
Bridging the Computation Gap Between Programmable Processors
and Hardwired Accelerators

Kevin Fan∗ Manjunath Kudlur† Ganesh Dasika Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan
Ann Arbor, MI 48109

{fank, kvman, gdasika, mahlke}@umich.edu

Abstract

New media and signal processing applications demand ever
higher performance while operating within the tight power
constraints of mobile devices. A range of hardware imple-
mentations is available to deliver computation with varying de-
grees of area and power efficiency, from general-purpose pro-
cessors to application-specific integrated circuits (ASICs). The
tradeoff of moving towards more efficient customized solutions
such as ASICs is the lack of flexibility in terms of hardware
reusability and programmability. In this paper, we propose a
customized semi-programmable loop accelerator architecture
that exploits the efficiency gains available through high levels
of customization, while maintaining sufficient flexibility to exe-
cute multiple similar loops. A customized instance of the loop
accelerator architecture is generated for a particular loop and
then the data and control paths are proactively generalized in
an efficient manner to increase flexibility. A compiler mapping
phase is then able to map other loops onto the same hardware.
The efficiency of the programmable accelerator is compared
with non-programmable accelerators and with the OpenRISC
1200 general purpose processor. The programmable accelera-
tor is able to achieve up to 34x better power efficiency and 30x
better area efficiency than a simple general purpose processor,
while trading off as little as 2x power and area efficiency to the
non-programmable accelerator.

1. Introduction

In the coming years, the deployment of untethered comput-
ers will increase rapidly. The prime example of such a device is
currently the cell phone, but in the near future we expect to see
the emergence of new classes of such devices. These devices
will improve on the mobile phone by moving advanced func-
tionality, such as always-on Internet access, human-centric in-
terfaces with voice recognition, and high-definition video cod-
ing, into the device. These new devices will require higher
throughput and more energy-efficient computer systems to
meet application performance requirements, while still oper-
ating for long periods of time on a battery. For example, the
∗Currently with Parakinetics, Inc.
†Currently with NVIDIA Corporation.

projected data rates for 4G wireless data communication are
expected to increase 50 times over current 3G standards [27].

These performance and energy demands are in direct
conflict with an increasingly important characteristic, post-
programmability. High performance and low power can of-
ten be achieved using hardwired solutions, e.g., application-
specific integrated circuits or ASICs. Modern embedded sys-
tems generally employ ASICs for the most compute-intensive
tasks. However, a programmable solution offers several key
advantages. First, software implementations allow the applica-
tion to evolve in a natural way after the chip has been manu-
factured due to changes in the specification, bug fixes, or the
addition of new features. Second, multi-mode operation is en-
abled by running multiple different applications or variants of
applications on the same hardware. Third, time-to-market of
new devices is lower because the hardware can be re-used. And
finally, chip volumes are higher as the same chip can support
multiple products in the same family.

The tradeoffs between performance, power, and pro-
grammability are at the heart of the hardware implementation
choice that designers are forced to make. ASICs provide the
highest performance and lowest energy solutions for specific
problems. However, they offer little in the areas of programma-
bility and hardware re-use due to the hardwired nature of the
design. At the other end of the spectrum are processors and
DSPs. Processors offer full programmability and thus the abil-
ity to execute a wide range of applications. But, processors
offer poor energy efficiency and often cannot meet application
performance requirements. ASICs typically offer 100-1000x
more energy-efficiency for specific applications than proces-
sors. Middle-ground solutions offer the promise of high ef-
ficiency together with full programmability. However, they
often fall short of these goals. For instance, FPGAs achieve
extremely high performance for bit-level parallel computation.
But, the overhead of gate-level reconfigurability often causes
them to fall short in applications that have limited parallelism
or rely on more expensive computations, such as multiplies.
Application specific instruction-set processors (ASIPs) also
compromise between the flexibility of a processor and the ef-
ficiency of an ASIC by introducing customizations for specific
applications. However, they generally retain a high level of
programmability and do not approach the efficiency of ASICs.

A key question that this paper investigates is: How much

programmability is really required in a design? Programma-
bility is generally thought of as a binary issue - either a design
is programmable or not. Programmable designs support a wide
range of applications while hardwired designs support a single
algorithm implementation. An important insight is that semi-
programmable solutions may be enough for many embedded
designs. For example, video coding standards are typically de-
veloped years ahead of time by industrial consortiums [14].
These standards go through many rounds of development and
adjustment, but the core algorithm kernels often evolve at a rel-
atively slow rate. At the same time, domain-specific hardware
is often essential to achieve the necessary performance and
energy efficiency. And, this customized hardware is neither
appropriate nor efficient for applications outside the domain.
Therefore, providing universal programmability may have lit-
tle practical value.

Our approach is to push programmability into a highly cus-
tomized hardware substrate to retain the high performance and
energy efficiency of an ASIC, while offering a limited degree
of post-programmability. The starting point is a stylized loop
accelerator (LA) that is customized for a single application
loop nest [23, 9]. The LA is a direct hardware realization
of a modulo scheduled loop [22]. Each LA has a special-
ized datapath, including function units, register files, and in-
terconnect, and a simple controller driven by the initiation in-
terval of the schedule. We generalize the structure of the base
LA template to create a semi-programmable solution, termed
a programmable LA or PLA. However, the PLA datapath is
still highly specialized with point-to-point interconnect, fixed-
capability function units, and limited storage to retain its inher-
ent efficiency characteristics. Such a platform cannot execute
an arbitrary loop. Rather, the programmability objective is to
map loops with similar computation structure onto a common
hardware platform, such as two loops from the same applica-
tion domain or a single loop that has undergone small to modest
changes in composition.

This paper offers the following contributions:

• An analysis of the evolution of several media applications
to understand the programmability needs of customized
hardware.

• A parameterized template for a PLA is developed. The
template offers high degrees of customization to the tar-
get loop, while providing programmability for a range of
loops with similar computation structure.

• The performance, power efficiency, and programmabil-
ity of the resultant PLAs are evaluated and compared to
single-function LAs and the OR-1200 embedded proces-
sor for a range of compute-intensive kernels.

