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Abstract—A growing number of applications from various
domains such as multimedia, machine learning and computer
vision are inherently fault tolerant. However, for these soft
workloads, not all computations are fault tolerant (e.g., a
loop trip count). In this paper, we propose a compiler-based
approach that takes advantage of soft computations inherent
in the aforementioned class of workloads to bring down the
cost of software-only transient fault detection. The technique
works by identifying a small subset of critical variables that
are necessary for correct macro-operation of the program.
Traditional duplication and comparison is used to protect
these variables. For the remaining variables and temporaries
that only affect the micro-operation of the program, strategic
expected value checks are inserted into the code. Intuitively,
a computation-chain result near the expected value is either
correct or close enough to the correct result so that it does not
matter for non-critical variables. Overall, the proposed solution
has, on average, only 19.5% performance overhead and reduces
the number of silent data corruptions from 15% down to
7.3% and user-visible silent data corruptions from 3.4% down
to 1.2% in comparison to an unmodified application. This
unacceptable silent data corruption rate is even lower than
a traditional full duplication scheme that has 57% overhead.
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I. INTRODUCTION

An increasing number of both current and emerging work-

loads from domains such as multimedia, machine learning

and computer vision either compute on approximate data

and/or produce results that have subjective interpretations,

i.e. the quality of the output is subjectively judged by

a human. Such applications can inherently tolerate more

faults while still producing user acceptable outputs. User

acceptable outputs are the program outputs where either the

user can not differentiate between an output in presence of

a fault or the output is useful even in presence of fault.

Multimedia computations such as encoding/decoding of au-

dio, images and video are examples of such applications.

Such computations are referred to as soft or imprecise

computations [1] in the literature. Also, other applications

from domains such as machine learning and computer vision

use probabilistic algorithms that are inherently tolerant to a

certain degree of faults.

The focus of our work is on the faults caused by soft

errors. Soft errors, also referred to as Single Event Upsets

(SEUs) or transient faults, are caused by high energy

particle strikes. Soft errors can also be caused by circuit

crosstalk or random noise. The silicon-chip technology is

becoming more susceptible to soft errors with each new

generation due to decreasing transistor sizes and increasing

transistor density. Soft Error Rate (SER) for the logic on

chip is steadily rising with technology scaling [2]. SER is the

rate at which a component encounters soft errors and SER

scales with number of transistors and level of integration [3].

Soft computing workloads have high levels of inherent fault

tolerance. For such workloads, fault detection efforts can be

directed only to the parts of the program that when perturbed

produce user unacceptable outputs. As a result, there is an

opportunity to reduce the overhead of fault protection for

these applications. In this work, we analyze and identify

the nature of faults that cause unacceptable outputs and

propose an efficient software-only fault detection scheme

that exploits soft computations.

The inherent fault tolerant nature of soft computing appli-

cations raises an important question: Do these applications

require any fault protection at all? The answer to this

question is ”yes, they do” because not all computations in

soft computing applications are fault tolerant. As identified

by the works in the field of approximate computing [4], [5],

a program has certain computations that can be approximate

for user acceptable outputs, while the computation of other

parts of the program needs to be precise. For example,

correctness of a variable that holds the number of frames of

video to be decoded is more important for user acceptable

output than the computation of a single pixel in a frame.

To differentiate errors causing the user acceptable outputs

from to the ones causing unacceptable outputs, we refine

the definition of silent data corruption to Unacceptable

Silent Data Corruptions (USDCs). USDCs are the incor-

rect program outputs in presence of a fault that are below

an acceptable quality but the program completes execution

without terminating prematurely and behaving abnormally.

Our solution takes advantage of not-so-strict requirement

on program output correctness and protects only the crit-

ical parts of the computation. To this end, we analyze

the nature of soft computations and propose a compiler-

based software-only approach for identifying USDC-causing

variables automatically and inserting relevant detection code.

