
Reducing the Cost of Protection against
Soft Errors using Profile-Based Analysis

Daya S. Khudia

The University of Michigan

dskhudia@umich.edu

Griffin Wright

The University of Michigan

grwright@umich.edu

Scott Mahlke

The University of Michigan

mahlke@umich.edu

Abstract

The negative impact of the aggressive scaling of technology nodes on
the sensitivity of CMOS devices to soft errors has been well studied
in the past. Technology scaling makes processors more susceptible to
transient faults. Errors caused by high-energy particle strikes in proces-
sors can result in unexpected behavior and incorrect results. With the
smaller and cheaper CMOS devices pervasive in mainstream comput-
ing, it is necessary to protect these devices against soft errors; an in-
creasing rate of faults makes the need to protect the critical application
running on commodity processors against soft errors more important
than ever. The existing methods of protecting against such faults gen-
erally have high area or performance overheads and so are used only
in mission-critical domains. In order to protect against the soft errors
caused by high energy particle strikes, the detection of these errors is
necessary so that recovery can be triggered.

In this work, a profile-based software-only application analysis and
transformation solution to detect soft-errors is presented. The goal is
to develop a low cost solution which can be deployed for off-the-shelf
commodity processors. The solution works by intelligently duplicating
instructions which are likely to affect the program output, and com-
paring results between original and duplicated instructions. The intel-
ligence of our solution is provided by the use of control flow, memory
dependence, and value profiling to understand and exploit the common-
case behavior of applications. Our solution is able to achieve 92% fault
coverage with a 20% instruction overhead. This represents a 41% lower
performance overhead than the best prior approaches with approxi-
mately the same fault coverage.

General Terms Transient Fault Reliability, Soft Errors, Profile-based
Compiler Analysis, Fault Injection

1. Introduction

Any computer system is expected to work reliably during its lifetime.
Modern computer systems are built using billions of tiny transistors,
and even a single transistor failure can render a computer system use-
less. Most hardware vendors have a lifetime reliability target to achieve
an acceptable product quality, and we focus on that target.

The focus of this work is soft errors, or single-event-upsets (SEUs).
Soft errors, also referred to as transient faults, are caused by neutrons
from cosmic radiation and alpha particles from packaging material
impurities. As the name suggests, transient faults are not persistent and
do not render the computer system unusable for its lifetime. However,
when a transient fault occurs in a computer system, it has the ability to
corrupt the application output or crash the system.

Commodity computer systems have relatively tight cost budgets be-
cause of intense competition. In these markets, area and power are pri-
mary considerations. Consumers are not willing to pay the additional
costs (in terms of hardware price, performance loss, or reduced battery
lifetime) for the solutions adopted in the server space. At the same time,
reliability requirements are also not stringent; Consumers can tolerate
glitches in video playback and infrequent crashes of their desktop/lap-
top computers (usually caused by software bugs). The key challenge
facing the consumer electronics market in future deep sub-micron tech-

nologies is providing just enough coverage of soft errors so that the
effective fault rate (the raw SER scaled by the available coverage) re-
mains at levels to which people have become accustomed. Providing
solutions which can achieve this coverage “on the cheap” is the goal of
this work.

To achieve statistically significant soft error coverage at mini-
mal overheads, we propose a software-centric approach for detect-
ing soft errors. This work is built upon two areas of prior research:
symptom-based fault detection and software-based instruction dupli-
cation. Symptom-based detection schemes recognize that applications
often exhibit anomalous behavior (symptoms) in the presence of a
transient fault [9, 16]. These symptoms can include memory access
exceptions, mispredicted branches, and even cache misses. Although
symptom-based detection is inexpensive, the amount of coverage that
can be obtained from a symptom-only approach is typically limited.
To address this limitation, we make use of the second area of prior
research, software-based instruction duplication [13, 14]. With this
approach, instructions are duplicated and results are validated within
a single thread of execution. This solution has the advantage of be-
ing purely software-based, requiring no specialized hardware, and can
achieve more than 90% coverage. However, the overheads in terms
of performance and power are quite high since a large fraction of the
application is replicated.