2. Motivation

2.1. Architecture Style vs. Efficiency

A wide range of architectures have been designed before
to address the problem of providing high performance com-
putation efficiently. These solutions maintain or sacrifice pro-
grammability to various degrees depending on the domain they
target. This section describes some of these solutions and

Programmability

P
e

a
k
 P

e
rf

o
rm

a
n

c
e

 (
M

IP
S

)

101

102

103

104

105

Inflexible Flexible

ASICs

GPPs

1000 MIPS/mW

0.1-1 MIPS/mW

FPGAs

DSPs
ASIPs

1-10 MIPS/mW

1-5 MIPS/mW

Domain

LAs

(RSVP, VEAL,

CGRAs)

5-10 MIPS/mW

Coarse-grain

Adaptable

Architectures

(RaPiD,

PipeRench)

10 MIPS/mW

PLAs

100 MIPS/mW

1-10 MIPS/mW

Figure 1: Comparison of peak performance, power efficiency, and
programmability of different architecture design styles.

motivates the need for our semi-programmable accelerators.
Figure 1 shows the peak performance achievable by different
architecture styles and their programmability and power effi-
ciency. The x-axis in Figure 1 indicates programmability of
different solutions. General purpose processors (GPPs) which
fall on the lower right corner of the figure are highly pro-
grammable solutions, but are limited in terms of the peak per-
formance they can achieve. Also, structures like instruction de-
coders and caches that are needed to support programmability
consume energy, resulting in very low computation efficiency
of about 1 MIPS/mW for Pentium M. On the other extreme
of the spectrum are ASICs. ASICs are custom designed for
a particular problem, without extraneous hardware structures.
Thus, ASICs have high computational density with hardwired
control, resulting in high computation efficiency up to 1000 to
10000 times more than GPPs. The space between these two
extremes is populated by different solutions that have varying
degrees of programmability.

Digital signal processors [25, 26, 18] increase computation
efficiency by providing specialized features that optimize ex-
ecution of signal processing algorithms. These features in-
clude special arithmetic operations like multiply-accumulate
and bit manipulation operations, hardware modulo addressing,
and memory architecture optimized for streaming data. A wide
range of DSP algorithms can be executed efficiently on these
processors efficiently. DSPs typically offer an order of magni-
tude increase in power efficiency.

Application specific instruction-set processors (ASIPs) are
processors with custom extensions for a particular application.
They can be quite efficient when running the applications for
which they are designed, and they are also capable of running
any other application, though with reduced efficiency. Exam-
ples include Tensilica [24], ARC [1], and Custom-Fit Proces-
sors [11]. Transport triggered architectures (TTAs) [5] define
another template for ASIPs. Their basic design resembles that
of a VLIW processor. However, TTAs expose more of the
microarchitecture, namely, the internal transport buses, to the
compiler. The efficiency of TTAs is increased by moving val-
ues directly between function units, thus reducing register file
accesses. The flexibility of TTAs is limited because of the

complex scheduling decisions needed in the compiler. Com-
putationally intensive code with well defined memory access
patterns map well to TTAs. MOVE32INT [6] and MAXQ [16]
are examples of instantiations of TTA.

Domain loop accelerators are designed to execute compu-
tation intensive loops present in media and signal processing
domains. Their design is close to a VLIW processor, but with
a much higher number of function units, and thus higher peak
performance. Very long instruction words in a control memory
direct all function units every cycle. However, domain LAs
have less flexibility than GPPs because only highly computa-
tionally intensive loops map well to them. Some examples of
architectures in this design space are VEAL [4], RSVP [3],
CGRAs [17, 21], and [15].

FPGAs have fine grain logic blocks that can be reconfig-
ured to perform various bit level logic and arithmetic functions.
The fine grain reconfigurability allows FPGAs to be very flex-
ible. Bit parallel computations in domains like encryption can
be performed very efficiently. However, complex integer and
floating point operations do not map well on to FPGAs. Thus,
for some domains, FPGAs are very flexible and highly effi-
cient.

Coarse-grain adaptable architectures have coarser grain
building blocks compared to FPGAs, but still maintain bit-level
reconfigurability. The coarser reconfiguration granularity im-
proves the computation efficiency of these solutions. However,
non-standard tools are needed to map computations onto them
and their success have been limited to the multimedia domain.
PipeRench [12], RaPiD [8] are some examples of coarse-grain
adaptable architectures.

The programmable solutions shown in Figure 1 are all “uni-
versally” programmable, allowing any loop to be mapped on to
them, although at varying degrees of efficiency. There is a wide
gap between the efficiency that can be achieved by ASICs and
the efficiency that can be achieved by these programmable so-
lutions. Section 2.2 shows that there are instances where there
is a narrow requirement of flexibility. Using any of these above
solutions is a overkill for these instances as these solutions sac-
rifice too much efficiency for the needed flexibility. We posi-
tion our PLAs in the design space where non-trivial amount of
programmability as well as the the high efficiency of ASICs
are required.

2.2. Programmability Case Study

As applications evolve over time, code changes are in-
evitable. Whether due to changing requirements, evolving
standards, bug fixes, or new features, software is constantly
in flux. With hardwired solutions, every time the code in an
accelerated loop changes, new hardware must be synthesized
even if the changes are small and the dataflow between opera-
tions within the loop is substantially similar. By adding some
programmability, the hardware can be made robust in the face
of such changes. By looking at some loops from real appli-
cations, we can get a feel for what kinds of changes typically
occur.

