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ABSTRACT
Scheduling algorithms used in compilers traditionally focus on goals
such as reducing schedule length and register pressure or produc-
ing compact code. In the context of a hardware synthesis system
where the schedule is used to determine various components of
the hardware, including datapath, storage, and interconnect, the
goals of a scheduler change drastically. In addition to achieving
the traditional goals, the scheduler must proactively make deci-
sions to ensure efficient hardware is produced. This paper pro-
poses two exact solutions for cost sensitive modulo scheduling, one
based on an integer linear programming formulation and another
based on branch-and-bound search. To achieve reasonable com-
pilation times, decomposition techniques to break down the com-
plex scheduling problem into phase ordered sub-problems are pro-
posed. The decomposition techniques work either by partitioning
the dataflow graph into smaller subgraphs and optimally schedul-
ing the subgraphs, or by splitting the scheduling problem into two
phases, time slot and resource assignment. The effectiveness of
cost sensitive modulo scheduling in minimizing the costs of func-
tion units, register structures, and interconnection wires are evalu-
ated within a fully automatic synthesis system for loop accelerators.
The cost sensitive modulo scheduler increases the efficiency of the
resulting hardware significantly compared to both traditional cost
unaware and greedy cost aware modulo schedulers.

1. INTRODUCTION
The markets for cellular phones, portable digital assistants, dig-

ital cameras, and other special-purpose devices continue to grow
explosively. The embedded computing systems that go into these
devices must meet the demands of higher performance and greater
energy efficiency to support new functionality, added capabilities,
more flexibility, and higher bandwidth communication. To achieve
these challenging goals, application-specific hardware in the form
of loop accelerators is commonly used to execute the compute-
intensive portions of applications that would run too slowly if im-
plemented in software on a programmable processor. Low-cost,
high-performance, systematic verification, and short time-to-market
are all critical objectives for designing these accelerators. Auto-
matic synthesis technology to build loop accelerators from high-
level specifications is critical to achieving these objectives.

A key challenge with automatic synthesis is creating efficient
designs. Efficiency can be defined along many axes, including per-
formance, cost, and energy. For this work, the focus is on cost ef-
ficiency, thus the objective is to design the lowest cost accelerator
that meets a specified performance level. Cost-efficient accelera-
tors are synthesized by optimizing the design in a number of ways.

First, hardware structures are sized just large enough to meet the
precision requirements of the application. Second, storage struc-
tures (memories, registers, etc.) are given just enough entries to
meet the worst-case requirements of the application. Third, hard-
ware can be shared by time multiplexing hardware components
when either the hardware is required under disjoint conditions or
the performance of dedicated hardware is not necessary. In addi-
tion to the hardware components, interconnect can also be opti-
mized using the same strategies. A manual designer is typically
proactive in organizing the design to maximize the savings of these
general approaches and balance tradeoffs between component and
interconnect cost.

This work examines the construction of a loop accelerator syn-
thesis system. The proposed system utilizes a compiler-directed ap-
proach for designing accelerators that was derived from the PICO-
NPA (Program-In Chip-Out Non-Programmable Accelerator) sys-
tem [28]. The inputs to the system are a target loop nest expressed
in C, the desired throughput, and the available memory bandwidth.
Synthesis is divided into three steps. First, a simple, single-cluster
VLIW processor is designed to meet the throughput requirements
of the application. The simple processor consists of a set of ar-
bitrary function units, connected to a centralized register file with
unlimited entries and an unbounded memory. It provides an ab-
stract target to which the compiler can efficiently map algorithms.
Next, modulo scheduling is performed to map the application onto
the simple processor [27]. Finally, a stylized loop accelerator is
synthesized from the resulting schedule.

The critical portion of the synthesis system is the modulo sched-
uler. A traditional modulo scheduler attempts to map a loop onto
a fixed hardware configuration, optimizing the throughput, num-
ber of pipeline stages, and possibly the lifetimes of registers. In our
system, the resulting schedule of operations is used to determine the
complete architecture of the accelerator, including the control path,
computation elements, storage structures, and interconnect. Thus,
the scheduling objectives are completely changed. The scheduler
must make binding decisions that lead to the most efficient design.
Hence, cost sensitive modulo scheduling is proposed.

The objective of cost sensitive modulo scheduling is to create
a schedule that not only achieves a specified throughput, but also
yields the lowest cost accelerator design. To accomplish this ob-
jective, the accelerator design is modeled during scheduling, so the
impact of binding decisions on cost can be assessed. Our first ap-
proach to this problem utilized a greedy strategy, wherein at each
scheduling step, the alternative that produced the least cost increase
to the current design was made. The greedy approach was gener-
ally better than the baseline cost insensitive scheduler, but not by a
large amount. The scheduler got trapped in too many local minima



and the overall quality did not improve much.
The central problem is that each portion of the accelerator archi-

tecture is not the result of an individual scheduling decision, but
rather is determined by many inter-related scheduling decisions.
Each decision for a single operation has cost implications on ear-
lier and later decisions. Thus, a greedy approach inherently does
not make sense as the cost saved by making one decision is often
unrelated to the cost of the entire design. As a result, we decided
to focus on two scheduling methods that provide exact solutions:
branch-and-bound and integer linear programming. Our approach
is to develop cost sensitive formulations of both methods.

As with most exact formulations, these methods break down for
moderate to large problem sizes as the run-time and memory us-
age of these methods explode. Thus, the scheduling problem is
decomposed into a set of more manageable subproblems, where
each subproblem is solved in a phase-ordered manner. We utilize
three techniques to break down the problem: graph partitioning,
space-time decomposition, and time-space decomposition. Graph
partitioning divides loop bodies into smaller subgraphs, optimally
scheduling the subgraphs, while space-time and time-space decom-
position split the scheduling process into two separate phases, time
slot and resource assignment. These methods sacrifice optimality
of the schedule and thus of the cost of the accelerator, but enable re-
alistic problems to be solved in a reasonable amount of time, while
achieving substantial cost savings.

1.1 Related Work
Datapath synthesis from high level descriptions has been research-

ed widely by many researchers. Cathedral III represents a complete
synthesis system developed at IMEC and illustrates one compre-
hensive approach to high-level synthesis [22]. It uses an applica-
tive language for program specification and designs customized
datapaths for signal processing applications from this specifica-
tion. The Sehwa system automatically designs processing pipelines
from behavioral specifications [25]. The PICO system synthesizes
C loop nests into a synchronous array of customized processor
datapaths [28]. The above systems produce standard cell based
designs. Automatic mapping of applications to FPGA-based and
other reconfigurable systems has also been investigated. One of the
first efforts to automatically map applications onto an FPGA was
Splash [10] that was subsequently productized as the NAPA sys-
tem [11]. Other automatic compiler systems for FPGA-based plat-
forms include Garp [5], PRISM [31], Cameron [14], Match [13],
DEFACTO [4], and a SUIF-based system [2].

Cost sensitive scheduling in the context of data path synthesis
has been studied for many years. Force-directed scheduling inte-
grates resource allocation and scheduling into a common synthesis
algorithm to minimize overall cost of synthesized datapaths [26].
Tradeoffs in allocating either low latency and expensive or high la-
tency and inexpensive resources have been considered within an
integrated scheduling and resource allocation algorithm [3]. [23]
proposes a polynomial time scheduling algorithm based on heuris-
tics that produces near optimal results. [17] presents an integer
programming formulation for the scheduling problem in data path
synthesis. Generation of more efficient designs by sharing hard-
ware across basic blocks was recently proposed [21]. All of the
above work handle only acyclic code regions. The optimization
criteria usually is achieving shortest schedule length, or given a
schedule length, achieving the least cost of data path. The focus of
our work is cyclic scheduling. Though the components of the cost
are the same, the optimization strategy is different because of the
way in which function units are utilized in a cyclic schedule.

