to share hardware between individual ac-
celerators creates an extremely inefficient design. Processor-based
solutions are the obvious approach to creating multi-purpose de-

signs due to their inherent programmability. However, processor-
based solutions do not offer the performance and energy efficiency
of accelerators as there is an inherent overhead to instruction-based
execution.

In this paper, the focus is on automatic design of multi-function
loop accelerators from high-level specifications. The goal is to
maintain the efficiency of single-function accelerators, while ex-
posing a large number of opportunities for hardware sharing across
multiple algorithms. The inputs to the system are the target appli-
cations expressed in C, the desired throughput, and the available
memory bandwidth. The proposed system is built upon a single-
function loop accelerator design system that employs a compiler-
directed approach, similar to the PICO-NPA (Program In Chip Out)
system [21]. Accelerators are synthesized by mapping the algo-
rithm to a simple VLIW processor and then extracting a stylized
accelerator architecture from the compiler mapping.

To accomplish multifunction design, the single-function system
is extended using three alternate strategies. First, the simplest strat-
egy is to create individual accelerators for each algorithm without
any consideration for the other algorithms. The data and control
paths for the individual accelerators are then unioned together to
create a single design capable of all algorithms. The second ap-
proach is to iteratively synthesize accelerators for each algorithm in
a phase-ordered manner. For the first algorithm, a single-function
accelerator is synthesized. For each subsequent algorithm, synthe-
sis accounts for with pre-existing hardware created for the prior
algorithms and attempts to augment the design with as little addi-
tional hardware as possible to support the desired performance of
that algorithm. Finally, the third approach is to perform integrated,
cost-aware synthesis of all algorithms. We employ an integer linear
programming formulation to find a solution with optimal estimated
cost. Each successive strategy represents a more complex approach
and hence the ability to extract more opportunities for sharing. But
as a consequence, the successive strategies require more synthesis
time and memory usage, which may become prohibitive for large
algorithms.

2. RELATED WORK
Datapath synthesis is a field that has been studied for many years.

The basic techniques have been well established [7]. Cathedral III
represents a complete synthesis system developed at IMEC and il-
lustrates one comprehensive approach to high-level synthesis [17].
Force-directed scheduling is used to synthesize datapaths for ASIC
design [19]. The Sehwa system automatically designs process-
ing pipelines from behavioral specifications [18]. Clique based
partitioning algorithms were developed in the FACET project to
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Figure 1: Compiler-directed design system flow.

jointly minimize function unit and inter-function unit communica-
tion costs [24].

Automatic mapping of applications to FPGA-based and other re-
configurable systems has also been investigated. One of the first ef-
forts to automatically map applications onto an FPGA was Splash [9]
that was subsequently productized as the NAPA system [10]. Other
automatic compiler systems for FPGA-based platforms include Garp
[3], PRISM [25], Cameron [14], Match [13], DEFACTO [2], and
a SUIF-based system [1]. Various programming models have been
proposed to provide a more efficient FPGA implementation, in-
cluding Transmogrifier C [8], Picasso [26], and Machines [22].
Compilation for architectures consisting of predefined function units
and storage with reconfigurable interconnect have been investigated,
including RaPiD [4] and PipeRench [11]. Generation of more effi-
cient designs by sharing hardware across basic blocks was recently
proposed [16]. Cost sensitive scheduling, used within the synthesis
system to reduce hardware cost, has been studied in the context of
interconnect minimization in [23, 15].

This paper extends prior work in an orthogonal direction by in-
vestigating multi-function accelerators. A single accelerator is de-
signed that is capable of executing multiple algorithms. While the
resulting designs could be implemented on an FPGA, our intent
is to design standard cell implementations. The compiler synthe-
sis strategy has the most similarity to the PICO system [21]. But,
PICO is focused on a single-function accelerators.