Figure 2 shows a loop from the faad2 application, which is
a commonly used free audio decoder for the Advanced Audio
Coding (AAC) standard. The figure shows that between revi-
sions 1.39 and 1.40 of the software, the loop has been modified
with the addition of an if-clause, while the rest of the loop re-

for(k=0; k<N4; k++) {
...
real = Z1[k][0];
img = Z1[k][1];

Z1[k][0] = real * sincos[k][0]
- img*sincos[k][1];

Z1[k][0] = Z1[k][0] << 1;
if(b_scale) {

Z1[k][0] = Z1[k][0] * scale;
}

}

for(k=0; k<N4; k++) {
...
real = Z1[k][0];
img = Z1[k][1];

Z1[k][0] = real * sincos[k][0]
- img*sincos[k][1];

Z1[k][0] = Z1[k][0] << 1;
}

V ers ion 1.39 V ers ion 1.40

Figure 2: Feature addition to mdct.c in faad2.

for(k=0; k<N4; k++) {
...
uint16_t n = k << 1;
ComplexMult(...);

X_out[n] = RE(x);
X_out[N2 - 1 - n] = -IM(x);
X_out[N2 + n] = IM(x);
X_out[N - 1 - n] = -RE(x);

}

for(k=0; k<N4; k++) {
...
uint16_t n = k << 1;
ComplexMult(...);

X_out[n] = -RE(x);
X_out[N2 - 1 - n] = IM(x);
X_out[N2 + n] = -IM(x);
X_out[N - 1 - n] = RE(x);

}

V ers ion 1.33 V ers ion 1.34

Figure 3: Bug-fix to mdct.c in faad2.

mains the same. This represents the addition of a new feature
that requires certain new code in the loop to be guarded under
a flag. To implement the body of the if-clause, the hardware
must have function units capable of performing load, multi-
ply, and store. As these operations are already present else-
where in the loop, the new code should ideally be executable
on the same hardware, although the level of performance may
be lower because the same hardware resources are being used
to execute more operations. The additional control flow should
not present a problem because the loop can be if-converted, and
a compare operation is not required inside the loop because the
if-condition is live-in.

Figure 3 shows another loop from the same application. In
this case, the code changes from version 1.33 to 1.34 consist
of sign changes on the right hand side of some assignment
statements, as might occur in a bug fix. These sign changes
correspond to dataflow changes in the loop, as some values
now must go through a subtractor, while other values should
no longer go through a subtractor. Alternatively, the dataflow
changes could occur post-negation, with the same values being
stored to different addresses. In either case, the number of op-
erations does not change, but the communication between op-
erations changes, and the hardware should be flexible enough
to accommodate this.

It can be seen that loops in real applications undergo minor
changes over time. Typically, the bulk of the computation in
the loop remains the same, but small changes need to be made
to fix bugs or implement new features. Since the changes do
not alter the loops significantly, it is possible to design cus-
tom hardware to accelerate the original loop, supporting just
enough programmability to continue to accelerate the loop ef-
ficiently as the source code evolves.

3. Single-function Accelerator

A single-function LA is used as a baseline in this paper. This
accelerator is designed to execute a specific loop at a given per-
formance level, and is not programmable. Then, starting from

* MEM+BR

Local

Mem

Control

Point−to−point Connections

II D
at

a
In

D
at

a
O

u
t

...
Start

Done

Data In

SRF

CRF

Figure 4: Template for single-function loop accelerator.

the single-function baseline, the datapath is generalized to cre-
ate a more programmable design. The goal is to remove or
relax the features of the architecture that are most limiting in
terms of programmability, while retaining the efficiency avail-
able through customization. In this section, the architecture
for the single-function accelerator is described. The datapath
generalizations are described in the next section.

3.1. Accelerator Design

Figure 4 shows the hardware schema for the single-function
LA [23, 9]. The LA is designed to efficiently implement a
modulo schedule in hardware. Modulo scheduling is a method
of overlapping iterations of a loop to achieve high through-
put [22]. The performance of the schedule is determined by
the initiation interval (II), or the number of cycles between
successive iterations of the loop; thus, a lower II corresponds
to higher throughput. The modulo schedule contains a kernel
that repeats every II cycles and may include operations from
multiple loop iterations.

The LA is designed to exploit the high degree of parallelism
available in modulo scheduled loops with a large number of
function units (FUs). Each FU performs a specific set of func-
tions that is tailored for the particular loop. Each FU writes to a
dedicated shift register file (SRF); in each cycle, the contents of
the registers shift downwards to the next register. Wires from
the registers back to the FU inputs allow data transfer from
producers to consumers. Multiple registers may be connected
to each FU input; a multiplexer (MUX) is used to select the
appropriate one. Since the operations executing in a modulo
scheduled loop are periodic, the selector for this MUX is es-
sentially a modulo counter. In addition, a central register file
(CRF) holds static live-in register values that cannot be stored
in the SRFs.

The schema described is a template that is customized for
the particular loop being accelerated. The number, types, and
widths of the FUs, the widths and depths of the SRFs, and the
connections from the SRFs to the FUs are all determined from
the loop. During synthesis, the loop is first modulo scheduled
to meet a given performance requirement, and then the details
of the LA datapath are determined from the communication
patterns in the scheduled loop.

The control path for the single-function LA consists of a
finite state machine with II states corresponding to each of time
slots in the kernel of the modulo schedule. In each state, control
signals direct the execution of FUs (for FUs capable of multiple
operations) and control the MUXes at the FU inputs.

Figure 5(a) shows a portion of the loop from the FIR fil-
ter application. Assuming the given II is 2, the LA will have
two adders, one memory unit, and one multiplier. When the
operations in the loop are scheduled as shown in Figure 5(b),
the resulting single-function LA hardware will be as shown in
Figure 5(c). The connectivity within the LA is limited because
only those connections required to support this schedule are
created. For example, data for the multiplier can only come
from the memory unit.

Now, assume that a second loop (Figure 5(d)) is to be
mapped to the same LA. This second loop is somewhat similar
to the first, in that it also contains adds, loads, and multiplies.
However, the functionality is different, and the communication
patterns between operations are different as well. The next sub-
section discusses the LA features that make it difficult to map
the second loop onto the LA.

3.2. Limitations to Programmability

Since an LA is designed for a specific loop, its datapath is
customized for the specific computation and communication
needs of the scheduled operations in that loop. In fact, this
is how the LA gets its efficiency wins: point-to-point connec-
tions, limited storage, and customized functionality. However,
the same datapath features that lead to an efficient LA also re-
strict its flexibility:

Point-to-point connectivity. A major area where the
LA achieves efficiency wins is the point-to-point connectiv-
ity scheme. Only those connections that are needed to sustain
the producer-consumer communications in the modulo sched-
ule exist in the single-function LA. This allows the number of
execution units to be scaled up, but not all FUs are able to com-
municate directly with other FUs, making it difficult to map
new applications onto the hardware. Furthermore, the connec-
tions are port-specific, so even if two FUs are able to commu-
nicate with each other, it may not be possible to route a value
from the correct producer port to the correct consumer port. In
Figure 5, Loop 2 contains a dataflow edge from an ADD (oper-
ation 3) to a MUL (operation 4), which did not exist in Loop 1,
thus there is no corresponding connection in the LA datapath.