Our approach does not require any program annotations and

works by identifying critical variables that, if corrupted,

affect the program output significantly as a single corruption



either affects many computations or has repeated impact on

computation. Variables that carry a state across iterations in

a loop are examples of such critical variables. Computation

of critical variables is protected using traditional replication,

duplicating their producer chain and inserting a check [6].

Expected value checks are inserted on other variables to

make sure that they stay in a compact range obtained by

profiling. We hypothesize that a deviation outside this range

is unlikely to happen in program execution under normal

conditions. Any deviations within the checking range is

unlikely to cause a USDC. Hence, expected value checks

represent checking substantial abnormal behavior of a pro-

gram while allowing insignificant corruptions. In this man-

ner, soft checks are performed on soft computation because

they are low overhead, while hard checks are sparingly used

on critical variables.

The major contributions of this work are as follows:

• A fully automated compiler analysis and transformation

method that partitions computations among three cate-

gories: to be protected by traditional duplication, to be

protected by soft value checks or not to be protected.

This method also judiciously performs selective dupli-

cation and inserts value checks. Our technique does not

require any program annotations.

• We analyzed soft computing benchmarks from various

domains such as multimedia, machine learning and

computer vision to identify the nature of computations

and to develop compiler heuristics. We also imple-

mented fidelity metrics to measure the objective quality

of the outputs.

• Fault injection experiments are performed to evaluate

the efficacy of the proposed scheme. We show that,

on average, at 19.5% performance overhead, SDCs can

be reduced from 15% down to 7.3% and USDCs from

3.4% down to 1.2% in comparison to an unmodified

application. This unacceptable silent data corruption

rate is even lower than a traditional full duplication

scheme that has 57% overhead.

II. MOTIVATION

A. Soft Computations

Soft computations can tolerate relatively higher numbers

of errors than other applications that require their results to

be numerically-precise. Soft computing has been previously

exploited in trading off accuracy for energy efficiency or

execution time [4], [5]. In this paper, we propose to exploit

such computations for trading off the cost of providing

reliability with the accuracy of results. However, all parts

of these error tolerant applications are not equally error

tolerant. For example, errors in loop variables might cause

a significant portion of the output to be corrupted. The

computation of such variables needs to be precise.

In order to define the level of acceptable degradation, we

need to evaluate whether the output of an application is

acceptable to the end user. Naturally, the tolerable amount

of degradation is application dependent and different quality

metrics are required for different applications. For example,

an objective metric for the acceptable quality of a decoded

image is to have Peak Signal to Noise Ratio (PSNR) above

a certain threshold. Higher PSNR implies a better quality

image. Similarly, the output of a classification algorithm

(machine learning application) can be acceptable if the

number of correctly classified test data in presence of a fault

does not significantly differ from the classification accuracy

in the absence of the fault. The type of quality measure

metric used for different applications and thresholds for them

to be of accepted quality are provided later in Section IV-B.

(a) Decoded image in a
fault-free environment

(b) Decoded image of
acceptable quality in
presence of a fault

(c) Decoded image of
unacceptable quality in
presence of a fault

Figure 1: Difference between decoding (part (a)) of an image
in a fault-free environment and decoding in presence of faults
(part (b) and (c)). Though the decoded image in part (b) does
not numerically match with fault free decoding, the difference is
not perceptible. The distortions in part (c) are perceptible (top-right
corner) and thus the output is unacceptable.

In Figure 1, we demonstrate how the faults might affect

the output of an application. We injected faults into various

runs of a jpeg image decoder and analyzed the outputs.

The experimental setup for injecting faults is described in

Section IV. Figure 1 shows an example of a decoded image

under three scenarios. Figure 1(a) is the decoded image when

no fault was injected in the application run. Figure 1(b) is

the decoded image when a fault was injected and the output

is numerically incorrect but the difference is not perceptible.