3. SINGLE FUNCTION DESIGN SYSTEM
The overall flow of the proposed design system is presented in

Figure 1. The design system takes an application loop and a per-
formance requirement, specified as the initiation interval (II) or the
number of cycles between initiating successive loop iterations, as
input. Additional constraints such as clock rate or bandwidth to
memory may also be specified. Based on the number and types of
operations in the loop and these cost and performance constraints,
an abstract architecture for a hypothetical VLIW processor is cre-
ated. This abstract architecture represents a high-level view of the
accelerator’s functionality, that can be effectively compiled to, and
exposes resource sharing opportunities within the operations of a
single loop. This abstract architecture also enables the compiler
to generate a modulo schedule. From this modulo schedule, the
accelerator datapath is filled in with function units (FUs), storage
elements and interconnect. Finally, the control path is generated
and the accelerator is instantiated in RTL and synthesized. Each of
these steps will be discussed in detail in the following sections with
an example from sobel, an edge-detection algorithm.

The hardware schema used in this paper is shown in Figure 2.
The accelerator is designed to exploit the high degree of parallelism
available in modulo scheduled loops with a large number of FUs.
Each FU writes to a dedicated shift register file (SRF); each cycle
that the FU produces a new value, the contents of the registers shift
downwards to the next register. The entries in an SRF therefore
contain the values produced by the corresponding FU in the order
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Figure 2: Loop accelerator schema.

they were computed. Wires from the registers back to the FU inputs
allow data transfer from producer to consumer. Multiple registers
may be connected to each FU input; a multiplexer(MUX) is used
to select the appropriate one. Since the operations executing in
a modulo scheduled loop are periodic, the selector for this MUX
is simply a modulo counter. Other than this counter, no control
signals are needed to address the SRFs.

Literals and static live-in register values cannot be stored in the
SRFs. Therefore, literals are hard-wired to the appropriate FU in-
puts, and live-in values are supplied by a central register file which
is connected to the inputs of FUs that require them. FUs which ac-
cess memory are connected to a local memory structure such as a
scratchpad, cache, or stream buffer. The host processor can let the
loop accelerator begin execution by setting some control registers
like the loop counter (LC) and asserting the start signal. When the
loop execution is complete, the branch function unit asserts a done
signal to the host processor.

3.1 Architecture Synthesis
The first step in the architecture synthesis process is the cre-

ation of the abstract VLIW architecture to which the application
is mapped. The abstract architecture is parameterized only by the
number of FUs and their capabilities; a single unified register file
with infinite ports/elements that is connected to all FUs is assumed.
Given the operations in the loop, the desired throughput, and a li-
brary of hardware cell capabilities and costs, the problem of FU
allocation is to come up with a mix of FUs that minimizes cost
while providing enough resources to meet the performance con-
straint. In the simplest case where each operation can be executed
by only one type of FU, dcompatible ops/IIe instances of each
FU type should be created.

However, operations can generally be executed by multiple types
of FUs. For example, both ADD and ADDSUB units may be avail-
able, and the best choice of FUs depends on the number of ADD
and SUB operations in the loop. In this case, the FU allocation
problem becomes more complex and can be formulated as an in-
teger linear program, minimizing the sum of the FU costs while



for (i = 0; i < N1; i++) {

for (j = 0; j < N2; j++) {

t00 = x[i ][j  ];

t01 = x[i ][j+1];

t02 = x[i ][j+2];

t10 = x[i+1][j  ];

t12 = x[i+1][j+2];

t20 = x[i+2][j  ];

t21 = x[i+2][j+1];

t22 = x[i+2][j+2];

e1 = ((t00 + t01) + (t01 + t02)) –

((t20 + t21) + (t21 + t22));     

e2 = ((t00 + t10) + (t10 + t20)) –

((t02 + t12) + (t12 + t22));

e12 = e1*e1;   e22 = e2*e2;

e = e12 + e22;

if (e > threshold) tmp = 1;

else tmp = 0;

edge[i][j] = tmp;

}

}

II = 4

FU #
ADD 5
ADDSUB 1
MEM 3
MPY 1
CMP 1

Figure 3: sobel source code and result of FU allocation with
II=4.
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Figure 4: A portion of the sobel modulo scheduled loop.
Edges represent dataflow between operations.

supporting all of the operations. Figure 3 shows the result of FU
allocation for sobel with II=4. The operations in the loop include
22 ADD and 2 SUB operations, which are covered by the 5 ADD
and 1 ADDSUB units.

