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ABSTRACT
In the embedded domain, custom hardware in the form of ASICs
is often used to implement critical parts of applications when per-
formance and energy efficiency goals cannot be met with software
implementations on a general purpose processor or DSP. The down-
sides of using ASICs include high non-recurring engineering costs,
inability to accommodate changes in the application after produc-
tion, and inability to reuse hardware for new applications. How-
ever, by allowing a degree of post-programmability, the hardware
can retain high performance and energy efficiency while increas-
ing flexibility and reusability. The difficulty with programmable
custom hardware lies in mapping new applications onto an exist-
ing datapath that is both sparse and irregular. This paper pro-
poses a constraint-driven modulo scheduler that maps software-
pipelineable loops onto programmable loop accelerator hardware.
The scheduler is able to target accelerators with widely varying lev-
els of datapath functional capability and connectivity, and thus,
varying degrees of programmability. The paper investigates the
ability of the scheduler to map new loops onto existing hardware,
which depends on both the degree of programmability of the hard-
ware as well as the similarity of the new loop to the original loop
for which the hardware was designed.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Retargetable com-
pilers

General Terms
Algorithms, Design, Experimentation

1. INTRODUCTION
The markets for wireless handsets, portable digital assistants,

digital cameras, and other special-purpose devices continue to grow
explosively, fueled by demand for new functionality, added capabil-
ities, and higher bandwidth. For example, the projected data rates
for 4G wireless communication are expected to increase 50 times
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over current 3G wireless standards. These new devices will require
higher performing and more energy-efficient computer systems to
meet application performance requirements, while still operating
for long periods of time in an untethered environment. These per-
formance and energy demands are in conflict with an increasingly
important characteristic, post-programmability. Applications and
standards evolve over time making it essential to be able to modify
a design during its lifetime. Further, re-use of hardware across plat-
forms and enabling multiple applications to run on the same hard-
ware greatly enhance the value of embedded computer systems.
One of the most difficult challenges for designers going forward is
achieving high performance and efficiency in conjunction with post
programmability.

There are a variety of hardware choices available for embed-
ded computing systems that offer varying levels of performance,
energy efficiency, and programmability. Application-specific inte-
grated circuits, or ASICs, are popular in many domains. ASICs
are generally hardwired accelerators that implement a single algo-
rithm. ASICs offer designers the highest performance and lowest
energy solutions for specific problems. As a result, ASICs are used
to do the heavy lifting for performance-critical portions of a work-
load. The downsides of ASICs are programmability and hardware
re-use, where they have little to offer due to the hardwired nature
of the design. At the other end of the spectrum are microprocessors
and DSPs. Processors offer full programmability and thus the abil-
ity to execute a wide range of applications, enabling designers to
seamlessly re-use hardware. The downsides of processors are per-
formance and efficiency. Processors, even the highest end DSPs,
are often incapable of sustaining the needed computation rates for
compute-intensive kernels. Further, the energy efficiency of pro-
cessors is typically 100-1000x worse than an ASIC. The overhead
of instruction execution and the use of regular datapaths in proces-
sors are two of the largest reasons for this loss of efficiency.

Several middle ground solutions have emerged that promise to
deliver both post-programmability and high performance/efficiency.
FPGAs provide a fully configurable hardware substrate for imple-
menting any design, thus they provide full programmability. How-
ever, the performance and energy efficiency of FPGAs may not be
high due to the inherent overhead of gate-level reconfigurability.
An alternative design style that sacrifices gate-level reconfigurabil-
ity is the coarse-grained reconfigurable architecture (CGRA) [5, 9,
16, 27, 19]. CGRAs consist of an array of function units (FUs) in-
terconnected by an interconnection network. Register files are dis-
tributed throughout the CGRAs to hold temporary values and are
accessible only by a subset of FUs. CGRAs typically have shorter
reconfiguration times, lower delay characteristics, and lower power
consumption than FPGAs. A final middle-ground solution are pro-



grammable loop accelerators. The Reconfigurable Streaming Vec-
tor Processor (RSVP) is a coprocessor architecture that accelerates
streaming data operations [3]. Mathew proposes a loop accelerator
for low power embedded VLIW processors [18]. These accelera-
tors are generally targeted at vector-style loops.

The goal of this paper is to push programmability into a hard-
ware substrate that is as close to an ASIC as possible to retain
the desirable performance and efficiency characteristics. The tar-
get hardware platform is a stylized loop accelerator (LA) that is
customized for a single application [26, 7, 8]. The LA is a direct
hardware realization of a modulo scheduled loop [24]. Each LA
has a specialized datapath, including FUs, register files, and inter-
connect, and a simple controller driven by the initiation interval
of the schedule. We generalize the structure of the base LA tem-
plate to facilitate a small degree of post-programmability. However,
the datapath is still highly specialized with point-to-point intercon-
nect, fixed-capability FUs, and limited storage capacity. Such a
platform cannot execute any modulo scheduled loop. Rather, the
programmability objective is to map loops with similar computa-
tion structure onto a common hardware platform, such as two loops
from the same application domain or a single loop that has under-
gone small to modest changes in composition.