Figure 1(c) shows the unacceptable output in presence of a

fault. The top-right portion of Figure 1(c) is significantly

distorted due to incorrect pixel values. The pixels in both

Figure 1(b) and Figure 1(c) do not numerically match with

the ones in Figure 1(a). However, the primary difference

between these two figures is that in Figure 1(b) only few of

pixels are incorrectly computed thus causing an impercep-

tible difference while in Figure 1(c), a large slice of pixels

are incorrectly calculated causing a perceptible change. We

further analyzed the propagation of the faults in each of

these cases. The fault in Figure 1(b) only corrupts the output

of an addition by a small amount while calculating inverse

discreet cosine transform, hence causes only small output

disturbance. However, the fault in Figure 1(c) causes error



in decoding Huffman-compressed coefficients for a block of

data, hence corrupting a lot more data. This demonstrates

that for soft computing applications it is critical to protect

the computations that affect a large amount of output.

B. Silent Data Corruptions

The fault tolerance research community only considers a

cycle-by-cycle match of architectural state as the correct ex-

ecution of a program. This strict notion of program correct-

ness is called Architecturally Correct Execution (ACE) [7])

and is used in many hardware based reliability solutions.

However, Li et al. [8] showed that 17.6% of the multimedia

and AI application runs produced correct results even though

they had architecturally incorrect states. Feng et al. [6]

believe that user-visible output corruptions are what truly

matters, and Khudia et al. [9] also leverage this idea of

application level correctness. A program is said to have

an SDC, if in presence of a fault, the program completes

execution without terminating prematurely and behaving

abnormally but the output of the program is incorrect. These

are most harmful type of faults because they silently corrupt

the output of the program while the user thinks that program

worked correctly. Hence, a number of previous works [10],

[6] have analyzed SDCs and focused on reducing them.
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Figure 2: SDCs are divided into acceptable SDCs and unacceptable
SDCs. Unacceptable SDCs are further divided into the ones due
to large and small instruction output value changes. Soft checks
using expected values can detect unacceptable SDCs (up to 14%
of total SDCs) due to large instruction output value change.

Traditionally, SDC-free execution is considered as a cri-

terion for correctness. However, for soft computations the

program can be assumed to have correctly executed even if

it generates numerically incorrect but high fidelity outputs.

This notion of having acceptable corruption is not applicable

to all types of applications, e.g., most of the SPEC CPU

benchmarks, but is applicable to soft computation bench-

marks. For our work, we divide SDCs further into two

categories: Acceptable Silent Data Corruptions (ASDCs) and

Unacceptable Silent Data Corruptions (USDCs). ASDCs are

the SDCs that are admissible to the user due to the negligi-

ble differences compared to fault free execution. However,

USDCs are the SDCs that change the output significantly

such that it is not acceptable to the user.

We performed fault injection experiments on unmodified

soft computing benchmarks to quantify the USDCs caused

by faults that force large disturbance on the generated values

by instructions. The results of this experiment are presented

in Figure 2. The experimental setup and description of

these benchmarks are presented later in Section IV. The

Y-axis in the graph plots total SDCs caused in the fault

injection experiments. Each column is divided into ASDCs

and USDCs. USDCs are further divided into the SDCs that

were due to a large and small value changes in the corrupted

instructions. On average, 77% of the SDCs result in ASDCs

and 14% in USDCs with large value changes. ASDCs are

the errors that result in user acceptable outputs and therefore

nothing needs to be done for these. USDCs that are caused

by large output value change of a computation can be

detected by having expected value checks. Expected value

checks, obtained by profiling (Section III-C1), make sure

that the output does not deviate outside a compact range.

Protecting against 23% USDCs might not seem significant

but one must view these errors in the proper context as

USDCs are the worst of the worst.

III. SOLUTION: ANALYSIS AND DESIGN

A. Overview

We analyze a number of benchmarks to find out the most

vulnerable computations in soft applications to develop our

compiler heuristics. These analyses involve fault injections

and then investigating fault propagation. The outcome of

the program is correlated back to the fault injection vari-

able. Once these patterns are identified, we make compiler

heuristics to insert checking code in the application. In our

experiments, we found that the developed heuristics work

well across a wide range of soft applications.