Next, the loop is modulo scheduled to the abstract architecture.
The scheduler is a backtracking modulo scheduler which assigns
operations in priority order to the resources in the abstract architec-
ture [20]. The scheduler is augmented with a hardware cost model,
detailed in Section 3.2, in order to make scheduling decisions that
will reduce the cost of the resulting hardware. At the completion
of this phase, all of the loop operations are bound to FUs and time
slots, and therefore the producer-consumer relationships between
FUs have been determined. Figure 4 shows some operations from
the modulo schedule for sobel. Note that the number associated
with each operation indicates its width, and the width of a function
unit is set to the width of the largest operation assigned to it.

Thus the virtual FUs of the abstract architecture, concretized by
operation assignments, directly become the FUs of the loop accel-
erator. The rest of the accelerator datapath is derived from the
producer-consumer relationships in the modulo schedule. Wires
connect an SRF entry at the output of a producing FU to the in-
put of a consuming FU. The SRF entry that should be connected
is determined from the difference in execution time between the
producer and consumer. More specifically, the register number that
should be connected to transfer a value from producing operation p
to consuming operation c is:

time(c)−time(p)+ iteration distance(p, c)∗II− latency(p)

The bitwidths of the FUs and SRFs are determined from the
modulo schedule as well; they are the maximum bitwidth of the
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Figure 5: Datapath derived from the modulo schedule shown
in Figure 4.
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Figure 6: Effect of schedule on wire cost.

data that must be computed in the FU or contained in the SRF. The
depth of an SRF is determined from the longest lifetime of the val-
ues produced by the corresponding FU. Figure 5 shows the SRFs
and connections resulting from the scheduled operations in Fig-
ure 4. Note that three of the four SRFs can be sized to 8-bit width.
Finally, the live-in register values are allocated to the central reg-
ister file, and wires are created to connect the central register file
with FUs that have live-in operands.

The result of architecture synthesis is a high-level representation
of the accelerator architecture consisting of the major components
(FUs, SRFs, and central register file) and the interconnections be-
tween them.

3.2 Cost Sensitive Scheduling
Typically, the goal of a scheduler is to maximize the performance

of an application on a given machine. However, in the accelerator
design system the application is scheduled on an abstract architec-
ture, and then the accelerator datapath is synthesized based on this
schedule. Therefore, it is important that the scheduler be aware of
the impact of its decisions on the the cost of the resulting machine.

A modulo scheduler selects a scheduling alternative, or assign-
ment of FU and time slot, for each operation. The choice of schedul-
ing alternative for an operation has a significant impact on the cost
of the resulting machine. A standard, cost-unaware scheduler chooses
alternatives naı̈vely (for example, scheduling all operations as early
as possible on an arbitrary free FU). In Figure 6, assume the two
pairs of operations are 32 bits wide. A cost-unaware modulo sched-
uler might produce the upper schedule, which requires 64 wires,
while the lower schedule would have required only 32.

3.2.1 Greedy Modulo Scheduler
The basic scheduling algorithm used in our system is based on [20].

The scheduler goes through the operations in the loop in a depen-
dence height based priority order. For every operation, the sched-
uler chooses a FU and a time slot. Since the dependences could be
cyclic, conflicts can occur while scheduling, i.e., the scheduler may
fail to find a valid time slot and FU for an operation. Backtracking
is used to resolve these conflicts. Some previously scheduled oper-
ations are unscheduled to make room for conflicting operations.

Note that the choice of FU and time slot affects the cost of the
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resulting machine. Thus, a cost aware scheduling framework is
used, shown in Figure 7. The main component of this framework
is the hardware cost model. This hardware model represents the
cost of FUs, SRFs, and interconnect wires. Note that the final cost
of hardware can be computed only when all operations have been
scheduled. However, the scheduler needs to know the cost impact
of a scheduling alternative when it is in the middle of the schedul-
ing process. For this reason, the hardware cost model is able to
represent the cost of a partial machine, that is, the cost of hardware
resources required to support execution of just the scheduled oper-
ations. In addition, the cost modeler can estimate the cost of hard-
ware that would be required to support the remaining, unscheduled
operations.