Shift register files. The nature of the SRFs limits the flex-
ibility of the hardware. Because they have a fixed number of
entries, any value produced by the corresponding FU must be
consumed within a certain number of cycles, or it will “fall
off” the end of the SRF. In addition, the read and write ports of
the SRFs are not addressable. Instead, specific SRF entries are
connected to consuming FUs, so the values can only be read at
certain times. In the example of Figure 5, the multiplier has two
registers at its output because its result is read two cycles after
it is computed. Only the second register can be read, because
Loop 1 requires just this. Thus, Loop 2 cannot be scheduled
such that the result of a multiply is used in the next cycle.

Functionality. The opcode repertoire of each FU is cus-
tomized for a given loop. If, for example, an LA is built for a
loop that does not contain any shift operations, no FUs will be
capable of performing shifts. If a new loop contains a shift op-
eration, it will not be possible to map the new loop onto the LA.
In the example of Figure 5, the hardware contains no subtrac-
tors because Loop 1 did not contain any subtract operations;
thus, Loop 2 cannot be mapped onto the LA.

To understand these limitations more generally, Figure 6

++

LD LD

*

+

+

LD

*

+

−

1

2 3

4

5 6 *

(d) Loop 2

1
2

0
1

M *+ +

4

4
3

1

3 4

6

2

5

(b) Loop 1 Schedule

65

(a) Loop 1

(c) LA Hardware

Time FU0 FU1 FU2 FU3

Figure 5: LA scheduling and synthesis example.

0

0.5

1

1.5

2

2.5

3

3.5

0 1 2 3 4 5 6 7 8 9 10

Graph Difference

R
e

la
ti

v
e

 I
I
In

c
re

a
s

e

Functionality

Connectivity

Registers

Unrestricted

8

Figure 6: Average performance degradation resulting from LA datap-
ath restrictions.

shows the effects of these datapath restrictions on the pro-
grammability of LAs created for several compute-intensive
loops.1 A number of synthetic loops are generated by randomly
applying transformations to each initial loop. As more trans-
formations are applied, the loop becomes progressively more
different from the original loop, and it becomes harder to map
the loop onto hardware designed for the original loop. The
number of transformations (and hence a measure of difference
from the original loop) is shown along the x-axis. When a loop
is too different from the original loop, scheduling will fail at
a certain II; the II is then incremented and scheduling is at-
tempted again. Often, scheduling succeeds with a larger II be-
cause of the greater number of scheduling slots available. The
y-axis shows the amount of this performance degradation in
terms of II increase.

The graph shows four curves. The lowest curve, labeled
“unrestricted,” is the baseline: a generalized loop accelera-
tor without the datapath restrictions described previously. II
increases are primarily due to resource limitations; the unre-
stricted datapath has a fixed number of general FUs, but may
not sustain the original II as more operations are added to the
loop via the transformations. The curve labeled “registers” rep-
resents the LA with limited-size SRFs, but no other restric-
tions. Similarly, “connectivity” is the LA with point-to-point,
port-specific connections and no other restrictions, and “func-
tionality” is the LA with customized FUs but no other restric-
tions. In the latter two cases, the high II increase of infinity

1See Section 5 for details on the experimental methodology.

indicates that scheduling failed for all of the test cases at all
IIs, due to either unsupported functionality or connectivity.

It can be seen that although these datapath features allow the
LA to be very efficient, they limit its programmability. Map-
ping a new loop onto an LA can easily result in performance
degradation or failure when the new loop modestly differs from
the original loop. In particular, Figure 6 shows that the largest
degradations, or even failures, are caused by the limited func-
tionality and connectivity of the datapath. The next subsection
will discuss the changes made to the LA datapath to improve
its programmability and better support the execution of other
loops.

4. Programmable Loop Accelerator

4.1. From Single-function LA to Programmable LA

To build a programmable loop accelerator (PLA), the dat-
apath features of the single-function LA that are least flexible
should be generalized in a power and area efficient manner. Ta-
ble 1 summarizes the key datapath characteristics of the PLA.
The rest of this section will describe these in more detail.

Generalized functionality. The LA is limited by the op-
codes supported by the FUs. FUs can be generalized with low
additional cost by adding functionality that is complementary
to existing functionality. For example, any adder can be gen-
eralized to support both addition and subtraction with low ad-
ditional cost. Other generalizations include broadening the op-
code repertoire of logical, memory, comparison, and shift FUs
to include all variants of those respective opcodes (e.g. all shift
FUs are expanded such that they are capable of left and right
arithmetic and logical shifts). The costs of FU generalization
include increased hardware area and power consumption, as
well as increased encoding requirements for the larger number
of supported opcodes. For the example second loop of Fig-
ure 5, there is a subtract operation that is not supported by
the single-function LA. By generalizing the adders to adder-
subtractors, the functionality of the second loop will be sup-
ported.

Global connectivity. Two techniques are used to relax the
constraints of point-to-point connectivity. First, all FUs are
given the ability to perform a MOV; that is, copy one of its in-
puts to its output. This allows values to be transferred from a
source FU to a destination FU via intermediate FUs. Second, a
low-bandwidth bus is created that connects all FUs in the accel-

Restriction LA Characteristic Application Change to Support PLA Approach
Functionality Custom FU repertoire New opcodes Low-cost FU generalization

Connectivity Point-to-point connections New communication patterns MOVs, Low-bandwidth bus
Port-specific connections Swap input operands FU input MUXes

Storage Limited size Longer variable lifetimes Rotating register filesNo addressability New communication patterns

Control
Staging predicates Operations in different stages Predicate bus
Hardwired control Any change Control memory
Hardwired literals Different literals Literal file

Table 1: Summary of PLA architecture changes to address programmability limitations of the single-function LA.

erator.2 This allows a single value transfer from any FU to any
other FU each cycle. The bus is scheduled by the compiler and
thus is not arbitrated. Such a global bus can be viewed as a fall-
back communication path, ensuring that communication from
any FU to any other FU is possible. Thus, the programmabil-
ity of a given accelerator (in terms of the number of different
loops that can be mapped onto it) increases significantly; how-
ever, since the bus is low bandwidth, if a loop requires a large
number of bus transfers, it will not be possible to achieve a
schedule with low II (high performance).