1 . . .
2 f o r ( c r c = i n i t ; l e n >= 3 2 ; l e n −= 32){
3 r e g i s t e r unsigned long d a t a ;
4 d a t a = m a d b i t r e a d (& b i t p t r , 3 2 ) ;
5 . . .
6 t a b l e V a l = c r c t a b l e [ ( d a t a >> 24) ˆ . . . ] ;
7 c r c = ( c r c << 8) ˆ t a b l e V a l ;
8 . . .
9 }

10 . . .

Figure 3: The code snippet from mp3dec (mad) [11] benchmark.
The variables that are dependent on their own values in the previous
iterations are underlined. A corruption in such variables is more
likely to result in unacceptable outputs.

To show frequently occurring computations in soft com-

puting applications, we show a code snippet from mp3dec

(mad) [11] benchmark in Figure 3. In our experiments with

various benchmarks, we have noticed that a corruption in

the variables that carry state across loop iterations is more



1 . . .
2 crcD = i n i t ;
3 f o r ( c r c = i n i t ; l e n >= 3 2 ; l e n −= 32){
4 r e g i s t e r unsigned long d a t a ;
5 d a t a = m a d b i t r e a d (& b i t p t r , 3 2 ) ;
6 . . .
7 t a b l e V a l = c r c t a b l e [ ( d a t a >> 24) ˆ . . . ] ;
8 c r c = ( c r c << 8) ˆ t a b l e V a l ;
9 crcD = ( crcD << 8) ˆ t a b l e V a l ;

10 i f ( c r c != crcD )
11 r e c o v e r a n d c o n t i n u e e x e c u t i o n ( ) ;
12 . . .
13 }
14 . . .

Figure 4: The code snippet from Figure 3 with crc variable
duplicated. For the sake of brevity, the duplication of other state
variables (those shown in Figure 3) is not shown in this figure.
Variables postfixed with D are duplicated variables.

likely to result in USDCs. We define such variables as state

variables and these variables are underlined in this figure.

State variables include loop iteration variables. Intuitively

protecting state variables makes sense as state variables have

a snowball effect on the subsequent computations, because

the error not only affects the current iteration but it also

propagates to future iterations. Protecting such variables is

critical to minimize the user unacceptable outputs because

errors in these variables are likely to cause significant

changes in the output of a program. Loop index variables are

also state variables and an error in loop index variables have

the potential to change the output significantly by increasing

or decreasing the number of iterations executed.

We protect state variables by duplicating the producer

chains of such variables. Producer chain of a variable can

be obtained by the recursive traversal of its use-def chain.

The effect of duplicating the producer chain of one such

variable crc is shown in Figure 4. Line 9 in Figure 4

is the duplicated line and variables postfixed with D are

the duplicated variables. For the purpose of exposition, we

deliberately show duplication of only a single variable in

this example. A more detailed and complete example of

duplication is presented later in this section.

In general, some variables and instructions generate a

value or a range of values frequently [12]. Generation of

such values is more common in soft computations due to

the repetition of same calculation on different inputs.

A check for these frequent values or a range of values pro-

duced by an instruction can help protect against corruption.

A range check is inserted for such variables and the range

is obtained by profiling, as explained later in Section III-C.

Figure 5 shows a value-range check inserted for a variable

on line 7. This is assuming that the variable tableVal lies

between V1 and V2. If the duplication were to be performed

for tableVal, its input data and data’s producer chain would

also need to be duplicated. Thus the value checks help

to save on cost of duplication. Again for the purpose of

1 . . .
2 f o r ( c r c = i n i t ; l e n >= 3 2 ; l e n −= 32){
3 r e g i s t e r unsigned long d a t a ;
4 d a t a = m a d b i t r e a d (& b i t p t r , 3 2 ) ;
5 . . .
6 t a b l e V a l = c r c t a b l e [ ( d a t a >> 24) ˆ . . . ] ;
7 i f ( t a b l e V a l < V1 | | t a b l e V a l > V2 )
8 r e c o v e r a n d c o n t i n u e e x e c u t i o n ( ) ;
9 c r c = ( c r c << 8) ˆ t a b l e V a l ;

10 . . .
11 }
12 . . .