To choose the best local alternative, the greedy modulo sched-
uler makes queries about the machine cost to the hardware cost
modeler. The cost modeler returns a cost estimate that includes
both the partial machine cost as well as the estimated cost of un-
scheduled operations. Based on this cost, the scheduler chooses an
alternative and schedules the operation on that particular FU and
time slot. The scheduler informs the hardware cost modeler about
this decision so that the partial machine can be updated. Scheduling
an operation can change the width of some FU, and it can add some
new connection between a register and the FU. When the modulo
scheduler unplaces an operation during a backtracking step, it also
informs the hardware cost modeler about the unplaced operation,
so that the partial machine can be updated.

3.2.2 ILP-based Optimal Scheduler
Optimal modulo schedulers based on integer linear programming

have been extensively studied in [12] and [5]. The objective func-
tions in these formulations have been compiler-oriented in nature,
for example minimum schedule length, minimum register require-
ment, etc. However, in our design system, since the schedule deter-
mines the cost of the resulting hardware, an objective function has
to be formulated which reflects the FU cost, storage cost and wire
cost. Due to space constraints, only an high level description of the
formulation is provided here.

The software setup for ILP-based scheduler is similar to the one
shown in figure 7. However, instead of using a detailed hardware
cost modeler, different components of hardware costs are directly
built into the ILP formulation. The ILP formulation employs a bi-
nary variable to represent the assignment of an operation to a par-
ticular row in the modulo reservation table. Besides these II binary
variables, an integer variable representing the stage in which the op-

eration is scheduled, completely describes the schedule time of an
operation. The basic constraints which ensure a valid schedule are
identical to the ones presented in [5]. In addition, our formulation
employs binary variables to represent the assignment of an opera-
tion to a particular FU. Additional constraints are introduced to get
a valid FU assignment. The FU widths can be derived from these
binary variables, as the width of an FU is the maximum bitwidth
of operations assigned to it. The depth of shift registers associated
with an FU is derived from the difference in schedule times of oper-
ations assigned to the FU and their consumer operations. The cost
of storage structures are derived from the width of FUs and depth
of the shift register files. More detailed descriptions and equations
can be found in [6].

3.3 Architecture Instantiation
The goal of this step is to generate a Verilog realization of the

accelerator from the high-level architecture created in the previ-
ous section. This is done by lowering each module into primitive
modules that have pre-defined behavioral Verilog descriptions. Af-
ter the primitive modules are identified, connections between mod-
ules are made and MUXes are introduced for multiple-producer
connections. For example, an FU that supports ADD, SUB and
SHR is lowered into a set of primitive modules which includes an
ADDSUB module, SHR module and a MUX combining two out-
puts.

Due to the diversity in width of the datapath and the use of sepa-
rate storage elements for each FU, two types of customized MUXes
are introduced in our design. One is the extension MUX that can do
signed or unsigned extension on its inputs depending on which type
of data is transferred through it. Having this extension MUX in the
datapath enables removing most of the sign extension operations
in the original program as extension is done implicitly. The other
type of MUX is the data-merge MUX which solves the problem of
multiple producers feeding a single consumer under disjoint predi-
cates. In a conventional architecture with a centralized register file,
this is not a problem as all the producers write into the same struc-
ture. However, in our dedicated shift register file scheme, multiple
producers may conditionally write to different SRFs and depending
on which FU executes the producer, the valid one is known only at
run time. To address this problem, we extended the width of each
SRF by one bit that indicates whether the data contained in the reg-
ister entry is valid. Using this valid bit information, the data-merge
MUX selects the valid data at runtime. It is legal for more than one
entry to have its valid bit set to 1. In this case, the most recently
generated valid value is selected.