The central challenge with this approach is the compiler, specif-
ically modulo scheduling a loop onto a highly irregular datapath.
Traditional modulo schedulers rely on datapath regularity, such as
centralized register files and uniform interconnect between FUs.
Multicluster VLIW designs introduce differential communication
latencies into the scheduler [21, 25]. CGRA scheduling has the
most similarities with this work [19, 12, 23]. Here, loops are sched-
uled onto a highly decentralized architecture. Explicit routing of
data values must be performed due to the distributed organization
of the CGRA. However, interconnect and functionality are highly
regular, enabling almost any loop to be mapped onto the hardware.
Our problem is different because the hardware is not regular, but
rather is highly customized to a particular application.

In this paper, we propose constraint-driven modulo scheduling
for mapping applications onto irregular datapaths. The technique
leverages satisfiability modulo theory (SMT) commonly used in the
computer-aided design community. Mapping of operations onto
the irregular LA datapath is modeled as a set of constraints within
a SMT problem that attempts to find time and space assignments
for the operations subject to the limitations of the datapath.

One of the most difficult aspects of this work is quantifying suc-
cess. From the outset, we know that the programmability of the
underlying LA hardware is limited, thus it is unlikely arbitrary
loops will successfully map onto a particular LA. In fact, that is not
the objective. We introduce a loop perturbation module that takes
a dataflow graph for a target loop and iteratively introduces ran-
dom modifications to the graph, such as creating new operations or
edges, removing operations or edges, and changing existing nodes
or edges. In essence, these perturbations synthetically create an ar-
bitrary number of loops that progressively become more dissimilar
to the base loop. These synthetic loops serve as approximations for
either source modifications to an original loop or loops with simi-
lar computation structure. We conduct a set of experiments to map
the perturbed loops onto the LA to evaluate the effectiveness of the
scheduler and demonstrate the programmability of the LA. We also
present a more conventional experiment of mapping multiple loops
onto LAs designed for one application.

The contributions of this paper are as follows:

• A parameterized programmable loop accelerator (PLA) tem-
plate that offers programmability for a range of applications
with similar computation structure.
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Figure 1: Template for fixed-function loop accelerator.

• An SMT formulation of modulo scheduling for an innermost
loop onto a PLA.

• An evaluation of PLA programmability across a set of me-
dia processing loops and synthetically generated variations
of these loops.

2. LOOP ACCELERATOR ARCHITECTURE
A fixed-function loop accelerator is used as the baseline in this

paper. This accelerator is designed to execute a specific loop at
a given performance level, and is not programmable. Then, start-
ing from the fixed-function baseline, the datapath is generalized
to create a more programmable design. The goal is to remove or
relax the most restrictive parts of the architecture that limit pro-
grammability, while retaining the efficiency available through cus-
tomization. In this section, the architecture and synthesis flow for
the fixed-function accelerator is described first. Then, the datapath
generalizations are described.

2.1 Fixed-function Accelerator
Figure 1 shows the hardware schema used in this paper for the

fixed-function accelerator [26, 7]. The accelerator is designed to
exploit the high degree of parallelism available in modulo sched-
uled loops with a large number of function units (FUs). Each FU
performs a specific set of functions that is tailored for the particu-
lar loop. Each FU writes to a dedicated shift register file (SRF); in
each cycle, the contents of the registers shift downwards to the next
register. The entries in a SRF therefore contain the values produced
by the corresponding FU in the order they were computed. Wires
from the registers back to the FU inputs allow data transfer from
producers to consumers. Multiple registers may be connected to
each FU input; a multiplexer (MUX) is used to select the appropri-
ate one. Since the operations executing in a modulo scheduled loop
are periodic, the selector for this MUX is simply a modulo counter.
In addition, a central register file (CRF) holds static live-in register
values which cannot be stored in the SRFs.

The design flow for the fixed-function accelerator is shown in
Figure 2 [7]. The first step in the loop accelerator synthesis pro-
cess is the creation of an abstract VLIW architecture to which the
application is mapped. The abstract architecture is parameterized
only by the number of FUs and their capabilities. A single unified
register file with infinite ports/elements that is connected to all FUs
is assumed. Given the operations in the loop, the desired through-
put (subject to recurrence constraints), and a library of hardware
cell capabilities and costs, the FU allocation stage generates a mix
of FUs for the abstract architecture that minimizes FU cost while
providing sufficient resources to meet the performance constraint.
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Figure 2: Fixed-function accelerator design flow.

Next, the loop is modulo scheduled to the abstract architecture.
Modulo scheduling is a method of overlapping iterations of a loop
to achieve high throughput [24]. The performance of the schedule
is determined by the initiation interval (II), or the number of cy-
cles between successive iterations of the loop. The modulo sched-
ule contains a kernel which repeats every II cycles and may in-
clude operations from multiple loop iterations. The scheduler as-
signs the operations in the loop to FUs and time slots, satisfying all
inter-operation dependences and meeting the II requirement. After
scheduling, the accelerator datapath is derived from the producer-
consumer relationships in the schedule. This includes setting the
widths of the FUs and the widths and depths of the SRFs, and con-
necting specific SRF entries with the appropriate FU inputs.