Heuristics that work as a preprocessing step to scheduling and

try to minimize cost of the resulting hardware have also been stud-
ied. Clique-based partitioning algorithms were developed in the
FACET project to jointly minimize function unit and inter-function
unit communication costs [30]. Within the PICO system, width
clustering is used to bind operations of narrow bitwidth to com-
mon resources to reduce datapath cost [20]. Assignment of sched-
uled operations to resources with the goal of increasing intercon-
nect sharing has been proposed [24]. The advantage of preprocess-
ing heuristics is that they are fast and usually achieve good results
when used in conjunction with a traditional scheduling algorithm.
Our work intertwines the cost minimization into the scheduling al-
gorithm to achieve greater cost savings.

In the compiler domain, software pipelining is a technique to ex-
ploit instruction-level parallelism by overlapping the execution of
successive loop iterations. Modulo scheduling is a class of soft-
ware pipelining algorithms that achieve high quality solutions and
have been implemented in production compilers [27]. A num-
ber of extensions to modulo scheduling have been proposed to in-
crease the quality of the solution, including reducing register re-
quirements [15, 9, 18] and code size [19]. Reducing register re-
quirements is most closely related to accelerator cost reduction.
Swing modulo scheduling changes the core modulo scheduler to
reduce register requirements by considering operations in different
orders and changing how time slots are chosen [18]. Conversely,
stage scheduling is a post-processing to shift the pipeline stage of
instructions to reduce register requirements [9]. While the appli-
cation of these techniques can reduce the cost of loop accelerators,
the affect is limited as traditional compiler-based measures, such
as register lifetimes, do not reflect the structure of a loop acceler-
ator. For instance, a long lifetime may be free in an accelerator if
it is scheduled to share a register with a similar lifetime. Hardware
sharing and all aspects of cost must be considered to create efficient
loop accelerators.

Many techniques for optimal modulo scheduling have been pro-
posed in the literature. [6] proposes and efficient integer program-
ming formulation for optimal modulo scheduling. [1] proposes an
enumeration based approach for optimal modulo scheduling. Both
of these techniques focus primarily on achieving a valid sched-
ule. Minimizing register requirements has been the main optimiza-
tion criteria for many of the works published on optimal modulo
scheduling. [12], [7], and [8] formulate the modulo scheduling
with minimum register requirements as an integer linear program-
ming problem. Our work uses the basic ILP formulation from [6]
and builds upon it significantly by adding variables and constraints
to represent the cost of hardware and uses the hardware cost as the
objective function.

1.2 Contributions of this Work
The contributions of this work are two-fold:
• We present the formulation of two exact methods for cost

sensitive modulo scheduling: branch-and-bound and integer
linear programming. Each method can be applied to opti-
mize for area, interconnect, or a simple combination of both.
We compare the effectiveness of these methods to traditional
cost insensitive and greedy cost sensitive modulo schedulers.
criteria.

• To address the issue of problem size explosion common to
exact scheduling methods, three methods for decomposing
scheduling algorithms into phased solutions of simpler sub-
problems are utilized. They consist of graph partitioning,
time-space decomposition, and space-time decomposition.
The implementation details of each are presented along with
analysis of the performance tradeoffs.
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Figure 2: Loop accelerator schema.

2. SYNTHESIS SYSTEM OVERVIEW
Cost sensitive modulo scheduling is implemented as part of an

automatic synthesis system to create stylized loop accelerators. In
this section, we first describe the hardware schema of the loop ac-
celerators and then explain each step of the system (Figure 1) with
an example from sobel, an edge detection algorithm.

2.1 Hardware Schema
Figure 2 shows the hardware schema used in this system. It is

designed to exploit the high degree of parallelism available in mod-
ulo scheduled loops with a large number of function units (FUs).
Each FU writes to a dedicated shift register where entries in reg-
isters move down at every cycle. Wires from the registers back to
the FU inputs allow data transfer from producer to consumer. Mul-
tiple registers may be connected to each FU input; a multiplexor
(MUX) is used to select the appropriate one. Since the operations
executing in a modulo scheduled loop are periodic, the selector for
this MUX is simply a modulo counter. Other than this counter, no
control signals are needed to address the registers.

Literals and static live-in register values cannot be stored in the
shift register files. Therefore, these values are supplied by a central
register file which is connected to the inputs of FUs that require
literal or live-in operands. FUs that access memory are connected
to a local memory structure such as a scratchpad, cache, or stream
buffer. The loop accelerator begins execution when a start signal
is asserted by the host processor. When the loop execution is com-
plete, the branch FU asserts a done signal to the host processor.

2.2 System Flow
The overall flow of the synthesis system is presented in Figure 1.

Each step of the flow is described in this section with an example
from the sobel edge detection algorithm.

FU allocation. This step takes the inputs of the system and
creates an abstract VLIW architecture that represents a high-level
view of the accelerator’s functionality. The abstract architecture is
parameterized only by the number of FUs and their capabilities; a
single unified register file with infinite ports/elements that is con-
nected to all FUs is assumed. Given the operations in the loop, the
desired throughput (expressed as the initiation interval of the loop

or II [27]), and a library of hardware cell capabilities and costs,
the problem of FU allocation is to come up with a mix of FUs
that minimizes cost while providing enough resources to meet the
throughput constraint. In this phase, all FUs are assumed to be
full width for cost purposes. (Bitwidth specialization is performed
after the cost sensitive scheduling, when operations have been as-
signed to specific FUs.) In the simplest case where each operation
can be executed by only one type of FU, dcompatible ops/IIe
instances of each FU type should be created. However, operations
can generally be executed by multiple types of FUs, such as both
ADD and ADDSUB units being available. In this case, the FU al-
location problem becomes more complex and can be formulated
as an integer linear program, minimizing the sum of the FU costs
while supporting all of the operations. Figure 3(b) shows the result
of FU allocation for sobel with II=4. There are 22 ADD and 2
SUB operations in the loop, which are covered by the 5 ADD and
1 ADDSUB units.

Modulo Scheduling. The loop is modulo scheduled to the ab-
stract architecture created in the previous step. A cost-sensitive
modulo scheduler, to be described in Sections 3 and 4, assigns op-
erations to the resources and timeslots in the abstract architecture.
At the completion of this phase, all of the loop operations are bound
to resources and time, and the producer-consumer relationships be-
tween FUs have been determined. Figure 3(c) shows some opera-
tions from the modulo schedule for sobel, with edges indicating
communication between operations. The number associated with
each operation indicates its width; the width of each FU is set to
the width of the largest operation assigned to it.

Datapath Construction. The virtual FUs of the abstract archi-
tecture, concretized by operation assignments, directly become the
FUs of the loop accelerator. The rest of the accelerator datapath
is derived from the producer-consumer relationships in the mod-
ulo schedule. Wires connect a shift register entry at the output of
a producing FU to the input of a consuming FU. The register en-
try that should be connected is determined from the difference in
execution time between the producer and consumer, since register
entries move down at every cycle. The bitwidths of FUs and reg-
ister files are determined by the maximum bitwidth of operations
that are mapped to the FU or contained in the register. The depth of
a register file is set to the longest lifetime of the values produced by
the corresponding FU. Figure 3(d) shows the shift register files and
connections resulting from the scheduled operations in Figure 3(c).