The global bus incurs additional hardware cost as each reg-
ister file contains a new read port which can place a value onto
the bus, and each MUX contains a new input which allows the
FU to read the value from the bus in addition to the existing
point-to-point connections.

In Loop 2 of Figure 5, two of the communication paths are
not supported by the single-function LA. Specifically, the edge
from operation 3 to operation 4 cannot be mapped onto the
LA because there is no wire from an adder to a multiplier, and
the edge from operation 4 to operation 6 cannot be mapped
because there is no wire from a multiplier to a multiplier. The
3 → 4 communication can be handled by inserting a MOV
to pass the value from the adder through the memory unit to
the multiplier. The 4 → 6 communication can be handled by
passing the value on the global bus.

Figure 7 shows the results of the datapath generalization so
far (registers have been omitted from the hardware diagrams
for clarity). FUs have been generalized, MOVs are supported,
and a global bus has been added. Loop 2 is now able to execute
on the LA originally designed for Loop 1, using the II=2 sched-
ule shown. The remainder of this section discusses additional
datapath restrictions that are not shown in this example.

Port swapping. In the single-function LA, each input port
of an FU has its own connections to specific register files. To
schedule another operation onto that FU, both of the opera-
tion’s source operands must be routable from where they are
produced to the corresponding input ports of the FU. Schedul-
ing can fail if either routing is not possible. If the operation is
commutative, then swapping the sources of the operation may
result in a successful schedule; however, to relax this constraint
more generally, the actual physical connectivity within the dat-
apath should be increased. One way of accomplishing this is to
introduce an additional level of MUXing at the FU input ports
such that the ports can swap values. However, modeling this
two-level MUX is challenging for the compiler, as it must en-
sure during scheduling that invalid combinations do not occur.

2This bus may be pipelined or organized in a hierarchical manner for larger
accelerators.

Thus, a more general strategy is to widen the input MUXes to
allow each input port to read its operand from any connection
originally made to either port.

Rotating register files. The flexibility-limiting aspects of
the SRFs can be addressed by replacing them with rotating
register files (RRFs) [7]. RRFs are similar to standard address-
able register files, with the extension that the physical register
address is a function of the input address and a base register,
which is decremented once per iteration. RRFs are well suited
for modulo scheduled loops because this renaming mechanism
overcomes cross-iteration register overwrites. The replacement
of SRFs by RRFs improves programmability, but it introduces
some additional hardware, namely base registers, adders, and
decoders for the read and write ports. In addition, the sizes of
the RRFs are rounded up to the next power of two to facili-
tate efficient implementation of register rotation. However, the
RRFs remain small (thus the width of base registers and adders
is only a few bits per register file) and distributed.

An additional cost of replacing SRFs with RRFs is in the
control path: each read and write port now requires an address,
whereas the hardwired SRFs required no addressing at all.

Global staging predicate. The LA is a hardware imple-
mentation of a modulo scheduled loop; as such, operations in
the loop kernel are scheduled in various stages, and must be
controlled by guarding predicates as the software pipeline fills
and drains. This guarding predicate is produced by the branch
unit and consumed by all other FUs. In the single-function LA,
specific connections are made between registers in the branch
unit’s output SRF and the other FUs. This effectively restricts
the stage in which operations on a given FU may be scheduled.
To generalize this aspect of the hardware, staging predicates
are broadcast over a bus to all FUs, significantly increasing
scheduling flexibility. The additional cost is low because each
predicate is a single bit, and the number of predicates required
is just the number of stages in the schedule.

Control memory. In the single-function LA, the datapath
is directed by hardwired control signals generated by a finite
state machine. To allow programmability, the datapath should
instead be directed by signals from a control memory. The size
of the control memory depends on the number of FUs, MUXes,
and registers in the design as well as on the maximum allowed
II. In addition, in the single-function LA, literal operands are
hardwired. Clearly, this does not allow a loop with different
literals to be mapped to the hardware. By placing literals into
a central literal file, different literal values may be used for
different loops.

LA Hardware

M *+ +

+/− +/−M *

PLA Hardware

Bus

+

LD

*

+

−

0
1

6
42

MOV1
3

1

2 3

4

5 6 *

Loop 2

Bus usage required

MOV required

Loop 2 Schedule

Time FU0 FU1 FU2 FU3 Bus

x
5

Figure 7: PLA generalization and scheduling example.

Local

Mem

D
at

a
In

D
at

a
O

u
t

Data In

CRF

Data In

Start

Done

RR RR RRRR

II
Control

Memory

...BR MEM+/− */+/−

Data Bus

Predicate Bus

Point−to−point Connections

Literal File

Figure 8: Template for programmable loop accelerator.

4.2. PLA Architecture Template

Figure 8 shows the template for the PLA, generalized from
the datapath shown in Figure 4. The accelerator is designed
for a specific loop at a specific throughput, but contains a more
general datapath than the single-function LA to allow different
loops to be mapped onto the hardware. FUs have been gen-
eralized to support more functionality; a low-bandwidth bus
connects all FUs; the staging predicate is broadcast over a bus;
SRFs are replaced with small, distributed RRFs; and the FU
input MUXes are widened. The area and power overheads of
these changes will be discussed in Section 5.

The loop accelerator design flow is augmented to support
PLAs. During the creation of the hardware, the datapath is cus-
tomized for a given loop but is also generalized using the tech-
niques described above. Additional control logic is generated
to support the programmable features of the LA. A scheduler-
oriented description of the hardware is then generated, contain-
ing both information about the datapath as well as the control
signals required to direct the datapath. This machine descrip-
tion can then be used by the compiler to map a new loop onto
the same hardware.