Based on the datapath, the control path for the accelerator is gen-
erated. This consists of a modulo-II counter which directs FU ex-
ecution (for FUs capable of multiple operations) and controls the
MUXes at the FU inputs.

Finally, a Verilog realization of the accelerator is generated by
emitting modules with pre-defined behavioral Verilog descriptions
that correspond to the datapath elements. Gate-level synthesis and
placement/routing are then performed on the Verilog output.

2.2 Programmable Accelerator
To build a programmable loop accelerator (PLA), the datapath

features of the fixed-function accelerator that are least flexible should
be generalized in an efficient manner. Key accelerator datapath
characteristics include:

Functionality. The accelerator is limited by the opcode reper-
toire of the FUs. For example, if a new loop contains a subtract op-
eration, but no FU is capable of performing subtraction, it will not
be possible to map the new loop onto the accelerator. FUs can be
generalized for a low additional cost by adding functionality which
is complementary to existing functionality. For example, any adder
can be generalized to support both addition and subtraction with
low additional cost. Also, any logic unit can be extended to sup-
port all logical operations, as they are relatively low cost.

Shift register files. Another limiting aspect of the fixed-function
hardware is the nature of the SRFs – because they have a fixed
number of entries, any value produced by the corresponding FU
must be consumed within a certain number of cycles, or it will
“fall off” the end of the SRF. In addition, specific SRF entries are
connected to consuming FUs, so the values can only be read at
certain times. Both of these issues can be addressed by replacing
SRFs with rotating register files. This introduces some additional
hardware, namely base registers, adders, and decoders for the read
and write ports. However, the rotating register files remain small
(thus the width of base registers and adders is often 2 bits or less)
and are highly distributed, minimizing their cost impact.

Point-to-point connectivity. A major area in which the accel-
erator achieves efficiency wins is the point-to-point connectivity
scheme. Only those connections that are needed to sustain the
producer-consumer communications in the modulo schedule exist
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Figure 3: Template for programmable loop accelerator.

in the fixed-function accelerator. This means not all FUs are able
to communicate directly with other FUs, making it difficult to map
new applications onto the hardware. Two techniques are used to re-
lax this constraint. First, all FUs are given the ability to perform a
MOV; that is, copy one of its inputs to its output. This allows values
to be transferred from a source FU to a destination FU via interme-
diate FUs. Second, a low-bandwidth bus is created that connects
all FUs in the accelerator.1 This allows a single value transfer from
any FU to any other FU each cycle. The bus is scheduled by the
compiler and thus is not arbitrated.

Port-specific connectivity. In the fixed-function accelerator, each
input port of an FU has its own connections to specific register
files. To schedule another operation onto that FU, both of the oper-
ation’s source operands must be routable from where they are pro-
duced to the corresponding input ports of the FU. Scheduling can
fail if either routing is not possible. If the operation is commuta-
tive, then swapping the sources can sometimes result in a successful
schedule; however, to relax this constraint more generally, the input
MUXes in the PLA are widened to allow each input port to read its
operand from any connection made to either port.

Staging predicate. The accelerator is a hardware implementa-
tion of a modulo scheduled loop; as such, operations in the loop
kernel are scheduled in various stages, and must be controlled by
guarding predicates as the software pipeline fills and drains. This
guarding predicate is produced by the branch unit and consumed
by all other FUs. In the fixed-function hardware, specific connec-
tions are made between registers in the branch unit’s output SRF
and the other FUs. This effectively restricts the stage in which op-
erations on a given FU may be scheduled. To generalize this aspect
of the hardware, staging predicates are broadcast over a bus to all
FUs, significantly increasing scheduling flexibility. The additional
cost is low because each predicate is a single bit, and the number
of predicates required is just the number of stages in the schedule.

1This bus may be pipelined or organized in a hierarchical manner
for larger accelerators.
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Figure 4: Hardware cost breakdown of PLA generalizations.

Hardwired control. In the single-function accelerator, the dat-
apath is directed by hardwired control signals generated by a finite
state machine. To allow programmability, the datapath should in-
stead be directed by signals from a control memory. The size of
the control memory depends on the number of FUs, MUXes, and
registers in the design as well as on the maximum allowed II. In ad-
dition, in the fixed-function accelerator, literal operands are hard-
wired. Clearly, this does not allow a loop with different literals
to be mapped to the hardware. By placing literals into a central
register file, different literal values may be used for different loops.

Programmable accelerator architecture. Figure 3 shows the
template for the PLA, generalized from the datapath shown in Fig-
ure 1. The accelerator is designed for a specific loop at a specific
throughput, but contains a more general datapath than the fixed-
function accelerator to allow different loops to be mapped onto the
hardware. FUs have been generalized to support more function-
ality; a low-bandwidth bus connects all FUs; the staging predi-
cate is broadcast over a bus; shift register files are replaced with
small, distributed rotating register files; and the FU input MUXes
are widened.