The key insight that this work exploits is that the majority of tran-
sient faults can either be ignored (because they do not ultimately prop-
agate to user-visible corruptions at the application level) or are easily
masked by light-weight symptom-based detection. To address the re-
maining faults, compiler analysis is applied to identify high-value por-
tions of the application code that are both susceptible to soft errors (i.e.,
likely to corrupt system state) and statistically unlikely to be covered
by the timely appearance of symptoms. These portions of the code are
then protected with instruction duplication. Our solution intelligently
selects between relying on symptoms and judiciously applying instruc-
tion duplication to optimize the coverage and performance trade-off. In
this way, our solution provides a low-cost, high-coverage solution for
soft errors in processors targeted for the consumer electronics market.
The contributions of this work are as follows:

• A software solution which does not need any user annotations in an
application to generate reliability-aware code and which works on
applications written in variety of languages.

• A new reliability-aware compiler analysis that uses various forms of
profiling (memory profiling, value profiling etc.) to identify instruc-
tions which would not be covered by symptom-based fault detection
alone.

• A selective instruction duplication approach that leverages memory
profiling and value profiling in compiler analysis to identify and
replicate a small subset of vulnerable instructions.

• Microarchitectural fault injection experiments to demonstrate the
effectiveness of our proposed solution in terms of fault coverage
and performance overhead.



2. Background and Motivation

Feng et al. [4] and Shivakumar et al. [15] presented data for the effect of

technology scaling on the failures in time (FIT1) metric. They showed
an exponential increase in the SER for future technology generations.
Since for future technologies it will be hard to power on all the transis-
tors at once, aggressive voltage scaling is expected to be used. Voltage
scaling further exacerbates the problem of soft errors as smaller distur-
bances in circuits will be able to flip a bit.

2.1 Instruction Duplication and Terminology

SWIFT [13] proposed the idea of duplicating instruction in a sin-
gle thread of execution. SWIFT recursively duplicated instructions by
walking the data flow chains of stores and by protecting control flow.
Shoestring [4] improved upon this idea by considering only global
stores and by protecting the control flow only for the immediate branch
that affects the execution of a global store instruction. For classifying
instructions, we adopt the terminology used by Shoestring. The initial
analysis phase of our solutions classifies instructions into the categories
described below.

• Symptom-generating: these instructions, if they consume a cor-
rupted input, are likely to produce detectable symptoms.

• High-value: instructions which are likely to corrupt the output of
the program if they consume a corrupted input.

• Safe: these instructions are naturally covered by symptom-generating
consumers.

In our solution, all library call and function call are considered high-
value instructions. Starting from the operands of these high-value in-
structions, we recursively duplicate producers of the operands. This re-
cursive duplication is terminated when 1) No more producers exist, 2)
A safe instruction is encountered, or 3) the producers are already du-
plicated. The safe instructions are determined based on the probability
of whether or not a particular instruction would generate a symptom if
corrupted.

2.2 Proposed Solution Landscape

A soft error solution that targets the commodity user space needs to be
designed with lower overhead and acceptable coverage as targets. Two
commonly employed techniques are symptom-based and duplication-
based fault detection schemes. Our solution is a hybrid of these two
techniques and tries to achieves as much fault coverage as possible by
leveraging the strengths of each technique.

Symptom-based detection approaches rely mostly on hardware ex-
ceptions, and their coverage quickly saturates. The saturation of fault
coverage provided by symptom-based methods is expected because
these schemes rely on rare hardware exceptions such as page fault,
divide-by-zero, etc. If more frequently occurring microarchitectural
events such as branch mispredicts and cache misses are included as
symptoms for starting recovery, then recovery can be triggered more
frequently and the overhead can become unacceptable [16]. Symptom-
based methods provide good coverage with less overhead.

The coverage versus performance curve is far less steep for instruc-
tion duplication; Coverage increases almost linearly with the amount
of code duplication. One advantage of instruction-based duplication is
that the amount of coverage can be tuned according to an application’s
requirements by providing more or less duplication of code.

Neither symptom-based nor instruction duplication-based tech-
niques provide a stand-alone solution to achieve the desired coverage
and performance benefits. The proposed solution in this work tries to
strike a balance between performance overhead and fault coverage by
exploiting the strengths of each technique.

1The number of failures observed per one billion hours of operation.

2.3 Opportunities for Profile-Based Duplication

In the past, profiling information has been successfully used in profile-
guided optimizations (PGOs) to improve the performance of a pro-
gram [5]. GCC [6] and Intel’s compiler (icc) can use profiling informa-
tion to generate an efficient program binary. Most optimizations based
on profiling data work by uncovering previously unexplored opportuni-
ties. For example, if a multiply operation generates the same invariant
value frequently, then the multiply operation can be optimized away
with a check inserted for the correct value. Similarly, edge profiling
and memory profiling can be used in optimizations such as partial dead-
code-elimination, improved object layout, and more.