Architecture Instantiation. Lastly, the architecture created
in the previous step is lowered into a Verilog realization of the
accelerator. Each module in the datapath is translated into a set
of primitive modules that have pre-defined behavioral Verilog de-
scriptions. To reduce global wiring of control signals, we employ
a distributed hierarchical control scheme that consists of three lev-
els of control logic: FU control activates the appropriate primitive
FU with the proper functionality and sets any internal MUX se-
lects; cluster control converts the II value to generate high-level FU
opcodes and sets the input MUXes select signals; and, processor
control generates the II counter value. A subset of the final lowered
datapath for sobel is presented in Figure 3(e). Input MUXes are



for (i = 0; i < N1; i++) {

for (j = 0; j < N2; j++) {

t00 = x[i ][j  ];

t01 = x[i ][j+1];

t02 = x[i ][j+2];

t10 = x[i+1][j  ];

t12 = x[i+1][j+2];

t20 = x[i+2][j  ];

t21 = x[i+2][j+1];

t22 = x[i+2][j+2];

e1 = ((t00 + t01) + (t01 + t02)) –

((t20 + t21) + (t21 + t22));     

e2 = ((t00 + t10) + (t10 + t20)) –

((t02 + t12) + (t12 + t22));

e12 = e1*e1;   e22 = e2*e2;

e = e12 + e22;

if (e > threshold) tmp = 1;

else tmp = 0;

edge[i][j] = tmp;

}

}
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Figure 4: Effect of schedule on wire cost.

added when multiple wires share the same FU input port, and the
control path is generated to direct the MUXes and FUs.

3. SCHEDULING TECHNIQUES
Cost sensitive modulo scheduling focuses on reducing the cost

of three components of the hardware: FUs, register storage, and
interconnect wires. These components were found to dominate the
hardware cost of loop accelerators; other components such as mul-
tiplexers and control signals are less significant and are not specif-
ically targeted for cost reduction in this work. By reducing the
sizes of FUs and shift registers required to support execution of a
given loop, the resulting hardware implementation will achieve the
same throughput with fewer logic gates and less power. In addition,
with high numbers of FUs and registers to support loop level par-
allelism, the interconnection network feeding values from registers
to FU inputs can grow very large. Decreasing the number of wires
required to support these data transfers reduces chip area from the
wires themselves as well as from simplifying the placement and
routing of other structures in the hardware layout.

FU and storage cost can be reduced by scheduling operations
cognizant of their resource and communication requirements, such
as bitwidth and register lifetimes; by maximizing hardware reuse,
the total amount of hardware is reduced. Wire cost can be reduced
by maximizing reuse of the same wires by different producer and
consumer operations. Wires are reused if producers and consumers
are scheduled on the same respective FUs, and the consumers read
data from the same shift register entry (i.e., the time differences be-
tween producers and consumers are identical). In Figure 4, assume
the two pairs of operations to be scheduled are 32 bits wide. An

interconnect-unaware modulo scheduler might produce the upper
schedule, which requires 64 wires, while the lower schedule would
have required only 32.

The remainder of this section describes approaches for achiev-
ing these goals, assigning operations to FUs and time slots such
that the cost of the hardware needed to support their execution is
minimized.

3.1 Greedy Scheduling
The baseline (naı̈ve) scheduler used in this work is the iterative

modulo scheduler described in [27], with a stage scheduling post-
pass [9]. This scheduler arbitrarily selects an available scheduling
alternative for each operation in order to meet a given II, and does
not consider hardware cost. The stage scheduling postpass reduces
register lifetimes, which may reduce hardware cost, but this is done
without cognizance of the hardware.

A straightforward way to make the scheduler cost-aware is to
augment the naı̈ve modulo scheduler with a hardware cost model
and a greedy heuristic to minimize cost. The cost aware schedul-
ing framework is shown in Figure 5. The main component of this
framework is the hardware cost modeler, explained in more detail
in Section 3.2.1. The hardware cost model is able to represent the
cost of a partial machine, that is, the cost of hardware resources
required to support execution of just the scheduled operations. In
addition, the cost modeler can estimate the cost of hardware that
would be required to support the remaining, unscheduled opera-
tions. (This estimate is explained in more detail in Section 3.2.2.)

To choose the best local alternative, the greedy modulo scheduler
makes queries about the machine cost to the hardware cost mod-
eler. The cost modeler returns a cost estimate that includes both the
partial machine cost as well as the estimated cost of unscheduled
operations. Based on this cost, the scheduler chooses the best alter-
native and schedules the operation on that particular FU and time
slot. This is done for all operations in priority order, backtracking
as needed. After the completion of greedy scheduling, the stage
scheduling postpass is performed to decrease register lifetimes.

3.2 Branch-and-Bound Solution
A second method of obtaining a modulo schedule that minimizes

hardware cost is to utilize an optimal branch-and-bound (BNB) so-
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lution. The goal is to search all possible schedules in order to find
one that has the lowest hardware cost. The search is performed by
scheduling each operation at all of its valid alternatives (FUs× time
slots). (In a modulo schedule, each operation can be scheduled in
at most II different time slots.) Operations are considered in order
of least to most available alternatives; the order does not affect the
algorithm’s optimality, only its runtime. The search space can be
represented by a tree as shown in Figure 6. Each node represents
a partial schedule, or a state in which some operations have been
assigned FUs and time slots. The children of a node are formed
by scheduling the next operation at all of its valid alternatives, sub-
ject to resource and dependence constraints. Leaf nodes in the tree
therefore represent full schedules, and the goal is to locate a leaf
node whose schedule requires the minimum amount of hardware.

3.2.1 Hardware Modeling
The BNB scheduler uses a hardware model to estimate the cost

of a machine supporting a given partial schedule. Three aspects of
hardware cost are modeled: FUs, register storage, and interconnect
wires. Function unit cost is determined by the capabilities of the
FU as well as its width. In the loop accelerator synthesis system,
FU capabilities are determined during the FU allocation phase de-
scribed in Section 2, prior to scheduling. Therefore, the scheduler
has influence only on the width of the FU – if only narrow bitwidth
operations are scheduled on an FU, then its cost can be reduced.
The FU cost for a given partial schedule can therefore be deter-
mined as a function of the maximum bitwidth operation scheduled
on each FU.

The register storage cost is determined similarly. Each shift reg-
ister must be wide enough to accommodate the maximum bitwidth
operation scheduled on the corresponding FU, and deep enough to
hold the value with the longest lifetime. Also, interconnect wires
must connect specific registers with FU input ports. Given a par-
tial schedule, the known producer-consumer relationships between
operations is used to obtain the widths and depths of the shift reg-
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isters, as well as the number of interconnect wires required.
The BNB algorithm requires a single metric to determine whether

a given schedule is better or worse than previously explored sched-
ules. Therefore, when the objective is to decrease overall hardware
cost, the combined metric used is the sum of wires, storage bits, and
FU cost. (The units of FU cost are scaled such that they are equiv-
alent to storage bits in terms of the number of logic gates required
for implementation.) The wire, storage, and FU metrics may also
be used alone, for example, to obtain a schedule with the objective
of minimizing only storage cost.

3.2.2 Hardware Cost Estimation
An effective bound function is a crucial element in any BNB al-

gorithm in order to prune, as early as possible, search paths that will
not yield optimal results. The search is bounded using an estimate
of the hardware needed to support operations that have not yet been
scheduled. Thus, for any partial schedule, when the cost of hard-
ware required by scheduled operations plus hardware estimated for
unscheduled operations exceeds the best solution found so far, that
search path is pruned. As long as the estimate is conservative (i.e.,
never overestimates the actual hardware cost), optimality is pre-
served as no search paths will be erroneously pruned. Additionally,
the more accurate the estimate, the more likely a wrong path will
be pruned earlier, thus decreasing the run time of the search.

Wire estimation. For the wire estimation, FUs are placed into
groups based on their functionality. An FU group is the basic unit
for estimation, and estimated connections are made between FU
groups. For a given pair of FU groups, we collect all compatible
edges1 whose producer or consumer ops are unscheduled. Then,
we determine the minimum number of additional connections re-
quired to support those unscheduled edges based on the number of
available slots on the FUs (each FU has II slots). We optimisti-
cally assume that empty slots in the FUs can be occupied by any
compatible unscheduled producer, ignoring scheduling constraints.
This assumption guarantees that the estimation is a lower bound
for the wire cost. It is assumed that existing wires in an FU group
with n free slots can be reused by n unscheduled operations with
compatible edges. When there are more than n such operations,
new estimated connections are made to support the remaining op-
erations.