Figure 4 shows estimates for the hardware cost of each of these
datapath generalizations for PLAs designed for loops from various
DSP and media applications. The most costly components are the
rotating register files (RRFs) and the control, at 15% each. One
source of RRF cost is that the number of registers in each file is
rounded up to the nearest power of 2. Note that in two cases,
the use of RRFs actually results in a cost savings over SRFs due

to better packing of lifetimes. On average, the total overhead is
about 51%; this is acceptable considering that the total area of a
loop accelerator is quite small (all designs are less than 0.6 mm2

when synthesized in 0.13µ technology). A more detailed analy-
sis of the hardware tradeoffs for PLAs is beyond the scope of this
paper. Rather, the PLA design serves as a target for the compiler.

The augmented design flow for PLAs is shown in Figure 5. Dur-
ing the creation of the hardware, the datapath is customized for a
given loop (labeled Loop 1) but is also generalized using the tech-
niques described above. Additional control logic is generated to
support the programmable features of the accelerator. A scheduler-
oriented description of the hardware is then generated, containing
both information about the datapath as well as the control signals
required to direct the datapath. This machine description can then
be used by the compiler (shown by the dotted box) to map a new
loop (labeled Loop 2) onto the same hardware.

3. CONSTRAINT-DRIVEN SCHEDULING

3.1 Scheduling Overview
The objectives of scheduling a loop onto an existing accelerator

are significantly different from those of scheduling to design the
accelerator. When designing the accelerator, the scheduler targets
an abstract, fully-connected VLIW machine, and attempts to mini-
mize the final cost of the accelerator at a given II. However, when
targeting the existing accelerator, the cost is fixed and the goal is to
map the loop onto the hardware with the lowest II possible.

Conventional modulo schedulers assume a machine with a data-
path that is largely homogeneous. For example, FUs are typically
ALUs capable of all integer operations, and a centralized register
file allows data transfers from any producer FU to any consumer
FU. Multicluster VLIWs and CGRAs have more distributed re-
sources, but these architectures are still regular. Conversely, the
loop accelerator datapath contains a significant amount of hetero-
geneity. FUs have a subset of functionality that is tailored for the
loop being accelerated, and connections between FUs are point-
to-point and highly irregular. A scheduler targeting an accelerator
must accommodate this heterogeneity. In terms of FU functional-
ity, the scheduler must restrict the valid resource assignments of
each operation to those FUs that are compatible with the operation.
In terms of limited connectivity, if an operation produces a value
on some FU and this value cannot be directly accessed by the FU
where the consumer is scheduled, then either MOV operations must
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Figure 6: PLA synthesis and scheduling example.

be scheduled to route the value through other FUs, or a global bus
must be used to transfer the value.

The proposed constraint-driven modulo scheduler maps a new
loop onto an existing PLA by first inserting any potentially required
MOVs into the loop’s dataflow graph, and then formulating the as-
signment of operations to FUs and time slots as a satisfiability prob-
lem as described in the next subsection. As in conventional mod-
ulo scheduling, allocation of rotating registers is performed after
assignment of operations to FUs and time slots. If the loop cannot
be scheduled at a given II, or if rotating register allocation fails, the
II is increased and another scheduling attempt is made. The dotted
box in Figure 5 shows the compiler flow.

3.2 SMT-based Scheduling
The scheduling problem is formulated as a Satisfiability Mod-

ulo Theory (SMT) problem. SMT is a general form of satisfiability
(SAT) that allows the use of predicates over non-binary variables
(for example, integers) in addition to conventional boolean expres-
sions. The problem input is a dataflow graph, a desired II, and a
PLA; the output is a modulo schedule where each operation in the
dataflow graph has been assigned an FU and a time slot, if such a
schedule is feasible.

The body of the loop being scheduled is represented as a dataflow
graph G = (V, E), where V represents the set of operations in the
loop and E represents the data dependence edges between opera-
tions. Each edge has an associated latency li,j that specifies the
latency of the producer operation i, and a distance di,j that spec-
ifies the iteration distance between when the value is produced by
operation i and consumed by operation j.

The schedule for the loop is represented by the |V | × |F | × II
boolean variables Xi,f,t, where F is the set of FUs in the machine
and II is the initiation interval. Thus, operation i ∈ V is scheduled
on FU f ∈ F in time slot t ∈ {0, II−1} if Xi,f,t is true. Variables
representing the assignment of operations to incompatible FUs are
omitted from the formulation. In addition, a set of |V | integer vari-
ables Si represent the stage assignment for each operation i in the
modulo schedule.