Based on the datapath that is instantiated, the control path is gen-
erated for each loop. To reduce global wiring of control signals, we
employ a distributed control scheme wherein each high-level mod-
ule has its own logic that internally generates control signals for all
of the enclosed primitive modules. We currently utilize three levels
of control logic: FU control activates the appropriate primitive FU
with the proper functionality and sets any internal MUX selects;
Cluster control (a cluster is defined as the set of tightly intercon-
nected FUs and SRFs) converts the II value to generate high-level
FU opcodes and sets the input MUXes select signals; and, the top
level control which generates the II counter value.

A subset of the final lowered datapath for sobel is presented in
Figure 8. The rightmost FU is realized with two primitive FUs, a
MPY and a CMP. The first output of the CMP is shared with the
output of the MPY. In addition, input MUXes are added when mul-
tiple wires share the same FU input port, as shown in the fourth FU
from the left. Each shift register file contains valid bits as described
above.
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4. MULTIFUNCTION ACCELERATORS
Multifunction design refers to generalizing the loop accelerator

design to support two or more separate loop nests. One obvious
approach to creating a multifunction accelerator is to separately
design accelerators for the individual loops, and then stamp out
these loop accelerators side by side. While this may save pack-
aging costs over creating completely separate accelerators, more
hardware sharing can be achieved. By creating an accelerator with
a single datapath that can support multiple loops, a large amount of
hardware sharing is possible while continuing to meet throughput
constraints for both loops.

The cost of a multifunction accelerator is affected by the indi-
vidual functions in several ways. First, the execution resources
required by the multifunction accelerator is a superset of the re-
sources required for the individual accelerators. Since the multiple
functions will not be executing simultaneously, any resources com-
mon to the individual accelerators need only be instantiated once
in the combined accelerator. Effectively, the multifunction accel-
erator should have the union of the FUs required by the individual
accelerators. Second, the cost of the SRFs is sensitive to how the
sharing is done across functions. Since every FU has an SRF at its
output, and the SRF has the bitwidth of its widest member and the
depth of its value with the longest lifetime, there is a potential for
careless sharing to result in large, underutilized SRFs. Third, one
advantage of a customized ASIC is that there are few control sig-
nals that need to be distributed across the chip, since the datapath
is hard-wired for a specific loop. When multiple loops come into
play, not only must the datapath be able to support the computation
and communication requirements of each loop, but the control path
must be capable of directing the datapath according to which loop
is being executed.

Three methods to extend the single-function design system to
create multifunction accelerators are described in the remainder of
this section.

4.1 Union of Accelerators
One multifunction accelerator synthesis strategy is to first design

a single-function accelerator for each loop as described in Sec-
tion 3, and then to combine these accelerators to form the multi-
function accelerator. The multifunction accelerator datapath is the
union of the single-function datapaths, and therefore hardware cost
savings over the naı̈ve sum of accelerators can be realized by taking
advantage of hardware sharing across loops.

The unioning phase is accomplished by selecting an FU and its
corresponding shift register file (SRF) from each single-function
accelerator and combining them into a single FU and SRF in the
resultant accelerator. The new FU has the bitwidth and functional-

II = 4

FU #
AND 1
MEM 1
SHL 1
SHR 1
MOV 2

II = 4

FU #
ADDSUB,SHL 1
ADD,MOV 1
AND,MPY 1
MEM 1
MEM,MOV 1
MEM,SHR 1
ADD 4
CMP 1

Figure 9: FU allocation for fsed (left) and FU mix supporting
both sobel and fsed (right).

ity to execute all operations supported by the individual FUs being
combined. Similarly, the new SRF has sufficient width and depth to
meet the storage requirements of any of the SRFs being combined.
This process is repeated for the remaining FUs and SRFs until all
of them have been unioned. At this point, the resulting accelerator
supports all of the functionality of the individual accelerators.

Note that the most sharing of SRFs occurs when two or more
large SRFs with similar dimensions are combined; in this case, only
a single SRF is required in the multifunction accelerator where sev-
eral were needed by the single-function accelerators. Similarly, the
most FU sharing occurs when FUs with similar functionality and
bitwidth are combined. However, it can be advantageous to com-
bine FUs with dissimilar functionality. In this case, hardware shar-
ing in the FU does not improve, but the combination may enable
more sharing in the corresponding SRFs.