Figure 7 shows how the estimation is performed for the ADD
FU group. The processor consists of four FUs, two in the ADD
FU group (FU0, FU1) and two in the LD FU group (FU2, FU3).
Assume the shaded operations are already scheduled and wires
are being estimated for the unshaded operations. There are two
types of edges originating from ADD operations: ADD→ADD and
ADD→LD. As there is already a connection from FU 0 to FU 2
and FU 0 has one available slot, one of the two ADD→LD edges
1Multiple dataflow edges whose producer and consumer operations
can execute on corresponding FU groups.



can potentially be scheduled without generating additional connec-
tions. This will make FU 0 fully occupied and the producer of the
second edge must be placed on FU 1. Therefore, a new estimated
connection between FU 1 and the LD FU group is created. Another
estimation is performed independently for the ADD→ADD edges.
Here, both can potentially be scheduled by placing the producers on
FU 1, as it has two available slots. Thus, the ADD→ADD edges
will not require any additional connections. As a result, the wire
estimation for the ADD FU group is one.

Storage estimation. Estimating the incremental storage re-
quirements for unscheduled operations is performed using an anal-
ogous method. First, the overall storage requirements for the un-
scheduled operations is determined; then, based on the number of
available execution slots in the FUs and the existing register stor-
age, the number of bits of new storage needed to support the un-
scheduled operations is estimated.

For each unscheduled operation, an estimate of the number of
register bits needed to hold its result is obtained. This value de-
pends on the width and depth of the output register; the width is
simply the bitwidth of the operation, while the depth can be es-
timated from the estart/lstart2 times of the operation and its con-
sumers. More specifically, for operation op with consumers cons:

depth =
“

max
c∈cons

estartc

”

− lstartop − latencyop (1)

Once register requirements are approximated for the unsched-
uled operations, it is optimistically assumed that existing shift reg-
isters at the outputs of compatible FUs with available execution
slots can be reused to satisfy these requirements. Any required reg-
ister bits that cannot be satisfied by existing registers become part
of the incremental storage estimation. Similarly to the wire estima-
tion, this storage estimation does not take dependence constraints
into consideration and is therefore conservative.

Function unit estimation. FU cost estimation is somewhat
simpler than wire or storage estimation, since FU capabilities are
fixed prior to scheduling and only the FU width varies depending
on the schedule. First, unscheduled operations are grouped by type
and their maximum bitwidth is determined. Next, existing FUs
with free slots are used to satisfy these FU requirements. Finally,
the additional cost of FUs needed to support the remaining oper-
ations (either by widening existing FUs or creating new FUs) is
calculated.

For a given partial schedule, once the wire, storage, and FU costs
have been estimated for the unscheduled operations, the search may
be pruned. Once again, a single metric is needed for the hardware
cost estimate, and this is obtained by the weighted sum of the wire,
storage, and FU cost metrics. Note that these hardware estimations
are performed at every step of the BNB search. Therefore, they are
implemented in a computationally efficient way, using incremental
updates to internal data structures in order to minimize their impact
on the execution time of the search. Note also that it is worthwhile
to spend some computation time obtaining an accurate estimate if
it allows the search paths to be pruned earlier, since the number of
states eliminated by pruning a node is exponential in the height of
the node.

3.3 Integer Linear Programming Formulation
The third approach to the problem is an integer linear program-

ming (ILP) formulation for achieving modulo schedules optimal
with respect to the cost of hardware generated from the schedule.
The basic structure of the formulation is identical to the one pro-
2estartop: earliest start time of op ignoring resource constraints.
lstartop: latest start time of op without delaying exit operations.

posed in [12, 6]. The basic formulation described in these works
do not perform FU assignment, but only ensure that a valid assign-
ment is possible. FU assignment is crucial in determining cost of
hardware derived from the schedule. In the formulation described
in this section, additional variables and constraints to represent FU
assignment for operations is added to the basic formulation. An
objective function to represent hardware cost is derived from these
variables and constraints.

3.3.1 Basic Formulation
The body of the loop under consideration is represented by a

graph G = {V, E}, where V represents the set of operations in
the loop body and E represents data dependence edges between
operations. Each dependence edge has an associated latency li,j
which specifies the latency of the producer i, and a distance di,j ,
which specifies the difference in iterations between when the value
is produced by i and when the value is consumed by j.

Consider a loop with |V | = N operations. Let II be the initia-
tion interval. The schedule for this loop is represented by II × N
binary variables Xi,s. Operation i ∈ {0, N − 1} is scheduled in
slot s, 0 ≤ s ≤ II − 1, if Xi,s = 1. The following constraint
enforces a unique slot for every operation i.

II−1
X

s=0

Xi,s = 1 ∀i ∈ {0, N − 1} (2)

N integer variables ki, i ∈ {0, N − 1} are introduced to represent
the stage in which each operation is placed. Xi,s and ki uniquely
identify the cycle in which an operation i is scheduled. In fact, the
schedule time of an operation i is given by

ti =
II−1
X

s=1

s × Xi,s + II × ki (3)

Note that ti is used as a shorthand to represent the schedule time
of an operation i. In a real implementation, there is no need to
introduce a new variable to represent the schedule time. Given the
ti’s for all operations, the data dependences between operations can
be enforced with the following set of constraints.

tj + di,j × II − ti ≥ li,j ∀(i, j) ∈ E (4)

The schedule times should satisfy the resource constraints, i.e., the
number of operations scheduled in each slot should not exceed the
available number of FUs for each FU type. Suppose If are the
set of operations that require a FU of type f and Mf are the total
number of FUs of type f available. Then, the following constraint
enforces the resource constraints.

X

i∈If

Xi,s ≤ Mf s ∈ {0, II − 1} (5)

Note that the above constraint only ensures a valid FU assignment
and does not actually perform the assignment.

3.3.2 Function Unit Assignment
The FU assignment for operations is represented by a set of bi-

nary variables Ri,j , i ∈ {0, N − 1}, j ∈ {0, Mf − 1}, i.e., there
are Mf binary variables for every op i, where Mf is the number
of compatible FUs to which i can be assigned. The following con-
straint enforces a unique assignment.

Mf−1
X

j=0

Ri,j = 1 ∀i ∈ {0, N − 1} (6)



The number of operations assigned to a particular FU cannot ex-
ceed II . The following constraint enforces this.

X

i∈Ij

Ri,j ≤ II i ∈ Ij can execute on j (7)

Even with the above constraint, an FU can be assigned to two op-
erations in the same cycle. To prevent this from happening, the
following constraint has to be enforced for every FU.

X

i∈Ij

Ri,j × Xi,s ≤ 1,

∀s ∈ {0, II − 1} and i ∈ Ij can execute on FU j (8)

The above equation is a sum of products of two binary variables,
and is non-linear. It can be easily linearized as follows. For every
Ri,j and Xi,s appearing in the above set of equations, an auxiliary
binary variable Zi,j,s is introduced and following set constraints
are enforced on Zi,j,s.

−Ri,j + Zi,j,s ≤ 0 (9)
−Xi,s + Zi,j,s ≤ 0

Ri,j + Xi,s − Zi,j,s ≤ 1

Now the product terms in Equation 8 can be replaced with the cor-
responding Zi,j,s’s. Solving equations 2 through 9 would yield a
valid schedule and FU assignment for operations in a loop.

3.3.3 Cost Minimization
As described in Section 2, the hardware schema is a set of FUs

writing to independent shift registers. The cost of the hardware
includes cost of the FUs and cost of the shift registers and cost of
wires used to connect shift registers to the input of FUs. In this
section, we describe modeling of costs of FU and shift registers
only. Modeling wire cost is left out due to space considerations.
Function unit cost. The cost of the FU depends on the set of
operations assigned to it. For example, if 8-bit and 16-bit add op-
erations are assigned to an add FU, then the cost of the add FU is
the cost of a 16-bit adder. Suppose Hi is the cost of a FU required
to execute operation i only. Hi is a constant and is a (possibly non-
linear) function of the bitwidth of operation i. Now, the cost of a
FU j will be at least Hi, if i is assigned to j. Since we have binary
variables to represent the fact that operation i is assigned to FU j,
the above fact be represented as follows.