To ensure that each operation is assigned to exactly one FU and
time slot, the following constraints are asserted:_

∀f∈F

II−1_
t=0

Xi,f,t = true ∀i ∈ V (1)

Xi,f1,t1 ∧Xi,f2,t2 = false ∀i ∈ V, f1 6= f2, t1 6= t2 (2)

Next, to ensure that each FU has at most one operation assigned
to it in each time slot, the following set of constraints are asserted:

Xi1,f,t ∧Xi2,f,t = false ∀f ∈ F, t ∈ {0, II − 1}, i1 6= i2
(3)

It is assumed that any multi-cycle FUs are fully pipelined and able
to begin executing a new operation each cycle.

Next, constraints must be asserted to ensure that no data depen-
dence violations occur. In other words, given producer operation i
and consumer operation j, the unrolled schedule time of j must be
at least li,j − (di,j × II) cycles after that of i. In other words:

ust(j) ≥ ust(i) + li,j − (di,j × II)

where ust(i) is the unrolled schedule time of i. Since ust(i) is
a function of both the stage Si and the time slot ti, this can be
expressed as:

(Sj × II) + tj ≥ (Si × II) + ti + li,j − (di,j × II) (4)

In the SMT formulation, t is not a true variable; rather, it is a con-
stant with respect to some boolean variable Xi,f,t. Thus, the above
can be expressed in terms of variables X and S, and constants t, l,
d, and II:

¬Xi,fi,ti ∨ ¬Xj,fj ,tj ∨ expression(4) (5)

Constraint (5) is asserted for all values of ti and tj between 0
and II − 1, and for all FUs fi and fj compatible with operations i
and j, respectively. This set of constraints is repeated for all pairs
of operations that have data dependence edges between them.

Note that all of the above constraints merely ensure that a valid
schedule can be achieved given a fully connected architecture; none
of the constraints presented thus far consider the limited connectiv-
ity of the loop accelerator datapath. Not all FUs are able to commu-
nicate directly with each other; thus, the satisfaction of constraints
(5) may still result in an invalid schedule. To resolve this, the con-
straints should be modified slightly. When the producer FU fi and
the consumer FU fj are directly connected (there is a wire from
the register file at the output of fi to the input of fj), constraints (5)
may be asserted as before. However, when there is no such connec-
tion, the following constraints are asserted instead, which prohibit
operations i and j from being scheduled on fi and fj :

¬

 
II−1_
ti=0

Xi,fi,ti

!
∨ ¬

0@II−1_
tj=0

Xj,fj ,tj

1A (6)

Another feature of the PLA is the presence of a low-bandwidth
global bus for transferring values between any pair of FUs. The
bus is modeled as a counted resource, with a limited number of
transfers available per clock cycle. In the SMT formulation, addi-
tional boolean variables Bi,t are introduced, representing the use
of a global bus resource by operation i in time slot t. When a pro-
ducer FU and a consumer FU are directly connected, the bus is not
needed because the value can be transferred through the standard
point-to-point connections. However, when two FUs fi and fj are
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Figure 7: Graph perturbation example from “heat” benchmark: (a) original loop, (b) after 5 perturbations, (c) after 10 perturba-
tions.

not directly connected, constraint (6) may be modified to allow use
of the global bus:

¬

 
II−1_
ti=0

Xi,fi,ti

!
∨

0@II−1^
tj=0

¬Xj,fj ,tj ∨Bj,tj

1A (7)

It then remains to limit the number of global bus users in each
cycle:

Bi1,t ∧Bi2,t = false ∀t ∈ {0, II − 1}, i1 6= i2 (8)

The above assumes that one global bus resource is available per
cycle. To model more than one bus resource, either additional
boolean variables should be introduced to represent each additional
resource, or the boolean variables may be replaced by integer vari-
ables whose sum is constrained to be less than or equal to the num-
ber of bus transfers available per cycle.

Solving for boolean variables Xi,f,t and Bi,t and integer vari-
ables Si under the constraints given by Equations (1) through (8)
gives a legal modulo schedule with initiation interval II for the
graph G on a given PLA datapath.

3.3 Example
The left side of Figure 6 shows a portion of the loop from the

fir filter application. The given II is 2, and the resulting PLA hard-
ware contains two adders which have been generalized to adder-
subtracters, one memory unit, and one multiplier, as shown. Reg-
isters are omitted from the figure for clarity. On the right side of
the figure, another loop is scheduled onto the same PLA. The sec-
ond loop is somewhat similar, but the data transfer from operation
3 to operation 4 requires a connection from an adder to a multiplier,
which does not exist in the hardware. Thus, a MOV is required to
transfer the result of operation 3 through the memory unit to the
multiplier. Also, the result of operation 4 feeds operation 6, which
requires another connection that does not exist in the hardware. A
transfer is scheduled on the bus to send the result of operation 4
back to the multiplier. Thus, the second loop can be scheduled at
its ResMII of 2 on the PLA designed for the first loop.

4. GRAPH PERTURBATION
A goal of this work is to quantify the similarity required between

two loops in order for one loop to be mappable onto a PLA de-
signed for another loop. Towards this end, it is useful to system-
atically generate a series of loops with varying degrees of similar-
ity. We propose a graph perturbation method that takes an existing
dataflow graph for a loop and introduces small changes, producing
new loops that are increasingly different from the original loop.