The simplest unioning method is a positional union, where the
FUs in each accelerator are ordered by functionality (multiple FUs
with the same functionality are unordered), and FUs and SRFs in
corresponding positions are selected for combination. For example,
the first FU and SRF in accelerator 1 are combined with the first
FU and SRF in accelerator 2 to form the first FU and SRF in the
multifunction accelerator, and so on. This unioning method yields
good hardware sharing in the FUs. However, hardware sharing in
the SRFs occurs by chance, i.e., if the dimensions of the SRFs being
combined happen to be similar. Note that in the worst case, it is
possible for the unioned SRF to have a higher cost than the sum of
two individual SRFs: when one SRF is wide and has few entries
and the other is narrow with many entries, the union will both be
wide and have many entries, with greater total area than the sum of
the two SRFs.

An improved unioning method to increase hardware sharing should
consider all permutations of FUs from the different loops, and union
the permutation that results in minimal cost. This can be formulated
as an ILP problem where binary variables are used to represent the
possible pairings of FUs/SRFs from different loops. The objective
function is set such that the set of pairings with minimal cost is cho-
sen. Unlike the positional unioning, ILP unioning is able to actively
improve both FU and SRF hardware sharing, rather than allowing
SRF sharing to come about by chance. In addition, ILP unioning
can combine dissimilar FUs (which increases FU cost relative to
the positional union) if it results in significant SRF cost savings.

The disadvantage of the unioning strategy is that each loop is
scheduled without knowledge of the other loops. Once the loops
are scheduled, their individual FU and storage requirements are
fixed, and the subsequent unioning phase cannot change the sched-
ules to further improve hardware sharing across loops. Therefore,
this strategy is unable to take advantage of some hardware sharing
opportunities.



4.2 Phase Ordered Scheduling
The second approach to handling multiple loops is to use phase

ordering. The loops are scheduled individually; however, they are
scheduled in order, such that each loop can account for the hard-
ware created by the schedule of the previous loop. Thus, the first
loop is scheduled using the cost sensitive scheduler described in
Section 3.2. When the second loop is scheduled, rather than starting
with an empty virtual hardware model, the hardware resulting from
the first loop is used. The cost sensitive scheduler therefore natu-
rally attempts to reuse hardware from the first loop as it minimizes
cost during scheduling of the second loop. This continues until
all loops are scheduled. Currently, the greedy scheduling method
(Section 3.2.1) is used as it can naturally account for the preexisting
hardware.

One condition of the phase ordered approach is that all loops
should be scheduled onto the same abstract architecture in order to
allow the datapath to be incrementally updated as loops are sched-
uled. To generate the abstract architecture for the multifunction
accelerator, FU allocation is first performed on each loop individu-
ally. As described in Section 3.1, FU allocation for each loop gen-
erates an FU mix capable of executing the individual loops. These
virtual sets of FUs are unioned together to get the minimum set of
FUs which can support execution of all the loops. Figure 9 shows
the minimum set of FUs required to execute sobel and fsed (a
halftoning algorithm).

Note that the FU allocation for individual loops can result in FUs
which are mutually exclusive between two loops. For example,
Figures 3 and 9 show that the MPY unit is used by sobel but
not by fsed. Similarly, an AND unit is used by fsed and not
by sobel. We take advantage of this mutual exclusivity to reduce
the number of shift register files. Note that both MPY and AND
FUs have to be present in the multifunction accelerator which can
execute both fsed and sobel. But only one of the FUs will be
active at any time. Therefore, it is enough to synthesize one SRF
to hold the values produced by both of these FUs. These mutually
exclusive virtual FUs are pre-grouped and treated as a single entity
for later steps.

In this phase ordered scheduling approach, it is clear that the or-
der in which loops are scheduled affects the cost of the final hard-
ware. The modulo schedule for each loop accounts for the hardware
from previously scheduled loops, but cannot account for loops not
yet scheduled. In this system, loops are scheduled in order from
largest hardware cost to smallest hardware cost (hardware cost can
be approximated by synthesizing a single-function accelerator for
the loop). It was found that this ordering gives good solutions be-
cause there is greater potential for hardware sharing earlier in the
phase ordered scheduling process.