Figure 5: The code snippet from Figure 3 with expected value
check inserted on variable tableVal. Assume that the value gener-
ated lie within the range [V1, V2] (Obtained by profiling). This
is a simple example of inserting value checks and more detailed
examples are shown later in Section III-C.

exposition, Figure 5 only shows a simple example.

If an instruction generates the same value frequently

then this value can be used to check the output of that

instruction at certain opportune points in an application.

The use of frequently generated values for soft checks is a

novel idea but frequently generated values by an instruction

has previously been used in various optimizations [12].

For example, if a multiply operation generates the same

invariant value frequently, then the multiply operation can

be optimized away with a check inserted for the correct

value. Racunas et al. [13] also make use of certain consistent

bounds on intermediate data in their hardware-based scheme.

The intuition behind such value-range checks is that if the

instructions produce values between previously seen ranges

(in the profile data) the output is not significantly affected

and is expected to be acceptable. These checks are soft

checks in the sense that they check the expected output

values of instructions.

Overall, the foundation of our work is based on the

following two observations:

1) First, if the program variables in the main loops

of applications that have state across iterations are

corrupted, they are more likely to result in unaccept-

able output. Protecting these variables is critical for

reducing USDCs.

2) Second, many soft computing benchmarks use the

same calculations on different inputs repeatedly such

that generated values are in a range. If in presence of

an error, the value generated is within this range, it is

probabilistically unlikely to have a USDC in such a

case. An expected value check on such instructions is

inserted to protect against soft errors.

B. Recomputing State Variables

State variables are a critical part of an application and cor-

ruption in these variables propagates to subsequent iterations

of the loop. They are protected by duplicating their producer

chain and then inserting a comparison between the original



Figure 6: Depending on the generated values, one of the three different types of value checks can be inserted. Part (a) shows a single
value check inserted if a single value is frequently generated by an instruction. If two values are most frequently generated, the check in
part (b) is inserted. However, if the values generated lie in a range, a range check as shown in part (c) is inserted.

Figure 7: Instruction duplication in a single thread of execution.
Instructions marked with double circle are duplicated instructions.
The instruction marked with ld is a load instruction. We do not
duplicate loads to save on memory traffic.

producer chain and the duplicated producer chain. The tech-

nique to identify state variables is described in Section IV-A.

Figure 7 shows an example of such a duplication process in

the form of a data flow graph. Each circle represents an

instruction (or destination variable of that instruction). The

solid arrows are data flow edges and dashed arrows represent

inter-iteration loop dependences. The instructions marked

with ld is a load instruction. The instructions marked with

double circle are duplicated instructions. The state variable

in this figure is variable 5. The producer chain of instruction

5 is duplicated as shown in Figure 7(b). To save on memory

traffic, the producer chain is terminated whenever a load

instruction is encountered. The reason for this is that a fault

in data flow input for load (address operand) is more likely

to result in a symptom such as out-of-bound access. Such

symptoms can be used as an indication of soft error [6], [14]

and a recovery can be triggered.

C. Expected Value Checks

In soft computing benchmarks, same calculation on dif-

ferent inputs is performed repeatedly. Moreover, in general

some instructions produce the same value almost all the

times [12]. To cover the values produced by an instruction,

we devise three different types of value checks as shown in

Figure 6. Figure 6(a) shows the data flow graph before and

after the value checks are inserted. Instruction 1 produces the

value V1 frequently so a check with V1 is inserted. Similarly,

Figure 6(b) shows the code before and after value checks

if the instruction generated two values V1 and V2 most

frequently. Finally, Figure 6(c) shows the data flow graph

before and after a range check is inserted on an instruction

that produces values in a range [V1, V2]. To optimize the

number of value checks, we came up with two optimizations

for long producer chains.