In this paper we use edge-profiling, memory profiling and value
profiling for the first time (to the best of our knowledge) in the context
of code duplication for protection against soft errors. With the profiling
information we can exploit the common case behavior of a program
to duplicate only the critical instructions, which need to be protected.
Different kinds of profiling information enable us to ignore unnecessary
duplication of instructions which are unlikely to cause program output
corruption in the presence of a transient fault. For example, in the
context of having the same invariant value generated by an instruction,
we insert a comparison with the specific invariant value in the code. The
failure of this comparison then indicates the possibility of a transient
fault and triggers the recovery mechanism via a jump to recovery code.
The following describes the scenarios where profiling information can
be used.

• Through-Memory Analysis: While recursively duplicating in-
structions starting from high-value instructions, the duplication will
terminate when one of three termination conditions (Section 2.1) are
met. However, when a load is encountered in this duplication pro-
cess, we can trace the dependences that manifest through memory
by using memory profiling. Our work implements through-memory
analysis to ensure we maximize the efficiency of our duplicated
code and maintain a superior level of coverage at a minimal over-
head.

• Value Profiling: Previous symptom-based works have explored
unusual scenarios such as erroneous hardware behavior to detect
faults. We take this to the next level by detecting more abnormal
scenarios with value profiling. We also eliminate the unnecessary
duplication of instructions which provide a low rate of return with
regards to additional fault coverage by using control flow and mem-
ory profiling.

3. Proposed Solution

The main underlying observation behind our proposed solution is that
100% reliability is not always required. For example, when a user is
playing a game or watching a video, a few infrequent soft errors are
tolerable as they do not lead to user-apparent anomalies. Our proposed
solution leverages the basic idea of instruction duplication from SWIFT
and others [12, 13], and adds intelligent tracing of dependences through
memory and other profiling information to generate more efficient
duplication code. In essence, our solution uses the dynamic behavior
of applications to generate efficient code for transient fault detection.
The remaining sections describe our newly proposed techniques and
the duplication process.

3.1 Overview of proposed solution

The main intuition behind our idea is that applications mainly commu-
nicate to the external world using I/O calls, and if we can capture the
true dependences of the operands of these calls, we can better protect
the program output from getting corrupted. This type of approach is
suitable for our low overhead approach as we don’t target 100% fault
coverage.



To capture the true dependences of the operands of library calls, we
use LAMP [10], which allows us to determine the dependences that
manifest through memory. In contrast to Shoestring [4], while duplicat-
ing instructions, our solution traces the dependences through memory.
In the recursive duplication of the producer chains of the operands of
high value instructions, whenever a load is encountered, Shoestring ter-
minates this recursive duplication at that load, and does not consider
the dependences that manifest through memory. Our solution deviates
from Shoestring in this duplication process to achieve better and more
useful code duplication. In our solution, the duplication process starts
from the operands of library calls. If a load is encountered during dupli-
cation, the compiler pass obtains all the stores that wrote to the address
from which the load is reading using the memory profiling information.
The duplication process considers these stores as potential candidates
for instructions can corrupt program output. The producer chains of
these stores are also protected by duplication.

3.2 Overhead Reduction Without Losing Coverage

Our solution detects soft errors by adding extra instructions in the
current thread of execution, incurring a penalty in performance. Using
various kinds of profiling information, we can reduce this overhead.
In particular, we utilize edge profiling for not protecting infrequently
executed instructions, memory profiling to find load and store aliases
and identify silent stores, and value profiling to get the information
about instructions which produce statistically invariant values. The
performance overhead incurred because of instruction duplication can
be reduced further by using information about the runtime behavior of
applications through profiling. Information about the runtime behavior
of programs enables us to remove duplication for protecting the code
that doesn’t provide significant fault coverage.

3.2.1 Execution Frequency Based Recursive Duplication
Termination

The intuition behind this optimization is that frequently executed in-
structions should not be duplicated to protect a non-frequently executed
instruction. The probability of a soft error affecting a non-frequently ex-
ecuted instruction is relatively low and so to protect such a instruction,
unnecessary duplication of frequently executed instructions should not
be performed.

3.2.2 Dependences Through Memory

We use memory profiling to obtain information about aliasing between
loads and stores. As pointed out in Section 3.1, to duplicate the true
dependences of the producer chains of high value instructions, we need
to have load/store dependence information available. Memory profiling
provides us with this information. If we have the memory profiling
information available at the time of duplication, intelligent duplication
can be performed. For example, only library calls can be considered as
high value instructions and only the stores that alias with the loads in
the producer chain of library call operands need to be protected.