4.3 Integrated Scheduling
When scheduling multiple loops, it is necessary to consider the

cost of the hardware resulting from the combined schedules of all
loops. Another synthesis approach which accounts for this is to
jointly schedule all loops simultaneously. This entails consider-
ing the effects on hardware cost of the scheduling alternatives for
operations in all loops, and selecting combinations of alternatives
to minimize cost. In general, this problem is quite complex, be-
cause the number of possible schedules grows exponentially as the
number of loops increases (since the scheduling alternatives of op-
erations in different loops are independent). In our system, the in-
tegrated scheduling uses an ILP formulation, which is based on the
one used for scheduling single loops, described in Section 3.2.2.
The schedule validity constraints for individual loops are totally in-
dependent and represented using disjoint variables. However there
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Figure 10: Gate cost of multifunction accelerators.

is only one set of variables that represent the hardware cost. For
example the cost of an FU is represented by a single variable, but
depends on FU assignment of operations in all loops. Similarly
storage and wire costs are modeled using a single set of variables.

5. EXPERIMENTAL RESULTS
Kernels from three different application domains are used to eval-

uate the loop accelerator designs. From image processing, sharp,
sobel, and fsed algorithms are examined. sharp performs im-
age sharpening, sobel performs edge detection, and fsed per-
forms halftoning. idct, dequant and dcacrecon are compu-
tationally intensive loops extracted from the MPEG-4 application.
From the signal processing domain, the following kernels are eval-
uated: viterbi, fft, convolve, fir and iir. These kernels
are commonly used in applications such as wireless networking.

For each machine configuration, we use the compiler-directed
architecture synthesis system described in this paper to design the
loop accelerator and generate RTL. The resulting Verilog is synthe-
sized using the Synopsys design compiler in 0.18µ technology. A
200-MHz clock rate is assumed. For all experiments, performance
is held constant and is specified by the II value. A typical II is se-
lected for each benchmark (for example, II = 4 for sobel and
II = 8 for idct), and multifunction hardware is synthesized for
combinations of benchmarks within the same domain. Gate counts
are used to measure the cost of each accelerator configuration.

Figure 10 shows the cost in gates of multifunction loop accel-
erators designed using the methods described in this paper. Each
group of four bars represents a benchmark combination, showing,
from left to right, the sum of individual accelerators, the intelli-
gent union of independently designed accelerators (Section 4.1),
the phase-ordered design (Section 4.2), and the integrated ILP so-
lution (Section 4.3). Each bar is vertically divided into three seg-
ments, representing the contribution of FUs, storage, and MUXes
to the overall cost. Since the integrated solution relies on the NP-
complete ILP formulation, it did not complete for some benchmark
groups. Thus, the cost of the integrated solution is not shown for
the MPEG-4 group of benchmarks.

The first bar of each set represents current state-of-the-art multi-
loop accelerator design methodologies, i.e. creating single-function
accelerators for each loop. Thus, the difference between this bar
and the other three bars in each group represent the savings avail-
able by synthesizing multifunction designs. As the figure shows,
this savings is significant, especially as the number of loops in-
creases.

One thing to notice is that the FU cost in the multifunction accel-
erator increases very little as more loops are mapped onto the same
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Figure 11: Effect of different cost sensitive schedulers.

hardware. As the hardware supports more loops, chances are high
that the FU requirements of a new loop can be met by FUs already
present in the accelerator.

The cost of the storage area in the multifunction accelerator is
also reduced through sharing. It can be seen that in all of the mul-
tifunction accelerators, the cost of the storage is significantly less
than the sum of the storage required in the individual accelerators.
In the signal processing domain, for example, the accelerator sup-
porting all five benchmarks has a storage cost of about 25K gates,
while the total cost of the storage without sharing is about 82K
gates.

An area in which the multifunction accelerator does not improve
on the individual accelerators is in the MUX cost. Although the
multifunction accelerator has fewer FUs (and thus fewer MUXes)
than the sum of individual accelerators, each MUX must select
among a potentially larger set of data locations, as more operations
execute on each FU.