In a dataflow graph, changes to nodes and edges represent mod-
ifications to the original source code of the loop. For example, a
new node can represent a new C statement; changing an edge can
represent changing the operands of a statement. Most operations in
the loop have two source operands; therefore, when a node in the
dataflow graph has fewer than two incoming edges, one or more
of these source operands are either live-in (defined by operations
outside of the loop) or literal values. Thus, when perturbing the
graph, adding or removing an incoming edge of a node corresponds
to changing a live-in or literal operand to a register operand or vice
versa. During the graph perturbation, it is assumed that nodes in the
graph can have up to two incoming edges (excluding the guarding
predicate input, which exists for all operations), although in real-
ity, exceptions exist for operations, such as store-with-displacement
and operations with multiply-defined source operands.

In the graph perturbation module, four basic transformations are
used:

• Adding an edge between existing nodes. A random node
is selected as the producer node; a random node with fewer
than two incoming edges is selected as the consumer node. A
new edge is inserted from producer node to consumer node.
The latency of the edge is set to the latency of the producing
operation. The iteration distance of the edge is set depending
on the order of producer and consumer in a topological sort
of the graph: if the producer appears later than the consumer,
then the distance is set to 1. Otherwise, it is set to 0.

• Adding an edge with a new producer. A random node with
fewer than two incoming edges is selected as the consumer;
a new node with a random opcode is generated to create a



new producer node. A new edge is inserted from producer to
consumer with the latency of the producing operation and a
distance of 0.

• Adding an edge with a new consumer. A random node is
selected as a producer, and a new node with a random opcode
is generated to create a new consumer node. A new edge is
inserted from producer to consumer with the latency of the
producing operation and a distance of 0.

• Removing an edge. A random edge is deleted from the
graph. Edges originating from producers with only one con-
sumer are excluded, as removing such edges would render
the producing operation useless. On the other hand, remov-
ing an edge from a consumer with only one producer is per-
mitted, as this corresponds to replacing the operation’s regis-
ter operand with a literal or live-in operand.

The graph perturbation process is iterative. Beginning with the
original graph, a random transformation is chosen from among the
four in the above list. Then, random nodes or edges are selected
as needed depending on the transformation, and the transforma-
tion is applied. This process is repeated as many times as desired.
With each iteration, the graph becomes successively more dissimi-
lar from the original graph. As nodes and edges are perturbed, the
communication patterns within the graph change and it becomes
less likely that the graph can be mapped onto hardware designed
for the original loop.

Figure 7(a) shows the dataflow graph for “heat”. After 5 pertur-
bations, the graph is as shown in Figure 7(b). Four new edges (and
two new nodes) have been added, and one edge (from node 13 to
itself) has been removed. At this point, the graph still resembles
the original. In Figure 7(c), 10 perturbations have been performed
in total, most of which happen to be new edges. By this point, the
graph looks fairly different from the original, yet in this case it is
still possible to map it onto the PLA designed for the original loop.

One limiting factor in mapping a loop to an accelerator is the
functionality of the FUs. If the loop contains an operation that is
not supported by any FUs in the hardware, mapping is guaranteed
to fail. Graphs produced by introducing such operations to the orig-
inal graph will fail trivially; thus, we disallow such perturbations in
this study to preserve functional compatibility. Note that, as men-
tioned in Section 2.2, the PLA datapath already contains FUs that
have been generalized to some degree; thus, it is possible for loops
containing operations that do not exist in the original loop to be
successfully mapped.

5. EXPERIMENTAL RESULTS
Loop kernels from various DSP and media applications are used

to evaluate the programmability of the PLA and the ability of the
constraint-based scheduler to map loops onto PLAs. For each loop,
a PLA is synthesized using the system described in Section 2.2. Ta-
ble 1 shows the characteristics of each loop and its corresponding
PLA. The Yices SMT solver [4] is used to modulo schedule loops
onto PLAs using the formulation described in Section 3.2. Two
types of experiments are presented: first, we perturb the loops and
attempt to map them onto the PLAs designed for the correspond-
ing unperturbed loops. These experiments study the relationship
between loop similarity and mappability, and represent reuse of
existing hardware after source modifications are made to a loop.
Next, we attempt to map (unperturbed) loops onto PLAs designed
for other loops. This cross-compilation experiment examines the
ability to reuse existing hardware for different loops with similar
computation structure.

Loop #Ops RecMII Base II #FUs
dcac 44 2 4 13
dequant 63 3 8 12
fft 54 1 7 13
fir 26 1 2 13
fmradio 18 1 4 6
fsed 40 1 4 11
heat 17 6 6 5
lu 41 9 9 9
sobel 49 1 4 16
turbo 17 1 4 6

Table 1: Loop kernels from DSP and media applications.
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Figure 8: II increase necessary to schedule loops with pertur-
bations.