4.3. Mapping Loops onto a PLA

Conventional modulo schedulers assume a processor with a
datapath that is largely homogeneous. For example, FUs are
typically ALUs capable of all integer operations, and a central-
ized register file allows data transfers from any producer FU to
any consumer FU. Multicluster VLIWs and CGRAs have more
distributed resources, but these architectures are still regular,
and scheduling techniques for them exist [17, 19]. Conversely,
the loop accelerator datapath contains a significant amount of

heterogeneity. FUs have a subset of functionality that is tai-
lored for the loop being accelerated, and connections between
FUs are point-to-point and highly irregular. A scheduler tar-
geting an accelerator must accommodate this heterogeneity.

There are various possible approaches to mapping loops
onto the PLA. Due to the sparse solution space, traditional
operation-centric schedulers (heuristic methods that schedule
one operation at a time) are unsuccessful, because they are
likely to be trapped in local minima. Simulated annealing [17]
is an attractive technique as it can effectively search the large
space of possible schedules to find a valid solution. Another
approach is to formulate the mapping problem as a set of
constraints, and use a constraint solver to find a valid sched-
ule [10]; this is the approach used in this paper. First, MOVs
are inserted into the loop’s dataflow graph to handle producer-
consumer relations that are not in the LA. Then, the assign-
ment of operations to FUs and time slots is formulated as a
satisfiability problem and solved. As in conventional modulo
scheduling, allocation of rotating registers is performed after
assignment of operations to FUs and time slots. If the loop
cannot be scheduled at a given II, or if rotating register alloca-
tion fails, the II is increased and another scheduling attempt is
made. Details about the modulo scheduler can be found in [10].

5. Experimental Results

5.1. Overview

Loop kernels from various signal processing (fir, fft,
fmradio, bfform), media (dcac, dequant, fsed,
sobel), and linear algebra (heat, lu) applications are used
to evaluate the efficiency and programmability of the PLA ar-
chitecture. The loops range in size from 17 operations up to
60 operations. For each loop, the synthesis system is used
to generate Verilog corresponding to both single-function and
programmable LAs. Synthesis and placement are performed
on the Verilog with Synopsys Design Compiler and Physical
Compiler using a 0.13µm standard cell library and a target
frequency of 200 MHz. Power analysis is performed using
PrimeTime PX after the design has been back-annotated with
information about parasitics and switching activity. Three ex-
periments are shown: first, the PLA is compared with single-
function LAs as well as with the OR-1200 RISC proces-
sor [20], which is a simple, single-issue core with a 5-stage
in-order pipeline. This experiment examines the tradeoffs in
power efficiency when moving from single-function to semi-
programmable to fully programmable hardware. The second

0

0.2

0.4

0.6

0.8

1

1.2

1.4

b
ff
o
rm

d
c
a
c

d
e
q
u
a
n
t

ff
t

fir

fm
ra
d
io

fs
e
d

h
e
a
t lu

s
o
b
e
l

a
v
e
ra
g
e

A
re

a
 (

m
m

2
)

LA

PLA

OR1K

1

10

100

1000

b
ff
o
rm

d
c
a
c

d
e
q
u
a
n
t

ff
t

fir

fm
ra
d
io

fs
e
d

h
e
a
t lu

s
o
b
e
l

a
v
e
ra
g
e

N
o

rm
a

li
z
e

d
 P

o
w

e
r

C
o

n
s

u
m

p
ti

o
n

PLA

OR1K

OR1K-equiv

(a) (b)

Figure 9: (a) Power consumption of PLA and OR-1200 relative to single-function LA. (b) Area of loop accelerators and OR-1200.

experiment shows the costs of the various PLA datapath gener-
alizations described in Section 4.1. The third experiment mea-
sures the programmability of the PLA by mapping loops of
varying similarity onto an accelerator.

5.2. PLA Comparison

In the first experiment, the LAs are compared with the OR-
1200 processor, which is synthesized at 300 MHz in the same
technology (0.13µm) as the accelerators. The loops are com-
piled for the processor using a version of the GNU compiler
toolchain which has been ported to the OR-1200; optimization
level -O2 is used. PrimeTime PX is used to measure the power
consumption of the processor given switching activity infor-
mation obtained during loop execution. Both the local mem-
ories in the loop accelerators and the caches in the OR-1200
are included in the power measurements. Figure 9(a) shows
the relative power consumption of the single-function LA, the
PLA, and the OR-1200 for each loop, on a logarithmic scale.
The power consumption of the single-function LA is 1.0; for
each loop, the first bar shows the power consumption of the
PLA, and the second bar shows that of the OR-1200. In addi-
tion, there is a third bar for each benchmark, representing the
amount of power the OR-1200 would consume if it ran at a
frequency yielding the same performance as the corresponding
LA.3 It is important to note that though the power consumption
of the PLAs and the OR-1200 is comparable, the PLAs are 6x
to 33x faster than the processor, and this difference in power
efficiency is reflected in the performance-equivalent bar.

As the graph shows, the PLAs consume about 2x to 9x more
power than the corresponding single-function LAs (which have
the same performance). This increased power consumption is
due to several factors. First, the power consumed by the RRFs
makes up a significant fraction of the overall PLA datapath.
When the SRFs in the single-function LA are replaced with
RRFs, their sizes must be increased to the next power of two,
and additional logic must be added in the form of decoders,
adders, and base registers. Also, in the current implementa-
tion, the RRFs are synthesized from behavioral descriptions
rather than being created by a RF generator, thus missing out on
typical RF area and power optimizations such as master latch
sharing. The PLA also has other datapath generalizations as

3Note that no voltage scaling is done, so the power consumption of the
OR-1200 is an underestimate.

described in Section 4.1, such as wider MUXes, which con-
sume additional power. Finally, since the PLA datapath is more
complex than the single-function LA, when synthesizing both
LAs with the same target clock frequency, the gates in the PLA
will be sized larger to meet timing constraints, thus consuming
more power.