An important observation is that the union of independent accel-
erators has virtually the same cost as the accelerator designed with
the integrated ILP solution. Hence, intelligently unioning single-
function accelerators can give a nearly optimal solution. This is
significant because the integrated solution does not scale with the
number of loops combined in a multifunction accelerator. Another
point is that generally the union of independent accelerators has
lower cost than the accelerator designed with phase ordering. This
is because the independent accelerators are scheduled optimally,
while a greedy scheduling algorithm is used for the phase ordered
accelerator.

Figure 11 shows the effectiveness of the different cost-sensitive
schedulers discussed in Section 3.2. The benchmark groups are the
same as those in the previous figure. For each group, accelerators
are designed independently using naı̈ve, greedy, and ILP sched-
ulers, and then unioned intelligently as discussed in Section 4.1.
The first set of benchmark groups (from the image processing do-
main) shows the expected result: the greedy cost-sensitive sched-
uler reduces hardware cost from the naı̈ve scheduler, and the ILP
solution further reduces the cost beyond the greedy scheduler. The
next set of benchmarks (from MPEG-4) shows the anomaly that
the ILP solution is very poor. This is because the problem is NP-
complete by nature, and the ILP solver did not complete when
scheduling the idct benchmark even when running for several
days. An intermediate, non-optimal solution was taken for idct,
which negatively impacted the hardware cost of accelerators for
groups of benchmarks which included idct. Finally, the third set
of benchmarks (signal processing) show that the greedy scheduler
can perform worse than the naı̈ve scheduler. This is because cur-
rently the greedy scheduler can inaccurately estimate the hardware
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Figure 12: Effect of different unioning methods.

cost of unscheduled operations, which can lead to bad schedul-
ing decisions as in the case of the viterbi benchmark. Thus,
the benchmark groups containing viterbi have higher hardware
cost. Improving the greedy scheduler is an area of future work.

Figure 12 shows the effect of the unioning method when com-
bining independently designed accelerators. The first bar for each
benchmark group shows the cost of hardware obtained by just sum-
ming up the accelerators of individual benchmark. Clearly, it has
the worst cost because no hardware is shared across accelerators.
The second bar shows the hardware cost when the data paths are
unioned in the worst possible manner. This is achieved by max-
imizing the objective function in the ILP formulation of union-
ing described in Section 4.1. This result is included to highlight
the ineffectiveness of positional unioning (third bar). For exam-
ple, the hardware cost for positional unioning and worst unioning
is same for the vit-fft-con-fir group of benchmarks. For
other benchmark groups, positional unioning results in hardware
cost lower than that achieved by worst unioning. But as described
in Section 4.1, this is more by chance than by design. The last bar
shows the hardware cost achieved by ILP based smart unioning,
and it consistently gets better cost compared with other forms of
unioning.

A side-effect in multifunction designs is that additional intercon-
nect is necessary to accomplish sharing in the data path. The ad-
ditional interconnect consists mostly of wider MUXes at the inputs
of FUs. This can affect the critical path through the accelerator data
path and hence the maximal clock rate of the design. The additional
interconnect increased the critical path from 2.3% to 6.8% with an
average of 4.3% over the longest critical path of the single-function
designs. However, all multifunction designs were able to meet the
target clock rate of 200 MHz.

6. CONCLUSION
This paper presents an automated, compiler-directed system for

synthesizing accelerators for modulo scheduled loops. The syn-
thesis system builds an abstract architecture based on the compute
requirements of the loop, modulo schedules the loop, and then de-
rives the datapath and control path for the accelerator. The system
can be used for synthesizing custom accelerators that can run mul-
tiple loops, utilizing hardware sharing in order to realize cost sav-
ings over synthesizing individual loop accelerators while meeting
the performance requirements of each loop. Three methods of syn-
thesizing multifunction accelerators are presented: unioning, phase
ordering, and integrated. It is shown that intelligently unioning
single-function accelerators yields multifunction accelerators that



are nearly optimal in cost. By evaluating multifunction acceler-
ators designed for various application domains, hardware savings
of up to 60% are realized due to sharing of resources and storage
between loops.
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