Figure 8: Optimization 1 for long producer chains: this figure
shows an example of a case where multiple instructions in the
producer chain of an instruction are amenable for value checks. In
order to minimize on number of checks, value check should only
be inserted for an instruction lower in the producer chain.

Optimization 1: A naive insertion of value checks on all

the instructions that produce values amenable for one of the

checks in Figure 6 might lead to a prohibitively large number

of checks. Hence, to reduce the number of checks, we insert

value checks deeper in the producer chain. Figure 8 shows

an example of such an optimization. If the values produced

by instruction 1, 3, 4 and 5 are amenable for value checks,

a value check is only inserted on the value produced by

instruction 5.

Optimization 2: While duplicating instructions, if in

a long producer chain, an instruction produces a value

amenable to checks, the duplication is terminated and a value

check is inserted. An example of this is shown in Figure 9. In

this example, instruction 4 produces value(s) or a range. In

our duplication framework, if such a situation is encountered



the recursive duplication of producers is terminated and one

of the value checks is inserted instead.

1) Value Profiling:: The frequent values or the range of

values produced by an instruction are obtained using value

profiling. In general, during the profile run, collecting all the

values produced by an instruction has very high overhead.

An optimization to this is to maintain a fixed set of most fre-

quently produced values by each instruction. Since we also

need a range of values produced by an instruction, we have

modified this traditional value profile. Essentially, we require

a histogram with bins as values produced corresponding to

each instruction. However, the future values are unknown, so

deciding the histogram bin size before running the program

is not possible. We have adopted a modified version of

the On-line histogram algorithm [15] for this purpose. Our

adopted version of the algorithm is shown in Algorithm 1.

The algorithm takes a histogram h of size B as an input.

The number of bins B are pre-decided and are set to 5

in our experiments. Initially the input histogram to this

algorithm can be empty. This histogram is maintained for

every value generating instruction in the program during

profiling phase (a one time off-line process). ([lb1, rb1],

m1) is a bin frequency pair and m1 represents the number

of values generated by a particular instruction between and

including lower bound of the bin (lb1) and upper bound of

the bin (rb1).

Once we have the bin-frequency pair for all the value

generating instructions in an application, the next step is to

obtain a tight range of lower and upper bound where most

of the values generated by an instruction are concentrated.

This information is calculated and used while inserting the

value checks in the application source code. This is obtained

by a greedy algorithm that works by picking a bin that has

highest frequency and extends this bin towards left or right

while the range size lies within a threshold. This algorithm

Figure 9: Optimization 2 for long producer chains: if an instruction
amenable to value check is encountered in producer chain, the
duplication of producer chain of critical variables is terminated at
that point and a value check (vChk) is inserted as shown.

Input: A histogram h = ([lb1, rb1], m1), ... ([lbB ,

rbB], mB), a value v

Output: A histogram with B bins

if v ∈ [lbi, rbi] for some i then1

mi = mi + 12

end3

else4

Add [v, v, 1] to the histogram h. Histogram h can5

now potentially have B+1 bins;

Sort the bins. Denote the sorted bins by ([lp1,6

rp2], m1), ... ([lpB+1, rpB+1], mB+1);

Find a bin [lpi, rpi] that minimizes lpi+1 - rpi;7

Replace the bins ([lpi, rpi], mi), ([lpi+1, rpi+1],8

mi+1) by the bin

([lpi, rpi+1], mi + mi+1);9

end10

Algorithm 1: Algorithm for obtaining histogram of the

values produced by an instruction.