Comparing the PLA with the OR-1200 at the same per-
formance level, the OR-1200 consumes from 4x to 34x more
power. Since the OR-1200 performs general instruction-based
execution, it suffers increased power consumption due to fac-
tors such as instruction fetch and decode, a centralized register
file, caches, and the data forwarding network. Conversely, the
PLA is a customized architecture with distributed datapath el-
ements and local memories, and thus is able to achieve high
throughput with significantly less power.

Figure 9(b) shows a comparison of the areas of the single-
function LA, PLA, and OR-1200. The generalized datapath of
the PLA causes its area to increase roughly 2x compared to
the single-function LA. Overall, all three hardware implemen-
tation styles take up relatively little area, with single-function
LAs averaging 0.3mm2, PLAs averaging 0.65mm2, and the
OR-1200 occupying 1.2mm2. In terms of area efficiency (per-
formance per area), the PLA is roughly 30x more efficient than
the OR-1200 on average for these loops.

Figure 10 plots the performance vs. power consumption
of the LAs and OR-1200. On this plot, points on the same
slope have roughly equivalent power efficiency in terms of
MIPS/mW, with points towards the upper left having greater
power efficiency. For each type of hardware, the average (har-
monic mean) efficiency is plotted as a line; for the designs stud-
ied, the single-function LAs achieve 105 MIPS/mW, the PLAs
achieve 24 MIPS/mW, and the OR-1200 achieves 2 MIPS/mW
on average.

As can be seen from the plot, the loop accelerators are able
to achieve order-of-magnitude improvements in efficiency over
the OR-1200 via customization. The PLAs allow hardware
reuse in the presence of source code changes, giving up some
efficiency to the non-programmable LAs but maintaining large
efficiency gains over general purpose hardware. Four commer-
cially available hardware implementations are also shown in
the plot: the Tensilica Diamond Core [24], a processor with
ASIP-style instruction set extensions optimized for embed-
ded designs; the Texas Instruments C6x digital signal proces-
sor [26]; the ARM11 embedded general purpose processor [2];
and the Intel Itanium 2 [13], a general purpose processor tar-

0

200

400

600

800

1000

1200

1400

0 10 20 30 40 50 60 70 80

Power Consumption (mW)

P
e

rf
o

rm
a

n
c

e
 (

M
IP

S
)

LA

PLA

OR1K

Itanium2: 0.08 MIPS/mW

Figure 10: Performance/power of loop accelerators and OR-1200.

geted for enterprise servers. The actual data points for these ar-
chitectures are outside the range of the plot, but their efficiency
lines are shown. As can be observed, the efficiency decreases
significantly as the hardware becomes more general and less
tailored for embedded applications.

5.3. PLA Datapath Generalizations

Figure 11(a) shows the power overheads of the major data-
path generalizations in the PLA. For each loop, a stacked bar
shows the breakdown of the amount of power consumption
contributed by each datapath element. The power contribution
of some datapath elements (such as the global bus) are difficult
to isolate when looking at the overall PLA hardware; to mea-
sure these contributions, an LA was created which had (for ex-
ample) a global bus and no other generalizations, and the over-
all power consumption was compared with that of the original
single-function LA. In general, the datapath components con-
tributing the highest amount of overhead are the RRFs and the
FU generalizations.

5.4. Programmability

The PLA is meant to be semi-programmable, meaning that
once a PLA is designed for a given loop, other loops similar
to the given loop should be able to execute on it. In order to
measure this programmability, it is useful to be able to system-
atically generate a series of loops with varying degrees of simi-
larity. To accomplish this, we use the loop perturbation method
described in [10], in which random changes (i.e., adding oper-
ations, adding or removing edges) are incrementally made to
the original loop. After each change, the new loop is increas-
ingly different from the original loop, and the scheduler is less
likely to be able to map it onto the PLA without performance
loss.

Figure 11(b) shows, for each loop, how many perturba-
tions could be made before the scheduler was no longer able

to map the loop onto the hardware without incrementing II.
Since the perturbation process is random, multiple runs are per-
formed using different random seeds, and the results are aver-
aged across these runs. Thus, for each loop, the graph shows
the number of perturbations for which, on average, II was in-
cremented less than once. A higher number of perturbations
indicates that the PLA is more programmable.

As the graph shows, the programmability of the PLA de-
pends on the original loop. Factors such as more opcodes
and more heterogeneous communication patterns in a loop will
lead to more programmable hardware. For example, fir is
a small loop which has simple, repeated communication pat-
terns. Thus, there are fewer unique point-to-point connections
in the datapath. On the other hand, heat is also a small loop,
but its PLA contains more heterogeneous connections.

Note that the graph only shows the number of perturbations
possible without performance loss. Generally, even after large
numbers of perturbations have been made to a loop, it can still
be mapped onto a PLA if some performance loss (increase in
II) is tolerable, because the presence of the global bus allows
data transfer between any FUs within the PLA.

The PLA is designed to run similar loops (i.e. those ob-
tained via incremental changes to an initial loop) efficiently on
the same hardware. Thus, it is unlikely that a given PLA will
execute an arbitrary loop efficiently or at all; this is a trade-
off of the PLA design. Nevertheless, we performed a cross-
compilation experiment with the 10 loops studied; mapping
succeeded in 25 of the 90 cross-compilation opportunities.

6. Conclusion

Customized loop accelerators are able to provide significant
performance and power efficiency gains over general purpose
processors. By building semi-programmable accelerators, it
is possible to achieve these efficiency gains while allowing
hardware to be reused as the software evolves. The loop ac-
celerator datapath is generalized in an efficient way such that

0

2

4

6

8

10

12

14

16

18

20

b
ff
o
rm

d
c
a
c

d
e
q
u
a
n
t

ff
t

fir

fm
ra
d
io

fs
e
d

h
e
a
t

lu

s
o
b
e
l

#
 P

e
r
tu

r
b

a
ti

o
n

s

0

1

2

3

4

5

6

7

8

b
ff
o
rm

d
c
a
c

d
e
q
u
a
n
t

ff
t

fir

fm
ra
d
io

fs
e
d

h
e
a
t

lu

s
o
b
e
l

a
v
e
ra
g
e

R
e

la
ti

v
e

 P
o

w
e

r
 O

v
e

r
h

e
a

d

Ctrl

Mux

FU

Bus

RR

(a) (b)

Figure 11: (a) Power consumption breakdown of PLA generalizations. (b) Number of perturbations achieved without loss of performance.

loops that are similar to the original loop may be mapped onto
the accelerator. Such programmable loop accelerators provide
hardware reusability along with order-of-magnitude improve-
ments in power and area efficiency over simple low power gen-
eral purpose processors. For the loops in this paper, the PLA
was able to achieve 4x-34x better power efficiency and about
30x better area efficiency than a general purpose processor,
while losing 2x-9x in power and 2x in area to a custom non-
programmable LA.