Cj ≥ Ri,j × Hi

i can execute on FU j and Cj is the cost of FU j (10)

The above constraint is introduced into the integer program for ev-
ery operation i that can be assigned to FU j. Thus, Cj automati-
cally gets set to the maximum cost of an FU that can execute any set
of operations assigned to it. The total cost of FUs in the hardware
can be calculated as follows.

X

j∈FUs

Cj (11)

Storage cost. As described in Section 2, the FUs write their out-
put to the head of a shift register which shifts the values down every
cycle. The shift register should have enough entries to hold the val-
ues until the consumer FU reads it in a later cycle. Consider an
operation i1 feeding another operation i2. From Equation 3 we
know that ti1 and ti2 are the schedule times of i1 and i2 respec-
tively. The value produced by i1 is read by i2 after ti2 − ti1 +
II × di1,i2 − li1,i2 + 1 cycles. i1 could have many consumers and
the latest time a value produced by i1 is live is the maximum of

ti2 − ti1 + II × di1,i2 − li1,i2 +1 with respect to some consumer.
A integer variable LTi is introduced for every producer i operation
in the loop body to indicate the maximum lifetime (measured in
number of cycles) of the value produced by that operation.

LTi ≥ ti′ − ti + II × di,i′ − li,i′ + 1 (i, i′) ∈ E (12)

Note that the lifetime indicates the lifetime in actual number of cy-
cles. This is significantly different from the lifetime measure used
in [7, 12] which is just the maximum number of values produced
by an operation live at any instant. The maximum lifetimes of val-
ues produced by operations is used to calculate the depth Dj of the
shift register associated with an FU j. A shift register should hold
live values from all operations assigned to it. Therefore, Dj is the
maximum of lifetimes of any operation assigned to it. This can be
represented as follows.

Dj ≥ Ri,j × LTi ∀i assigned to j (13)

The above equation is a product of a binary variable and an integer
variable, and is non-linear. However, it can be linearized using an
auxiliary variable TDj as shown below.

TDj ≥ 0 (14)
TDj ≤ P × Ri,j

TDj ≤ LTi

TDj ≥ LTi − (1 − Ri,j) × P

Dj ≥ TDj

where P is a suitably large constant. Note that TDj is 0 when Ri,j

is 0 and is equal to LTi when Ri,j is 1. Dj thus gets the maximum
of LTi among all operation i assigned to FU j.

The cost of the shift register of an FU also depends on the bitwidth
of the operations assigned to the FU. In fact, the width of the shift
register has to be the maximum of the bitwidths of operations as-
signed to the FU. The width Wj of the shift register associated with
FU j is calculated as follows.

Wj ≥ Ri,j × BWi ∀ i assigned to j (15)

where BWi is a constant, indicating the bitwidth of the values pro-
duced by operation i. From Dj and Wj , the cost Sj of the shift
register associated with FU j can be calculated as follows.

Sj = Wj × Dj (16)

The above equation is non-linear. However, it can be linearized
using the observation that Wj can take only a small set of discrete
values. Suppose Wj can take values w1, w2, ... wk. Then, Wj can
be represented as shown below.

Wj =
k

X

n=1

wn × bj,wn ,
k

X

n=1

bj,wn = 1 (17)

where bj,w1
, bj,w2

, ... bj,wk
are binary variables. Now Sj can be

expressed in linear form as follows.

Sj ≤ wmax × Dj (18)
Sj ≥ wn × Dj − (1 − bj,wn) × Q, ∀n ∈ {1, n}

where wmax is the maximum among w1, w2, ... wk and Q is a
suitable large constant.

The objective function for minimizing the cost of data-path of
the hardware can now be calculated from equations 11 and 18.

X

j∈FUs

Cj + Sj (19)



The overall ILP formulation for cost sensitive modulo scheduling
can be stated as “minimize Equation 19, subject to constraints ex-
pressed in Equations 2 through 18”.

4. DECOMPOSITION METHODS
It is necessary to decompose the modulo scheduling problem

described in the previous section because the number of possible
schedules is too large for realistic loops. There are multiple ways
in which the problem can be decomposed. One approach is to par-
tition the dataflow graph into sets of operations and then schedule
the sets one by one. Another approach is to perform scheduling in
phases. In this case, all operations are considered at once, but only
resource assignment is performed in the first phase, and time as-
signment is performed in the second phase. Alternatively, the two
phases can be performed in reverse order.

4.1 Operation Partitioning
One natural way of simplifying the scheduling problem is to par-

tition the operations into multiple disjoint sets. The size of each
set is bounded (generally to 10-15 operations), and thus the space
of possible schedules for the operations in a set can be reasonably
explored using the branch-and-bound or ILP techniques described
in Section 3.

The scheduler considers sets of operations in sequence. Within
each set, an optimal assignment of operations to resources and time
is obtained which minimizes the cost of the additional hardware
required by this set. Once operations from a set are scheduled, their
resource and time slot assignments are fixed, and subsequent sets
will take these assignments into account when they are scheduled.
Thus, for each set of operations, the scheduler attempts to utilize
two forms of hardware sharing to minimize cost: intra-set sharing,
where operations within a set reuse new hardware, and inter-set
sharing, where operations reuse existing hardware from previously
scheduled sets.

The partitioning scheduler therefore obtains an optimal solution
for each set, and the combination of these solutions forms the fi-
nal global schedule. This decomposition method loses some global
optimality because only operations within the same set are consid-
ered together, and scheduling decisions made in earlier sets can-
not be changed when scheduling later sets. However, in general
this method is effective in producing low-cost schedules as both
resource and time assignments are made jointly, and the decisions
account for previously scheduled sets. An elegant tradeoff can be
achieved between global optimality and running time of the sched-
uler. Larger sets are likely to give solutions closer to the globally
optimal solution at the cost of increased search time. Smaller sets
can be quickly searched to find locally optimal solutions.

Two issues have to be addressed in this scheduling scheme. First,
a suitable partitioning method has to be devised. Second, a back-
tracking strategy has to be designed to ensure successful comple-
tion of the scheduler.

4.1.1 Partitioning Method
A simple way to partition the data flow graph is to consider the

height based priority order of operations used in a typical sched-
uler, and place every n operations into a set (where n is the de-
sired set size). Since the height based priority minimizes the in-
stances where a consumer is scheduled before its producer opera-
tion, this partitioning method minimizes backtracking and ensures
quick convergence to a schedule. A more sophisticated graph par-
titioning method could also be employed to form partitions. How-
ever, unlike traditional graph partitioning, the goal of partitioning
the dataflow graph of the loop body is not to achieve min-cut of the

edges. This is because we are not considering a traditional perfor-
mance metric like schedule length. Instead, a good partition is one
which exposes as many hardware sharing opportunities as possible
within a set. Since exhaustive search is performed on each parti-
tion, all the sharing opportunities will be exploited and the com-
bined global solution is improved.

A simple heuristic is used to form partitions with high hardware
sharing opportunities. First, a similarity metric is calculated be-
tween every pair of operations in the dataflow graph. Then the op-
erations are partitioned into sets by taking operation pairs in order
of descending similarity and placing every n operations into a set.

The similarity metric has two components, one based on poten-
tial for sharing interconnect wires and one based on potential for
sharing register storage. The wire similarity metric is a count of
the number of wires (in bits) that can potentially be shared be-
tween two operations and their producers/consumers, determined
by counting compatible edges. To estimate the storage similarity
metric, register requirements are first estimated for each operation
using the method from Section 3.2.2. Then, the metric is calculated
as the number of bits of register storage the two operations have in
common. This figure accounts for the dimensions of the register
files, so that a wide, shallow register file has little similarity with a
narrow, deep file even if the total number of storage bits is similar.