Input: A histogram h = ([lb1, rb1], m1), ... ([lbB ,

rbB], mB) with sorted bins, a threshold on

range Rthr

Output: A frequent range ([lp, rp], m)

Pick a bin ([lbi, rbi], mi) such that mi = max(m1 ...1

mB);

initialize retBin = ([lbret, rbret], mret) with ([lbi,2

rbi], mi);

Denote the bin left to retBin by leftBin and the one to3

the right by rightBin;

leftBin = ([lbleft, rbleft], mleft) and rightBin =4

([lbright, rbright], mright);

while (rbret - lbret ¡ Rthr ) and still unconsidered5

bins do

if mleft ≥ mright then6

retBin = ([lbleft, rbret], mleft + mret);7

leftBin = next leftBin;8

end9

else10

retBin = ([lbret, rbright], mret + mright);11

rightBin = next rightBin;12

end13

end14

return retBin;15

Algorithm 2: A greedy algorithm for obtaining compact

range on the values produced by an instruction.

is shown in Algorithm 2.

An important point to note here is that value profiling is

an offline process (needs to be done once per benchmark)

and this overhead does not directly impact the performance

overhead of our technique. The frequent values or frequent

range of values are obtained by profiling the program

on representative inputs. An application instrumented with



Table I: The benchmarks and their acceptable quality metrics.
Benchmark (Suite) Description (Category) Inputs Fidelity Measure (Threshold)

train test

jpegenc and jpegdec (media-

bench [16])
A JPEG image encoder/decoder (image) 600x450 image 256x256 image

Peak Signal to Noise Ratio (PSNR) (30

dB)

tiff2bw (mibench [11]) A tiff format to BW converter (image) 3069x3100 image 1520x1496 image PSNR (30 dB)

segm (SDVBS [17]) Image segmentation (Computer vision) 176x132 image 44x33 image Segment matrix mismatch (10%)

tex synth (SDVBS [17]) Texture synthesis (Computer vision) 20x20 image 16x16 image Output matrix mismatch (10%)

g721enc and g721dec (media-

bench [16])
audio encoding and decoding (audio) 9.6MB audio .3MB audio Segmental SNR (80 dB)

mp3enc and mp3dec

(mibench [11])
mp3 encoding and decoding (audio) 2.6MB audio .18MB audio PSNR (30 dB)

h264enc and h264dec (media-

bench II [18])

h264 video encoding and decoding

(video)
5.3MB video .23MB video PSNR (30 dB)

kmeans (in-house) Clustering algorithm (Machine learning) 100x9 samples 100x18 samples Cluster assignment mismatch (10%)

svm (svmlight [19])
Support vector machine (Machine learn-

ing)
2000 train examples 2000 test examples Classification error (10%)

expected value checks might generate value check failures

at runtime even if there are no errors (false positives).

However, this is not a correctness issue and could only lead

to unwanted recovery initiations. If a check fails, recovery

from the check should be executed once and if the same

check fails again after recovery further recovery should not

be executed for that check. False positives rate is analyzed

in Section V.

IV. EXPERIMENTAL SETUP

We have evaluated our work by Statistical Fault Injections

(SFIs) into a microarchitectural model of a modern micro-

processor. This same method is used by previous works [6],

[9], [7] to evaluate reliability solutions. SFI is performed by

introducing bit flips randomized in both time and space.

A. Source Code Transformations

We use the LLVM [20] compiler infrastructure to insert

duplication code and expected value checks into the applica-

tion’s source code. At first, application source code is con-

verted into LLVM’s internal representation called LLVM IR

(Intermediate Representation). Our solution is implemented

as a pass over LLVM IR. Value profiling is implemented

as a separate pass. The IR is instrumented to collect value

profiling information. Our duplication pass uses information

from other analysis passes such as value profiling to produce

bitcode with duplicated instructions and value checks. The

LLVM code generation framework is then used to generate

ARM binaries from the modified bitcode. Identifying State

Variables: LLVM IR is in Static Single Assignment (SSA)

form. At IR level, the state variables can simply be identified

by looking the phi nodes in loop headers. A phi node merges

all the incoming versions of the variable to create a new

name for it. State variables have two incoming definitions—

one from outside loop definition and the other from inside

loop updates—at loop headers and are represented by phi

nodes in loop headers.