3.2.3 Silent Store Optimization

Memory profiling is also used to identify silent stores that exist in an
application. A silent store is defined as a store which writes the same
value to a memory location that is already present at that location.
As reported in many previous studies, a significant percentage of total
stores are silent. Bell et al. [1] report 18% to 64% of total stores
as silent for SPEC95 benchmarks. We have implemented silent store
profiling as an extension of the LAMP tool [10]. In experiments with
SPECINT2000 benchmarks, we observed silent stores ranging from
0.01% to 72% of total stores. The presence of high fractions of silent
stores can be exploited.

For the purpose of this work, while doing recursive duplication, if
we encounter a store which is silent then we stop the recursive duplica-
tion. Considering the high percentage of stores that exist in benchmark

applications, we can save in terms of instruction duplication. The intu-
ition behind this idea is that even if a corrupted value is written by a
store it will be written correctly in subsequent executions of the same
store. If a load is present between two dynamic instances of a silent
store; a fault in the store can cause the load to read the wrong value. So,
whenever an aliasing pair load and a silent store are part of the same
loop, the store is not considered for this optimization.

3.2.4 Software Symptom Generation using Value Profiling

If an instruction generates the same value almost 100% of the time,
we can use that value to compare to the value generated by the same
instruction at runtime. If the value generated at runtime differs from
the one that the instruction generates very frequently, it is assumed that
a fault has occurred and the recovery mechanism is triggered. Since
for each value comparison we need to insert one compare (cmp) and
one branch instruction, these instructions should be only inserted when
they provide benefits in comparison to straight up duplication of the
data flow chain. The benefits are only present if the data flow chain is
long and the count of instructions which would have been duplicated is
greater than 2 (the value comparison + the branch instruction).

If the two compared values do not match at runtime, then the recov-
ery mechanism is triggered. Although rare, it is possible that at runtime,
the application encounters different inputs and so an instruction may
produce output other than the profiled value. Since this is a rare case,
the recovery should be initiated only once from the same place; if the
comparison fails at a location twice from the same place, such requests
for recovery are ignored.

4. Experimental Setup

The experiments with high energy particle strikes conducted by Dixit
et al. [3] are not feasible in academic studies such as the one presented
in this paper. An acceptable alternative to these experiments is the use
of statistical fault injections (SFI) into a microarchitectural model of a
processor. SFI has been previously used in validating the solutions pro-
posed to solve the problem of soft errors. For the purpose of this work,
we use a single bit-flip fault model implemented in the microarchitec-
tural model of a ARM processor.

For profiling the SPECINT2000 benchmarks we have used training
data provided in the benchmark suite corresponding to each benchmark.
While running the benchmark on the simulator, we utilized ref data pro-
vided in the benchmark suite. We only use training data for profiling.
However, profiling information from multiple runs of a program with
representative inputs can be combined easily in our profiling infrastruc-
ture.

4.1 Compiler Passes

We have used the LLVM [7] compiler infrastructure to implement the
reliability-aware code generation pass. This pass uses internal infor-
mation from other analysis passes such as memory profiling and value
profiling to produce bitcode with duplicated instructions. The LLVM
code generation framework is then used to generate ARM binaries from
the bitcode with duplicated instructions. Few other optimization passes,
especially in the code generation phase, can remove the duplicated in-
structions, but we did disable the machine common subexpression elim-
ination pass and a few others that are run while preparing the IR (Inter-
mediate Representation) for code generation.

Since LLVM supports a number of front-ends (including C/C++),
the developed pass is capable of generating reliability-aware code for
applications written in many languages. The pass takes LLVM IR as
input and also produces IR with duplicated instructions. The other
benefit of operating at the IR level is that all the code generation targets
supported by LLVM (Alpha, ARM, etc.) can be used with the solution
presented in this paper. We have performed all experiments targeting an
ARM architecture. To instrument an application with reliability aware



code for a different target, our framework can remain the same and the
machine executable can be generated for a multitude of targets.

4.2 Fault Injection Framework

The fault model used in this work is a single bit-flip model widely
used in experimental evaluation of the previously proposed solutions
to tackle the problem of soft errors. These faults are inserted by flip-
ping a bit at a random cycle during the course of application run. The
experimental results shown in this paper are produced with fault injec-
tion trials. At the start of each trial a random physical register and a
random bit are selected for injection. The selected bit is then flipped
at a random time during the application run and the program executes
with this modified register data. For the purposes of this work, we have
used the GEM5 [2] simulator. The simulator is running in ARM syscall
emulation mode and models the ARMv7-a profile of ARM architecture.
We have used a model of the in-order ARM architecture.