This storage similarity metric can be augmented to account for
”register waste,” that is, unused bits of storage that would result if
the two operations shared storage. This gives preference to com-
bining an operation with small register requirements with another
similar operation, rather than one with large register requirements,
even if the bits of common storage would be the same.

Figure 7(a) shows an example DFG. Consider the two operations
+1 and +2. Both of them have an incoming edge from an add oper-
ation and an outgoing edge to a load operation; thus, the wire sim-
ilarity metric is 64 (assuming 32-bit operations). Similarly, both
operations will require the shift registers to hold their results for
II cycles as there is an inter-iteration dependence from each add
to itself; assuming II = 4, this translates to a storage similarity
metric of 128. Thus the overall similarity between the two opera-
tions is 192. Assuming these are the most similar operations in the
DFG, they will be added to the same operation set and scheduled
together.

4.1.2 Backtracking
During modulo scheduling, it is possible that a set of operations

cannot be scheduled due to conflicts with previously scheduled op-
erations. In such a situation, it is necessary to use backtracking in
order to maintain forward progress. When a conflict arises during
traditional modulo scheduling, the operation is forcibly scheduled
and conflicting operations are unscheduled and placed in the queue
to be rescheduled later. The method of backtracking used in this
scheduler is similar, but at the granularity of operation sets rather
than individual operations. When a set cannot be scheduled, first it
is determined which scheduled operation(s) is causing the conflict.
Then, all operations in the same set as the conflicting operation are
unscheduled. Finally the current set of operations is scheduled, and
the unscheduled set is later rescheduled.

In general, backtracking has an adverse effect on the solution
quality. This is because each set is optimally scheduled given the
previously scheduled sets. If some of these previous sets are later
unscheduled, the current set is no longer optimal. In addition, the
sets are effectively scheduled out of priority order, which can po-
tentially decrease the amount of hardware sharing that is achieved.
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Figure 8: Effect of space-time decomposition.

4.2 Time and Space Decomposition
The job of a scheduler is to assign both a schedule time and an

FU (e.g., “space”) to every operation in the loop body. In the con-
text of the schedulers described in Section 3, assigning both time
and space for an operation in a single pass has a multiplicative ef-
fect on the search combinatorics. For example, in the branch-and-
bound scheduler, the number of possibilities for an operation to be
explored by the scheduler is the product of number of time slots
possible for the operation and the number of FUs to which the op-
eration can be assigned. Similarly, in the ILP scheduler, the number
of variables introduced by Equation 9 is equal to II times number
of FUs for every operation in the loop body.

The problem of scheduling can be decomposed into its two con-
stituent phases: (1) assigning a time slot to every operation, (2)
fixing the operations in space. Note that the first phase still has to
honor resource restrictions, i.e., it cannot assign more operations to
a time slot than there are FUs available to execute those operations.
The second phase of assigning operations to FUs should ensure that
it does not assign two operations scheduled in the same time slot to
the same FU. Such an assignment is always made possible by en-
forcing the resource restrictions in the first phase. The number of
possibilities for every operation is reduced from O(II×#FUs) in
the combined solution to O(II) + O(#FUs) in the decomposed
solution. The decomposed scheduler phases still have to be cost
sensitive. Due to the nature of decomposition, some optimizations
may not be possible in a particular phase. In time-space decompo-
sition, optimizing for FU cost and width of the shift register file is
not possible in the first phase. This is because the cost of FUs and
width of registers depend on the assignment of operations to FUs.
However the time assignment phase can optimize the depth of the
shift register files.

In the ILP scheduler, assigning valid time slots to operations can
be enforced using the constraints given by Equations (2) through (5).
Note that time slot assignment is sufficient to calculate the lifetime
of the value produced by an operation i, given by Equation (12).
Since the lifetimes LTi directly affect the register depth, minimiz-
ing lifetimes is important. Therefore,

PN−1

i=0
BWi × LTi is used

as the objective function in the formulation. Note that the lifetimes
of operations are weighted by their bitwidths BWi. This is to en-
sure that lifetimes of narrow operations are not minimized at the
cost of wide operations. Solving the set of constraints described
above gives a time slot assignment for all operations in the loop.
Now the space (resource) assignment can be performed by form-
ing a new ILP problem which includes all equations described in
Section 3.3. The objective function remains the same, given by
Equation (19). However, the values of time slots Xi,s and stages ki

obtained from time assignment phase are explicitly specified to the
ILP problem formed in the space assignment phase. Thus the sec-
ond phase problem size is reduced greatly, because only resource
assignments have to be computed.

4.3 Space and Time Decomposition
In this decomposition, the scheduling problem solved in two

phases, namely, FU assignment phase followed by time assignment

phase. This has the effect of optimizing the FU cost and shift reg-
isters’ width before optimizing the depth of shift register files.

In the ILP scheduler, the formulation for space assignment con-
sists of Equations (6) and (7). The objective function used in this
phase is

PN−1

j=0
Wj , where the Wj’s are given by Equation (15).

Thus, the FU assignment phase reduces the sum of widths of the
FUs. Note that this minimizes both the FU cost and the width of
shift register files. Now, the time assignment can be performed by
forming an ILP problem which includes all equations described in
Section 3.3, and explicitly specifying the values for Ri,j ’s obtained
from the FU assignment phase.

Figure 8 illustrates a negative effect of phase ordering the schedul-
ing problem into FU assignment followed by time assignment. Fig-
ure 8(a) shows part of the dataflow graph of a loop. There are
two 16-bit adds feeding subtract operations and a 32-bit add feed-
ing a subtract operation. Suppose the machine has a budget for 2
adders and 2 subtractors and let the subtract operations be identical
in width. The goal of FU assignment phase is to minimize the FU
costs. Figures 8(b) and 8(c) show two possible assignments which
result in the same FU cost of a 32-bit adder, a 16-bit adder and two
subtractors. The crucial difference however is that operation A is
assigned to the 32-bit adder in Figure 8(b) and the 16-bit adder in
figure 8(c). Note that both these assignments result in the same FU
cost, and there is no way for the FU assignment phase to differenti-
ate between these two solutions. Now consider the time assignment
phase. Suppose that, due to other data dependencies, the only possi-
ble time assignment is as shown in either of the Figures 8(b) or (c).
The separation of the operations due to the schedule in Figure 8(b)
results in 16×2+32×3 = 128 register bits. However, the sched-
ule in Figure 8(c) results only in 16 × 3 + 32 × 2 = 112 register
bits. Thus, phase ordering could result in some sub-optimality.

5. EXPERIMENTAL RESULTS
Loop kernels from several application domains are used to eval-

uate cost sensitive modulo scheduling. idct, dequant and dcacrecon
are loops from MPEG-4; fsed, sobel, and sharp are image process-
ing loops; blowfish and sha are used in encryption applications;
lyapunov is a mathematical kernel; and viterbi, fft, fir, and iir are
commonly used in signal processing. The sizes of the loops range
from 24 operations for iir up to 120 operations for idct. In gen-
eral, loops for these applications can have intra loop code and may
not be perfectly nested. For the experiments, we manually convert
the loop kernels to a single perfectly nested for loop. Only the
innermost loop is considered for modulo scheduling. The numbers
reported below correspond to hardware generated for the innermost
loop only.

For each benchmark, we use the compiler-directed loop acceler-
ator synthesis system described in Section 2. After FU allocation,
various cost sensitive scheduling algorithms are evaluated. From
the resulting schedules, the hardware datapath and control path
is generated and the resulting RTL is synthesized to obtain gate
counts. Synthesis is performed with the Synopsys design compiler
in 0.18µ technology. A 200-MHz clock rate is assumed.
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Figure 9: Hardware cost breakdown of loop accelerators synthesized using various scheduling techniques, relative to naı̈ve scheduler.