For the perturbation study, we run a set of experiments wherein
each loop is randomly perturbed a number of times as described in
Section 4. For each number of perturbations, the SMT scheduler
is used to map the perturbed loop onto the PLA. Initially, the per-
turbed loop is scheduled at the same II as the original loop; if this
fails, the II is incremented until the scheduler succeeds or a thresh-
old is reached. The less the II needs to be increased, the more easily
the hardware can be reused. Note that typically, the II can continue
to be increased until there is sufficient scheduling flexibility to route
all data transfers and the scheduler succeeds. Conversely, it is gen-
erally not possible for a perturbed loop to be scheduled at a lower
II than the original loop, because after each perturbation, the num-
ber of operations either increases or remains the same. Thus the
resources (which were allocated to support the throughput of the
original II) are insufficient to support a higher throughput.

Figure 8 shows the results of the perturbation study. The y-axis
shows the number of perturbations from the original loop. The bar
for each benchmark is segmented to indicate the amount that the II
needed to be increased in order to achieve a successful schedule.
Multiple runs are performed, perturbing the graph using different
random seeds, and the II increases are averaged across these runs.
The performance decrease that the II increase corresponds to is de-
pendent on the original II shown in Table 1 under the “Base II”
column.

Some loops, such as the “fmradio” loop, are no longer able to
achieve the original II after just 3 perturbations. Others are able to
achieve the original II even after a large number of perturbations,
particularly the “heat” kernel. Most of the loops can still be mapped
onto a PLA after 20 perturbations with small increases in II.

Figure 9 looks at three of the benchmarks in more detail. Each
graph represents one loop kernel, with the number of perturbations
shown on the x-axis. The two lines represent the relative II increase
required to schedule the perturbed loop (averaged across multiple
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Figure 10: Perturbation studies with more restrictive PLAs.

runs with different random seeds) as well as a measure of how sim-
ilar the perturbed loop is to the original. The similarity metric is
based on degree distribution [20], which is a histogram describing
how many operations in the dataflow graph have a given degree
(number of connections with other operations). We make the mod-
ification that nodes are differentiated by class of operation (arith-
metic vs. memory) when calculating the distribution. The degree
distributions of two dataflow graphs are then normalized to range
from 0 to 1 and compared using the sum of absolute differences.
Thus the value can range from 0 (very similar) to 2 (very different).
As can be seen in the graphs, the II increase generally tracks the in-
crease in difference between perturbed loops and original loops.
In several cases the II “levels off” before increasing again; this
happens when increasing the II gives enough scheduling flexibil-
ity that multiple additional perturbations can be scheduled without
further II increases. Also, notice that in the larger loop (“sobel”),
the graph of II increase is flatter, as each II increase corresponds to
more scheduling slots becoming available.

In order to study the utility of the architecture generalizations de-
scribed in Section 2.2, the same perturbation study is run with more
restrictive PLA hardware. Figure 10 shows the results of schedul-
ing the “fir” benchmark to various more restrictive hardware con-
figurations. The “SRF” configuration replaces the rotating register
files with SRFs; it is assumed that any entry can be read out of the
SRF, but entries may “fall off” the end, so consumers are forced
to be scheduled closer in time to producers. The “No Bus” con-
figuration contains no global bus. This limits connectivity signifi-
cantly because the remaining interconnect is highly customized to
the original loop. In the “No Mux” configuration, the MUX inputs
are not allowed to be swapped; thus, connections are port-specific

and more restrictive. In each configuration, the reduced flexibility
in the datapath means that higher IIs are required to map perturbed
loops onto PLAs. In the case of “No Bus”, mapping failed out-
right beyond 6 perturbations due to insufficient interconnect; thus,
the maximum II increase that was attempted (4.5x) is shown for
greater than 6 perturbations. It can be seen that with all of the
hardware generalizations in place (“PLA” line), the achievable II is
significantly lower as the number of perturbations increases.

Figure 11 shows the results from the cross-compilation study.
PLAs are designed for the loops listed across the x-axis, and the
loops listed on the y-axis are mapped onto them. The presence
of a symbol indicates that the loop was successfully mapped onto
the hardware. A dark square indicates that the mapping was ac-
complished with no II increase over the ResMII; as expected, dark
squares appear on the diagonal where loops are mapped onto their
own hardware. Other symbols represent successful mapping with
some II increase. The lack of a symbol at a particular coordinate
indicates that mapping failed for that combination of loop and hard-
ware; typically this occurred because of incompatible functionality
(that is, the loop contained an operation that could not be executed
on any FU).

The success of cross-compilation primarily depends on two fac-
tors, loop size and loop similarity. With respect to loop size, it
is easier for smaller loops to map onto larger hardware, as more
scheduling flexibility is available. Note that two columns, those
of “dequant” and “fft”, are heavily populated, indicating that most
other loops were able to successfully map to these PLAs. These are
the two largest loops, and the resulting PLAs have more functional-
ity and interconnectivity as a result. Similarly, rows corresponding
to smaller loops are well-populated. With respect to loop similar-
ity, loops are often able to map onto the hardware of other similar
loops. Table 2 shows the degree-based similarity metric described
earlier in this section for the loops in this cross-compilation study.
The “dcac” loop is most similar to “heat” and “dequant”, and is suc-
cessfully mapped onto hardware designed for these other two loops
even though the “heat” loop is significantly smaller. However, in
general the loop similarity is not an ideal predictor of schedulabil-
ity, as similarity is an estimated aggregate measure that does not
account for the specific resource usage requirements of the loops.