4.2.1 Register File Injections

To calculate the statistical significance of a given number of fault
injection trials, we use the works of Leveugle et al. [8]. We need 96
fault injection trials for each benchmark to have a 10% margin of error
and confidence level of 95%. Therefore, we chose 100 fault injection
trials for each benchmark to yield results with reasonable accuracy in
a timely manner. For the experiments, we injected faults randomly into
the register file. It has been pointed out in a previous study [17] that
many corruptions are due to injections into the register file, making it
an attractive target for injection studies. Furthermore, Wang et al. [17]
showed that the bulk of transient fault-induced failures are dominated
by corruptions introduced from injections into the register file.

4.3 Outcome Classification

After the fault injection, the program runs until completion and the
log files are collected. So, the experiments represent full runs of the
benchmarks. At the end of every simulation, the log files are analyzed
to determine the outcome of the run as described below. The result of
each trial is classified into one of four categories:

1. Masked: The injected fault did not corrupt the program output.
Application-level or architecture level masking occurred in this
case.

2. Covered by symptoms: The injected fault produces a symptom
such as a page fault or divide-by-zero fault within 1000 cycles of
the fault injection so that a recovery can be triggered. Section 4.4
describes the recovery support in further detail.

3. SWDetect: The injected fault was detected by the extra comparison
inserted at the time of duplication.

4. Failures: All faults that cause early program termination or do not
terminate in definite time are classified into this category.

5. SDCs: These are silent data corruptions (SDCs). All faults that
produce user-visible corruptions are classified into this category.

The result classifications of the injection experiments in this work are
based on the fact that only user-visible corruptions really matter. The
cost of ensuring reliability can be reduced by focusing on hiding only
the faults that are noticeable by the end user at run-time. Therefore, the
metric of importance is not the number of faults that propagate into the
microarchitectural state, but rather the percentage of faults that actually
do result in user-visible failures.

4.4 Recovery Support

Our solution relies on the ability to roll-back processor state to a clean
checkpoint. The results presented in Section 5 assume that in modern/-
future processors, a mechanism for recovering to a checkpointed state

of 1000 instructions in the past will already be required for aggres-
sive performance speculation. Consistent with Wang and Patel [16],
our work assumes that any fault that manifests as a symptom within
a window of 1000 committed instructions can be safely detected and
recovered.

4.5 Benchmarks

We have used all except 2 applications from the SPEC2K integer bench-
mark suite (gzip, vpr, gcc, mcf, crafty, perlbmk, parser, gap, vortex,
bzip2) as representative workloads in experiments, and they are com-
piled with standard -O3 optimizations. The remaining two benchmarks
(eon and twolf) did not work with the cross-build of LLVM to produce
ARM binaries on an x86 machine. In this work, multi-threaded pro-
grams are not considered. However, we do not foresee any problems
of using our technique with race-free multi-threaded programs. Code
duplication in a multi-threaded environment may uncover hidden con-
currency bugs because the extra duplicated instructions inserted may
change the relative ordering of instructions in the simultaneous execu-
tion of threads.

5. Experimental Results

This section presents the combined results of our technique, which
combines the use of silent store information (to eliminate unnecessary
duplication), edge profiling, value profiling, and memory profiling (to
trace dependences through memory) techniques.

5.1 Silent Stores

The use of silent store information yielded an average of roughly 12%
overhead reduction across all benchmarks with an average dynamic
silent store percentage of 31%, though 176.gcc, 181.mcf, 253.perlbmk
and 255.vortex had a higher percentage of dynamic silent stores and
yielded a more significant reduction in overhead. Duplication is termi-
nated (see Section 3.2.3) only when a static store is silent more than
80% of the time (i.e., if a static store in a benchmark writes the same
value already present at a memory location less than 80% of its dy-
namic execution time, the store is not considered for this optimization).
175.vpr and 253.perlbmk have less of a reduction in overhead because
many static stores in these benchmarks do not cross the threshold of
80%.

5.2 Performance overheads and Fault Coverage

In this subsection, a comparison of our solution is made with Shoestring
(profile-oblivious duplication) using the criteria of performance over-
head and fault coverage.