The ILP scheduler is used for most experiments; however, the
BNB scheduler is used for the experiments that vary the cost ob-
jectives or partitioning method. The two schedulers are both exact
solutions; thus, we do not compare them with each other. Their use
in certain experiments is a software engineering decision as some
experiments are more amenable to one formulation or the other.

The first experiment, shown in Figure 9, evaluates the effective-
ness of the different decomposition methods in reducing hardware
cost. The baseline in this experiment is the hardware resulting
from the naı̈ve, iterative modulo scheduler [27] followed by a stage
scheduling postpass [9] as implemented in the Trimaran compiler
framework [29], and is represented by 1.0. This baseline result is
shown by the first bar of each benchmark; all bars are divided into
three segments, representing the contribution of MUXes, storage,
and FUs to the overall cost. The remaining bars are as follows: the
second bar shows the greedy algorithm described in Section 3.1;
the third is the partitioned scheduler described in Section 4.1, us-
ing the priority-based partitioning method with a set size of 16 op-
erations; the fourth is the time-space decomposition described in
Section 4.2; the fifth is the space-time decomposition described in
Section 4.3; and the sixth bar shows the optimal solution. Note that
for some large benchmarks (idct and viterbi) this value could not be
obtained due to the problem complexity, emphasizing the need for
problem decomposition. The number of interconnect wires relative
to the naı̈ve scheduler is also shown in this figure as lines superim-
posed on the bars.

In this graph, FU cost does not differ significantly across sched-
ulers. This is because FU capabilities are fixed prior to scheduling
and most schedules result in the same or similar FU cost. The over-
all gate savings is significant in many benchmarks. The time-space
decomposition scheduling achieves gate savings of 42% for sharp.

The greedy scheduler achieves only 5% gate savings on average
and sometimes performs worse than the naı̈ve scheduler. This is be-
cause it considers only one operation at a time and can be trapped
in local minima. The average gate savings achieved by the par-
titioned, time-space and space-time scheduling methods are 8%,
19% and 20% respectively. In general, the time-space and space-
time decomposition methods perform well as they are able to con-
sider all operations at once. This is an advantage because the final
machine cost is due to the combined effects of all operations rather
than individual scheduling decisions. The partitioned cost sensitive
scheduler results in slightly more gates than the naı̈ve scheduler for
some benchmarks like fsed, dcacrecon, and blowfish. This is due
to the locally greedy nature of the decomposition. Also, for large
benchmarks, the fixed-sized operation sets make up smaller frac-
tions of the whole loop and thus the algorithm becomes greedier as

it “sees” less of the loop at once.
The optimal scheduler achieves 27% savings over the naı̈ve sched-

uler. For some benchmarks (iir, sha) the partitioned scheduler per-
forms near optimal. The time-space and space-time decomposed
schedulers are able to achieve near optimal for many benchmarks
while only requiring a fraction of the runtime. Both time-space and
space-time schedulers produce high quality solutions and can prac-
tically handle large problem sizes. Thus, we believe these meth-
ods to be the best choices for accelerator synthesis. The two per-
form differently according to the application characteristics: space-
time performs better for loops with more bitwidth variation (sobel,
viterbi) while time-space performs better for loops with more reg-
ister lifetime variation (blowfish, idct).

Generally the number of wires decreases as gate count decreases.
On average, the wire savings achieved for the three decomposed
scheduling methods are 7%, 8%, and 10% for partitioned, time-
space, and space-time respectively. In many cases, the wire cost
of the optimal solution is higher than the wire cost for one of the
decomposed solutions; this is because the optimal scheduling for-
mulation does not account for wire cost.

The next experiment shows the effect of changing the hardware
cost objective. The objective discussed thus far has been minimiz-
ing the sum of logic (storage and FUs) and wires. The weights
of these components can be modified; for example, if interconnect
cost is a dominating factor, the weight of the interconnect wires
can be increased as a fraction of overall cost. The BNB scheduler
can naturally accommodate these varying cost components. Fig-
ure 10 shows the breakdown of FU, storage, MUX, and wire costs
relative to the baseline which optimizes the sum of these compo-
nents. Each curve represents the machine resulting from scheduling
with a certain cost objective; optimizing wires alone and optimiz-
ing logic gates (storage + FU) alone are presented. In Figure 10(a),
iir is shown; when optimizing for wires, the cost of storage in-
creases while wire cost decreases slightly. Conversely, optimizing
for gates reduces the storage cost but increases wires slightly. Fig-
ure 10(b) shows the sha benchmark; interestingly, optimizing for
gates reduces the number of wires. This is a product of the problem
decomposition, which is imperfect – the baseline scheduler is un-
able to exploit wire sharing even though the gate optimizing sched-
uler happens to do so successfully. Figure 10(c) shows the aver-
age across all benchmarks; note that the wire optimizing scheduler
did not save wires on average (though the wire count remains low).
This is because jointly optimizing both gates and wires naturally re-
sults in good wire sharing (as fewer connections are made between
fewer logic gates), and optimizing only wires does not improve on
this for most benchmarks.
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Figure 10: Effect of different cost objectives on (a) iir, (b) sha, and (c) average across all benchmarks.
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Figure 11: Effect of partition size on hardware cost.

To show the effect of set size on the partitioned scheduler dis-
cussed in Section 4.1, Figure 11 shows the hardware cost of schedul-
ing the sobel, fft, and sharp benchmarks with varying set sizes. The
set size is varied from 3 operations per set up to “full”, where all
operations are in one set. Each graph shows four lines, represent-
ing the FU, MUX, storage, and total gate costs at each set size.
First, note that for these benchmarks, FU cost remains largely con-
stant as there is little bitwidth variation among the data values, and
no width specialization is performed. Second, the storage cost is
where the scheduler is able to take the most advantage of larger
set sizes. Third, the hardware cost decreases as set size increases,
closely tracking the storage cost decrease. As expected, with larger
set sizes, the scheduler is able to exploit hardware sharing across
more operations at once. However, the overall cost generally nears
optimal before the partition size becomes very large. For example,
for sobel, a partition size of 15 gives a gate cost within 6% of opti-
mal. Thus, the scheduler is often able to obtain good results while
partitioning the operations into small sets.

In the ILP scheduler, CPLEX was used to solve the ILP formu-
lations. A timelimit of 6 hours was enforced for the ILP formu-
lations leading to fully optimal solutions. CPLEX reports the best
solution seen so far when the timelimit expires. Thus the numbers
reported for the optimal solution in Figure 9 corresponds to this
best solution. For the time-space and space-time decompositions,
CPLEX runtimes were between 30 seconds for the smaller bench-
marks like fir to 2 hours for the larger benchmarks like idct and
viterbi. The CPLEX runtimes for partitioned ILP formulation
were less than a second for smaller partitions sizes and a maxi-
mum of 80 minutes for the bigger partition sizes, irrespective of
the benchmarks. Note that the time taken by the rest of the com-
piler phases is non-significant (less than a minute) compared to the
CPLEX runs.

For the partitioned scheduler, various partitioning strategies are
investigated as discussed in Section 4.1.1. Figure 12 shows the
resulting hardware cost of various partitioning methods for select
benchmarks and the overall average. A partition size of 8 is used
in these experiments. rand refers to random partitioning and usu-
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Figure 12: Cost breakdown for various partitioning methods.

ally performs worse than the naı̈ve, cost unaware scheduler. prio
(priority-based) is the best on average, and is the method used
in other experiments involving the partitioned scheduler. mincut
refers to a standard graph partitioner which attempts to minimize
edge cuts; we use the Metis [16] partitioner. This method can per-
form poorly as it does not account for hardware cost. sim (similarity-
based) and sim-w (similarity-based with waste accounting) perform
better than mincut but are hampered by backtracking effects as dis-
cussed in Section 4.1.2. Note that not all benchmarks could be
scheduled using all partition methods (due to backtracking effects),
so the cost average includes only benchmarks that could be sched-
uled using all methods. Thus, the average cost of prio is not the
same as in Figure 9.