The runtime of the SMT scheduler ranged from a few seconds
up to half an hour, depending on the size of the loop (the largest
loop had 63 operations).

6. RELATED WORK
Prior work in compilation for irregular datapaths can best clas-

sified by the target architecture: CGRAs, multicluster VLIWs, and
DSPs.

CGRA scheduling. Several modulo scheduling techniques for
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dcac deq fft fir fmr fsed heat lu sob
turb 1.41 1.27 1.50 1.76 1.67 1.65 1.53 1.35 1.44
sob 1.26 1.09 0.67 1.10 0.74 0.76 1.25 1.03
lu 1.06 0.95 1.30 1.63 1.26 1.42 1.35
heat 0.90 1.20 0.97 0.97 0.98 1.23
fsed 1.21 1.08 0.64 0.92 0.80
fmr 1.24 1.13 0.82 0.81
fir 1.24 1.41 0.96
fft 1.25 0.97
deq 0.89

Table 2: Similarity of loop kernels; a lower number means the
two loops are more similar to each other.

CGRAs have been proposed. [19] proposes a modulo scheduling
algorithm for ADRES architecture based on simulated annealing.
It begins with a random placement of operations on the FUs of a
CGRA, which may not be a valid modulo schedule. Operations
are then randomly moved between FUs until a valid schedule is
achieved. Modulo graph embedding is a modulo scheduling tech-
nique that leverages graph embedding commonly used in graph lay-
out and visualization [23]. The scheduling problem is reduced to
drawing a guest graph (the loop body) onto a three dimensional
host graph (the CGRA). The three dimensions consist of the 2-D
function unit array and the time slots.

Other CGRA scheduling techniques do not focus on software
pipelining loops. Lee et al. propose a compilation approach for a
generic CGRA [12]. This approach generates pipeline schedules
for innermost loop bodies so that iterations can be issued succes-
sively. The main focus of their work is to enable memory shar-
ing between operations of different iterations placed on the same
processing element. [28] proposes an acyclic scheduling technique
that decouples resource allocation and time assignment for CGRAs.
A graph is constructed where nodes are operations and edges are
inserted between nodes that have direct data dependences or com-
mon consumers. This graph is then partitioned into cliques and
resource allocation is performed by assigning operations in each
clique to the same resource. Time slots for operations are later
assigned in scheduling phase. Last, convergent scheduling is pro-
posed as a generic framework for instruction scheduling on spatial
architectures [13]. Their framework comprises a series of acyclic
scheduling heuristics that address independent concerns like load
balancing, communication minimization, etc.

Multicluster VLIW scheduling. A large body of work has been
done on compiling acyclic and loop code for clustered VLIWs [6,
21, 22, 25, 1, 10, 2]. The clustered nature of the datapath can either
be taken into account in a prepass before scheduling, such as the
Bottom-Up Greedy algorithm in the Bulldog compiler [6], or dur-
ing scheduling, such as the Unified Assign and Schedule algorithm
used in the Lego compiler [22]. Multicluster scheduling is gener-
ally an easier problem than CGRA scheduling because it does not
consider the issue of routing values through a sparse interconnec-
tion network.

DSP compilation. A common characteristic of DSPs is non-
uniform interconnect between multiple function units and function
units to register files. Template-based code generation is typically
used to map applications onto such datapaths [14, 15, 17]. How-
ever, this is generally done in the context of a single-issue architec-
ture, thus there is no significant scheduling component. A related
area is scheduling to processors with partial register bypass net-
works [11, 23]. Partial bypass introduces the problem of variable
latencies on dataflow edges depending on function units chosen for
a producer/consumer pair.

The primary difference that sets our work apart from these tech-
niques is the irregularity of the target architecture. CGRAs and
multicluster VLIWs generally have a regular datapath with uniform
interconnectivity, though not all connections are direct. These de-
signs are typically not customized to a particular application, but
rather are either general-purpose or possibly domain specific. Con-
versely, the architectures that we investigate are highly customized
LAs with several generalizations. Programmability and thus the
opportunities for a scheduler are limited to applications that have
similar computation structure to that which the original LA was de-
signed. As a result, previous scheduling approaches cannot readily
be adapted to PLA architectures.

7. CONCLUSION
This paper presents a constraint-driven modulo scheduler which

maps software-pipelineable loops onto a generalized loop accel-
erator architecture. The loop accelerator is customized for a spe-
cific loop, giving significant area and energy efficiency gains over
general-purpose hardware, but contains features that enable other
similar loops to be mapped onto the same hardware. The architec-
ture template and constraint-driven scheduler are evaluated using a
graph perturbation method which allows for systematic exploration
of the relationship between loop similarity and hardware reusabil-
ity.
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