5.2.1 Effect of safe instructions and control flow protection

We examined the maximum amount of coverage we could obtain by
doing the maximum amount of duplication. Since loads are never du-
plicated to save on memory traffic, there will always be some faults
which can escape detection by the duplicated code, including those due
to faults injected into duplicated instructions. The full duplication col-
umn in Figure 1 shows the performance overhead and fault coverage if
the duplication is not terminated at safe instructions and all the branches
are also protected by duplication. The full-dup column in Figure 2 is the
corresponding fault coverage breakdown among the different categories
of result classification. Essentially, Full duplication data represents the
performance overhead and fault coverage with the maximum amount
of duplication possible with our scheme. On average, the performance
overhead is 50.51% and the coverage of transient faults by combining
symptom-based and duplication-based methods is 92.2%. Though the
overhead is high, it gives improved coverage of faults. In the 164.gzip
benchmark, all unmasked faults are detected by the duplicated code.

The profile-oblivious duplication column in Figure 1 and pro-oblivi
column in Figure 2 show the performance overhead and fault cover-
age numbers if the duplication is terminated at safe instructions and



0

10

20

30

40

50

60

70

%
 O

v
e

r
h

e
a

d
Full duplication Profile oblivious duplication Profile aware duplication

Figure 1: Overhead comparison among full duplication, profile oblivi-
ous duplication, and profile-aware duplication. In full duplication, du-
plication is not terminated at safe instructions and all branches are also
protected. Although profile oblivious duplication uses safe instructions,
profiling information is not utilized. Profile-aware duplication uses safe
instructions as well as profiling information.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

fu
ll
-d
u
p

p
ro
-o
b
li
v
i

p
ro
-a
w
a
re

fu
ll
-d
u
p

p
ro
-o
b
li
v
i

p
ro
-a
w
a
re

fu
ll
-d
u
p

p
ro
-o
b
li
v
i

p
ro
-a
w
a
re

fu
ll
-d
u
p

p
ro
-o
b
li
v
i

p
ro
-a
w
a
re

fu
ll
-d
u
p

p
ro
-o
b
li
v
i

p
ro
-a
w
a
re

fu
ll
-d
u
p

p
ro
-o
b
li
v
i

p
ro
-a
w
a
re

fu
ll
-d
u
p

p
ro
-o
b
li
v
i

p
ro
-a
w
a
re

fu
ll
-d
u
p

p
ro
-o
b
li
v
i

p
ro
-a
w
a
re

fu
ll
-d
u
p

p
ro
-o
b
li
v
i

p
ro
-a
w
a
re

fu
ll
-d
u
p

p
ro
-o
b
li
v
i

p
ro
-a
w
a
re

fu
ll
-d
u
p

p
ro
-o
b
li
v
i

p
ro
-a
w
a
re

164.gzip 175.vpr 176.gcc 181.mcf 186.crafty 197.parser 253.perl 254.gap 255.vortex 256.bzip2 average

Masked SWDetects Symptoms Failures SDCs

Figure 2: Coverage breakdown for full duplication (full-dup), profile
oblivious duplication (pro-oblivi) and profile aware duplication (pro-
aware).

only the immediate branch whose execution affects the execution of
high value instruction is protected by duplication. These two techniques
(safe instructions and immediate branch protection), also implemented
in Shoestring, reduce overhead but also decrease fault coverage from
92.2% to 89.6%. These are Shoestring performance and coverage num-
bers, and we have considered these as our baseline values for result
comparisons in the remainder of this section.

5.2.2 Through-memory dependencies and profiling usage

The profile-aware duplication column in Figure 1 shows the overhead if
we duplicate the producer chains of library calls only (i.e., only library
calls are considered as high value instructions) and make use of pro-
filing information. The pro-aware column in Figure 2 shows the corre-
sponding coverage breakdown numbers. In this set of experiments, the
effectiveness of using LAMP to trace the dependences through memory
and other profiling techniques while duplicating instructions is demon-
strated. The overhead is reduced by 41% but the coverage of transient

faults provided by the combination of symptom-based and software du-
plication stays about the same. These results demonstrate the effective-
ness of using the profiling information for efficient duplication. This
technique results in better code duplication, providing the same level of
fault coverage seen at 34.9% overhead with Shoestring but with a 41%
lower overhead.

5.3 Contributions of Each Technique

So far we have discussed the combined effect of edge, memory, and
value profiling on the obtained results. In this section, the contribution
of each technique is briefly mentioned; space constraints prevent us
from showing individual graphs for results.