6. CONCLUSION
This paper addresses the problem of cost sensitive modulo schedul-

ing in a loop accelerator synthesis system. Scheduling decisions
must be made with the goal of decreasing the cost of hardware that
is generated from the final schedule. Traditional modulo sched-
ulers are not suitable in this context as they are unaware of the ef-
fect of scheduling decisions on hardware cost. Two exact solutions,
branch-and-bound and ILP, are presented to solve this problem. In
addition, three methods of decomposing the problem are presented



which allow the algorithm to solve realistic problems. The decom-
position techniques work either by partitioning the dataflow graph
into smaller subgraphs and optimally scheduling the subgraphs, or
by splitting the scheduling problem into two phases, time slot and
resource assignment. All decomposition methods were success-
ful at making increasing problem sizes tractable, and depending on
the application, different decomposition methods performed better
than others. Since the final cost depends on the combined effects of
all operations, the time-space and space-time methods, which con-
sider all operations together, worked best. Overall, cost sensitive
modulo scheduling increases hardware efficiency of automatically
synthesized loop accelerators by an average of 8–20%, with indi-
vidual savings of up to 42% over a naı̈ve scheduler.

7. ACKNOWLEDGMENTS
Thanks to Nathan Clark and to the anonymous referees who

provided excellent feedback. This research was supported in part
by ARM Limited, the National Science Foundation grants CCR-
0325898 and CCF-0347411, and equipment donated by Hewlett-
Packard and Intel Corporation.

8. REFERENCES
[1] E. R. Altman and G. A. Gao. Optimal modulo scheduling through

enumeration. International Journal of Parallel Programming,
26(3):313–344, 1998.

[2] J. Babb et al. Parallelizing applications into silicon. In Proc. of the
7th IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 70–80, Apr. 1999.

[3] S. Bakshi and D. Gajski. Components selection for high performance
pipelines. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 4(2):182–194, June 1996.

[4] K. Bondalapati et al. DEFACTO: A design environment for adaptive
computing technology. In Proc. of the Reconfigurable Architectures
Workshop, pages 570–578, Apr. 1999.

[5] T. Callahan, J. Hauser, and J. Wawrzynek. The Garp architecture and
C compiler. IEEE Computer, 33(4):62–69, Apr. 2000.

[6] A. E. Eichenberger and E. Davidson. Efficient formulation for
optimal modulo schedulers. In Proc. of the SIGPLAN ’97 Conference
on Programming Language Design and Implementation, pages
194–205, June 1997.

[7] A. E. Eichenberger, E. Davidson, and S. G. Abraham. Minimum
register requirements for a modulo schedule. In Proc. of the 27th
Annual International Symposium on Microarchitecture, pages 75–84,
Nov. 1994.

[8] A. E. Eichenberger, E. Davidson, and S. G. Abraham. Optimum
modulo schedules for minimum register requirements. In Proc. of the
1995 International Conference on Supercomputing, pages 31–40,
July 1995.

[9] A. E. Eichenberger and E. S. Davidson. Stage scheduling: A
technique to reduce the register requirements of a modulo schedule.
In Proc. of the 28th Annual International Symposium on
Microarchitecture, pages 338–349, Nov. 1995.

[10] M. Gokhale and B. Schott. Data-parallel C on a reconfigurable logic
array. Journal of Supercomputing, 9(3):291–313, Sept. 1995.

[11] M. Gokhale and J. Stone. NAPA C: Compiler for a hybrid
RISC/FPGA architecture. In Proc. of the 6th IEEE Symposium on
Field-Programmable Custom Computing Machines, pages 126–137,
Apr. 1998.

[12] R. Govindarajan, E. R. Altman, and G. R. Gao. Minimizing register
requirements under resource-constrained rate-optimal software
pipelining. In Proc. of the 27th Annual International Symposium on
Microarchitecture, pages 85–94, Nov. 1994.

[13] M. Haldar et al. A system for synthesizing optimized FPGA
hardware from Matlab. In Proc. of the 2001 International Conference
on Computer Aided Design, pages 314–319, Nov. 2001.

[14] J. Hammes et al. Cameron: High-level language compilation for
reconfigurable systems. In Proc. of the 8th International Conference

on Parallel Architectures and Compilation Techniques, pages
236–244, Oct. 1999.

[15] R. A. Huff. Lifetime-sensitive modulo scheduling. In Proc. of the
SIGPLAN ’93 Conference on Programming Language Design and
Implementation, pages 258–267, June 1993.

[16] G. Karypis and V. Kumar. Metis: A Software Package for Paritioning
Unstructured Graphs, Partitioning Meshes and Computing
Fill-Reducing Orderings of Sparce Matrices. University of
Minnesota, Sept. 1998.

[17] J. Lee, Y. Hsu, and Y. Lin. A new integer linear programming
formulation for the scheduling problem in data-path synthesis. In
Proc. of the 1989 International Conference on Computer Aided
Design, pages 20–23, 1989.

[18] J. Llosa et al. Swing modulo scheduling: A lifetime-sensitive
approach. In Proc. of the 5th International Conference on Parallel
Architectures and Compilation Techniques, pages 80–86, 1996.

[19] J. Llosa and S. Freudenberger. Reduced code size modulo scheduling
in the absence of hardware support. In Proc. of the 35th Annual
International Symposium on Microarchitecture, pages 99–110, 2002.

[20] S. Mahlke et al. Bitwidth cognizant architecture synthesis of custom
hardware accelerators. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, 20(11):1355–1371, Nov.
2001.

[21] S. Memik et al. Global resource sharing for synthesis of control data
flow graphs on FPGAs. In Proc. of the 40th Design Automation
Conference, pages 604–609, June 2003.

[22] S. Note, W. Geurts, F. Catthoor, and H. D. Man. Cathedral-III:
Architecture-driven high-level synthesis for high throughput DSP
applications. In Proc. of the 28th Design Automation Conference,
pages 597–602, June 1991.

[23] I.-C. Park and C.-M. Kyung. Fast and near optimal scheduling in
automatic data path synthesis. In Proc. of the 28th Design
Automation Conference, pages 680–685, 1991.

[24] N. Park and F. Kurdahi. Module assignment and interconnect sharing
in register-transfer synthesis of pipelined data paths. In Proc. of the
1989 International Conference on Computer Aided Design, pages
16–19, Nov. 1989.

[25] N. Park and A. C. Parker. Sehwa: A software package for synthesis
of pipelines from behavioral specifications. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
7(3):356–370, Mar. 1988.

[26] P. G. Paulin and J. P. Knight. Force-directed scheduling for the
behavorial synthesis of ASIC’s. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems,
8(6):661–679, June 1989.

[27] B. R. Rau. Iterative modulo scheduling: An algorithm for software
pipelining loops. In Proc. of the 27th Annual International
Symposium on Microarchitecture, pages 63–74, Nov. 1994.

[28] R. Schreiber et al. PICO-NPA: High-Level Synthesis of
Nonprogrammable Hardware Accelerators. Journal of VLSI Signal
Processing, 31(2):127–142, 2002.

[29] Trimaran. An infrastructure for research in ILP, 2000.
http://www.trimaran.org.

[30] C. Tseng and D. P. Siewiorek. FACET: A procedure for automated
synthesis of digital systems. In Proc. of the 20th Design Automation
Conference, pages 566–572, June 1983.

[31] M. Wazlowski et al. PRISM-II compiler and architecture. In Proc. of
the 1st IEEE Symposium on Field-Programmable Custom Computing
Machines, pages 9–16, Apr. 1993.