7. Acknowledgements

We wish to extend our thanks to Shantanu Gupta, Shuguang
Feng, and Jason Blome for their help synthesizing the OR-1200
processor. We also thank the anonymous referees for their ex-
cellent comments. This research was supported by the National
Science Foundation grants CNS-0615261 and CCF-0347411,
ARM Ltd., and equipment donated by Hewlett-Packard and In-
tel Corporation.

References

[1] ARC International. Arctangent processor. http://www.arc.com.

[2] ARM. Arm11.
http://www.arm.com/products/CPUs/families/ARM11Family.html.

[3] S. Ciricescu et al. The reconfigurable streaming vector processor
(RSVP). In Proc. of the 36th Annual International Symposium on Mi-
croarchitecture, pages 141–150, 2003.

[4] N. Clark, A. Hormati, and S. Mahlke. Veal: Virtualized execution accel-
erator for loops. In Proc. of the 35th Annual International Symposium on
Computer Architecture, page To appear, June 2008.

[5] H. Corporaal. TTAs: Missing the ILP complexity wall. Journal of System
Architecture, 45(1):949–973, 1999.

[6] H. Corporaal and P. Arend. MOVE32INT, a sea of gates realization of a
high performance transport triggered architecture. Microprocessing and
Microprogramming, 38(1):53–60, 1993.

[7] J. Dehnert and R. Towle. Compiling for the Cydra 5. Journal of Super-
computing, 7(1):181–227, May 1993.

[8] C. Ebeling et al. Mapping applications to the RaPiD configurable archi-
tecture. In Proc. of the 5th IEEE Symposium on Field-Programmable
Custom Computing Machines, pages 106–115, Apr. 1997.

[9] K. Fan, M. Kudlur, H. Park, and S. Mahlke. Cost sensitive modulo
scheduling in a loop accelerator synthesis system. In Proc. of the 38th
Annual International Symposium on Microarchitecture, pages 219–230,
Nov. 2005.

[10] K. Fan, H. Park, M. Kudlur, and S. Mahlke. Modulo scheduling for
highly customized datapaths to increase hardware reusability. In Proc. of
the 2008 International Symposium on Code Generation and Optimiza-
tion, pages 124–133, Apr. 2008.

[11] J. A. Fisher, P. Faraboschi, and G. Desoli. Custom-fit processors: Letting
applications define architectures. In Proc. of the 29th Annual Interna-
tional Symposium on Microarchitecture, pages 324–335, Dec. 1996.

[12] S. Goldstein et al. PipeRench: A coprocessor for streaming multimedia
acceleration. In Proc. of the 26th Annual International Symposium on
Computer Architecture, pages 28–39, June 1999.

[13] Intel Corporation, Santa Clara, CA. Intel IA-64 Software Developer’s
Manual, 2002.

[14] H. Kalva. The H.264 video coding standard. IEEE MultiMedia,
13(4):86–90, 2006.

[15] B. Mathew and A. Davis. A loop accelerator for low power embedded
VLIW processors. In Proc. of the 2004 International Conference on on
Hardware/Software Co-design and System Synthesis, pages 6–11, 2004.

[16] MAXQ. MAXQ RISC microcontrollers. http://www.maxim-
ic.com/products/microcontrollers/maxq/.

[17] B. Mei et al. Exploiting loop-level parallelism on coarse-grained recon-
figurable architectures using modulo scheduling. In Proc. of the 2003
Design, Automation and Test in Europe, pages 296–301, Mar. 2003.

[18] Motorola. CPU12 Reference Manual, June 2003. http://e-
www.motorola.com/brdata/PDFDB/docs/CPU12RM.pdf.

[19] E. Nystrom and A. E. Eichenberger. Effective cluster assignment for
modulo scheduling. In Proc. of the 31st Annual International Symposium
on Microarchitecture, pages 103–114, Dec. 1998.

[20] OpenCores. OpenRISC 1200, 2006.
http://www.opencores.org/projects.cgi/web/ or1k/openrisc 1200.

[21] H. Park, K. Fan, M. Kudlur, and S. Mahlke. Modulo graph embedding:
Mapping applications onto coarse-grained reconfigurable architectures.
In Proc. of the 2006 International Conference on Compilers, Architec-
ture, and Synthesis for Embedded Systems, pages 136–146, Oct. 2006.

[22] B. R. Rau. Iterative modulo scheduling: An algorithm for software
pipelining loops. In Proc. of the 27th Annual International Symposium
on Microarchitecture, pages 63–74, Nov. 1994.

[23] R. Schreiber et al. PICO-NPA: High-level synthesis of nonprogrammable
hardware accelerators. Journal of VLSI Signal Processing, 31(2):127–
142, 2002.

[24] Tensilica Inc. Diamond Standard Processor Core Family Architecture,
July 2007. http://www.tensilica.com/pdf/Diamond WP.pdf.

[25] Texas Instruments. TMS320C54X DSP Reference Set, Mar. 2001.
http://www-s.ti.com/sc/psheets/spru131g/spru131g.pdf.

[26] Texas Instruments. TMS320C6000 CPU and Instruction Set Reference
Guide, July 2006. http://focus.ti.com/lit/ug/spru189g/spru189g.pdf.

[27] M. Woh et al. The next generation challenge for software defined radio.
In Proc. of the 7thInternational Symposium on Systems, Architectures,
Modeling, and Simulation, pages 343–354, July 2007.