Our data show that if the silent store and recursive duplication termi-
nation optimizations are used, there is a 12.78% reduction in overhead
with a combined fault coverage similar to that provided by Shoestring.
When applying the silent store optimization (Section 3.2.3) and the re-
cursive duplication break optimization (Section 3.2.1), the average cov-
erage provided is reduced by 3%, but the overhead is reduced by 13%.
Thus, these optimizations improve the end result of the overall tech-
nique. Finally, the use of value profiling was found to provide an aver-
age of 5.9% reduction in the performance overhead of duplication, as
well as providing a slight increase in the number of faults covered by
duplication.

Overall, the experimental results demonstrate that the techniques
proposed in this work are effective as they provide a significant re-
duction in performance overhead while still maintaining the desired
fault coverage levels. Performance overheads shown in this paper for
Shoestring are higher than originally reported in the Shoestring paper
because our infrastructure is different than the one used in evaluating
Shoestring. For example, we target an ARM in-order architecture while
Shoestring used out-of-order AMD architecture.

5.4 Cases of SDCs

In our work, loads are never duplicated to save on memory traffic.
Consider the case where an injected fault corrupts the data in a register
loaded by a load. Since the duplicated data flow chain and the original
data flow chain both will use the same corrupted data, this fault will not
be detected. This is the most frequent cause of the SDCs observed.

6. Future Work

As part of ongoing and future work, we are exploring the following
different aspects related to this work.

6.1 Branch Target Corruptions

We are investigating the effects of bit-flip corruptions in taken branch
targets. Our data show that our current technique does not offer as
much coverage when dealing with corrupted branch targets. Specifi-
cally, early-termination and fatal faults are much more common due
to jumps to incorrect branch targets. We are currently working on en-
hanced signature tracking techniques to ensure valid and correct pro-
gram flow.

6.2 Out of Order Framework

The current results are reported with an in-order model. Since our
injection site is the register file, we expect that an out-of-order model
would not affect our conclusions significantly. In fact, an out-of-order
model actually improves our coverage rates because duplication of
instructions in a single thread of execution results in extra instruction
level parallelism which an out-of-order model could exploit efficiently.
In addition, the inherent ability of an out-of-order model to squash some
erroneous instructions or roll-back after a branch mispredict allows for
some further inherent masking abilities. Fault injection experiments
with an out-of-order implementation are planned as part of our future
work.



7. Related Work

Shoestring [4] is the closely related work to our proposed solution. Our
work differs from Shoestring in the following ways:

• Our work makes use of value profiling to generate extra software
based symptoms.

• Silent store profiling information is incorporated in this work for the
first time.

• In Shoestring, all of the global stores and all functions calls are con-
sidered as high value. Our solution starts duplicating instructions
only from library calls and then uses memory profiling to find the
true load/stores dependencies. Shoestring terminated DFG travers-
ing if a load was encountered while duplicating instructions. In this
process, only the important stores get considered as high value and
a lesser duplication overhead is achieved.

• Shoestring targets an x86 architecture and is specifically designed
in the compiler back-end to operate at the level of machine func-
tions and machine basic blocks. Our work takes a fresh approach,
and is implemented instead at the IR (Intermediate Representation)
level. This enables greater applicability, as IR-level implementation
allows for a wider target base, being useable on a multitude of dif-
ferent processor architectures.

With respect to other hardware and software based solutions, our solu-
tion’s ability to achieve improved levels of fault coverage with very low
performance overhead, and all without any specialized hardware, sets it
apart.

Software instruction duplication is an approach which is extended
in our work in an effort to increase fault-coverage while reducing over-
head and eliminating the need for additional hardware support. In this
case, redundant execution can also be achieved in software without cre-
ating independent threads as shown by Reis et al. [13]. The authors pro-
posed SWIFT, a fully compiler-based software approach for fault tol-
erance. SWIFT exploits wide, underutilized processors by scheduling
both original and duplicated instructions in the same execution thread.
Validation code sequences are also inserted by the compiler to compare
the results between the original instructions and their corresponding du-
plicates. Other works such as CRAFT [14] and PROFIT [14] improve
upon the SWIFT solution by leveraging additional hardware structures
and architectural vulnerability factor (AVF) analysis, respectively.

Our proposed solution also makes use of symptom-based detection,
which relies on anomalous microarchitectural behavior to detect soft
errors. A light-weight approach for detecting soft errors, ReStore [16],
analyzes symptoms including memory exceptions, branch mispredicts,
and cache misses. In our proposed solution, extra symptom generating
instructions are introduced based on value profiling data.

Yu et al. [18] explored the idea of identifying critical variables in
program by repeatedly injecting faults into a program and then analyz-
ing the cases that cause SDCs. Since for larger programs there can be
many variables which affect program output and identifying them by
injecting faults would require a large number of experiments, this ap-
proach is not scalable. Nakka et al. [11] presented a hardware-based so-
lution for selective replication. Similar to high-value instructions, they
identify critical variables. Their approach duplicates a number of hard-
ware structures to provide instruction replication, while our software-
only approach targets off-the-shelf commodity processors.

8. Conclusions

The ever-present desire to scale transistor size will increase the rate
at which soft errors occur during the time when the processor is in
use. As a result, it is necessary to provide protection against soft er-
rors not only for mission-critical applications but also for important
applications running on commodity processors. The high overhead of
techniques to protect against soft errors for mission-critical computing

systems is not acceptable for applications running on commodity pro-
cessors. In this work, we presented a solution for commodity proces-
sors that uses profile-based compiler analysis to selectively duplicate
instructions. Our profile-based selective duplication results in a reduc-
tion in overhead of 41% in comparison to a previously proposed solu-
tion while maintaining the same level of fault coverage.

References

[1] G. B. Bell, K. M. Lepak, and M. H. Lipasti. Characterization of silent
stores. In Proc. of the 9th International Conference on Parallel Architec-

tures and Compilation Techniques, 2000.

[2] N. L. Binkert, E. G. Hallnor, and S. K. Reinhardt. Network-oriented full-
system simulation using M5. In 6th Workshop on Computer Architecture

Evaluation using Commercial Workloads, pages 36–43, Feb. 2003.

[3] A. Dixit and A. Wood. The impact of new technology on soft error rates.
In Reliability Physics Symposium (IRPS), 2011 IEEE International, april
2011.

[4] S. Feng, S. Gupta, A. Ansari, and S. Mahlke. Shoestring: Probabilistic
soft-error reliability on the cheap. In 18th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems,
Mar. 2010.

[5] R. Gupta, E. Mehofer, and Y. Zhang. Profile guided compiler optimiza-
tions. The Compiler Design Handbook: Optimizations and Machine Code
Generation, CRC Press, 2002.

[6] J. Hubicka. Profile driven optimisations in gcc. GCC Summit Proceedings,
pages 107–124, 2005.

[7] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proc. of the 2004 International

Symposium on Code Generation and Optimization, pages 75–86, 2004.

[8] R. Leveugle, A. Calvez, P. Maistri, and P. Vanhauwaert. Statistical fault in-
jection: quantified error and confidence. In Proceedings of the Conference

on Design, Automation and Test in Europe, DATE ’09, pages 502–506. Eu-
ropean Design and Automation Association, 2009.

[9] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and
Y. Zhou. Understanding the propagation of hard errors to software and
implications for resilient system design. In 16th International Conference

on Architectural Support for Programming Languages and Operating Sys-

tems, pages 265–276, 2008.

[10] T. Mason. LAMPVIEW: A Loop-Aware Toolset for Facilitating Paral-
lelization. Master’s thesis, Dept. of Electrical Engineeringi, Princeton Uni-
versity, Aug. 2009.

[11] N. Nakka, K. Pattabiraman, and R. Iyer. Processor-level selective replica-
tion. In Proc. of the 2007 International Conference on Dependable Systems
and Networks, 2007.

[12] N. Oh, S. Mitra, and E. J. McCluskey. Ed4i: Error detection by diverse
data and duplicated instructions. IEEE Transactions on Computers, 51(2):
180–199, 2002.

[13] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August. SWIFT:
Software implemented fault tolerance. In Proc. of the 2005 International
Symposium on Code Generation and Optimization, pages 243–254, 2005.

[14] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, D. I. August, and S. S.
Mukherjee. Software-controlled fault tolerance. ACM Transactions on
Architecture and Code Optimization, 2(4):366–396, 2005.

[15] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi. Modeling
the effect of technology trends on the soft error rate of combinational logic.
In Proc. of the 2002 International Conference on Dependable Systems and
Networks, pages 389–398, June 2002.

[16] N. J. Wang and S. J. Patel. ReStore: Symptom-based soft error detection in
microprocessors. IEEE Transactions on Dependable and Secure Comput-

ing, 3(3):188–201, June 2006.

[17] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel. Characterizing the
Effects of Transient Faults on a High-Performance Processor Pipeline. In
International Conference on Dependable Systems and Networks, page 61,
June 2004.

[18] J. Yu and M. J. Garzarn. A detector for harmful errors. IEEE Workshop on

Silicon Errors in Logic - System Effects, 2009.