B. Benchmarks and Fidelity Measures

We have collected a variety of benchmarks (a total of 13)

that represent soft computations from various domains and

at least two benchmarks from each of the following five

categories: image, audio and video processing; computer

vision; machine learning. These benchmarks represent a

good mix of soft computations. A brief description of these

benchmarks along with their source benchmark suite is

given in Table I. Different inputs are used for profiling

and running the benchmarks. These profiling and test inputs

are given in column 3 of the table. Column 4 in the table

shows the fidelity metric used to evaluate the quality of the

produced outputs. This is an application dependent metric

and different metrics are used for different benchmarks.

Column 4 also shows the threshold used for acceptable

quality results. Higher PSNR represents a better quality

image and video. We chose 30 dB as threshold for PSNR

and 80 dB for segmental SNR for acceptable quality. Similar

threshold values are used by Thomas et al. [21]. For machine

learning and computer vision benchmarks, outputs with

more than 10% deviations are not considered acceptable.

All these benchmarks are compiled with their suggested

compiler options. Figure 10 shows the total number of state

variables, duplicated instructions and inserted value checks

as a fraction of the total static IR instructions. At most,

only 11.4% of the static IR instructions are duplicated and

only 8.3% of total static IR instructions have expected value

checks on them.
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Figure 10: shows the total number of state variables, duplicated
instructions and inserted value checks as a fraction of the total static
IR instructions. The static code duplication and expected value
checks are not more than 12% of the total static IR instructions.



C. Fault Model and Injection Experiments

The proposed approach is evaluated by injecting a number

of faults in each application run. The traditional single

bit-flip [22], [8], [21], [6] in the processor state is used

to model transient faults. At a random cycle during the

program execution, a register is randomly selected first and

then a randomly selected bit in that register is flipped.

Wang et al. [23] showed that, on aggregate, as much as

70% of the total failures due to faults in pipeline structures

such as register file, register alias tables, register free lists,

instruction input and output operands etc. results in register

file inconsistencies. Thus, the register file is an enticing

target for fault injections and similar to previous works [6],

[9], we evaluated our work by injecting faults into the

register file. Please note that protecting register file by

ECC would be able to cover faults occurring in register

file itself but not the faults that occur in other hardware

structures and then propagate to register file. Overall, our

proposed technique is capable of handling faults in other

microarchitectural units that affect the program. A fault

in a register can also affect the data dependent control

flow. Our solution protects against such faults either by

state variables duplication or by value checks. However,

it does not provide protection against faults that affect

branch targets. For protecting against branch target faults, a

previously proposed [24] signature-based low-cost solution

can be used in conjunction with our proposed approach.

Table II: GEM5 Simulator parameters (models an ARMv7-a
profile of the ARM architecture).

Processor core @ 2GHz

Simulation configuration out-of-order core

Simulation mode Syscall emulation

Physical integer register file size 256 entries

Reorder Buffer Size 192 entries

Issue width 2

Memory

L1-D cache 64KB, 2-way

L1-I cache 32KB, 2-way

DTLB/ITLB 64 entries (each)

We used the GEM5 [25] simulator to simulate the work-

loads and implemented fault injection infrastructure in this

simulator. The simulator was run in ARM syscall emulation

mode and modeled the ARMv7-a profile of ARM architec-

ture. The performance overheads are obtained using an out-

of-order model of the target processor and fault coverage

results are obtained using an atomic model of the target

processor.

The details of the processor configuration for out-of-

order model used for the experiments are in Table II. We

injected a total of 13000 faults per technique to evaluate the

proposed solution, i.e. 1000 fault injection trials for each

of the 13 benchmarks. Work by Leveugle et al. [26] can

be used to calculate the statistical significance of the fault

injection results. The calculation for our experimental setup

shows that the with 95% confidence, margin of error for

fault coverage results is 3.1%. After the fault injection, the

program runs until completion. The result of each simulation

trial is classified into one of the following five categories:

• Masked: The injected fault did not corrupt the program

output. Application-level or architecture-level masking

occurred in this case. Also faults that generate accept-

able quality results are classified into this category.

• HWDetect: The injected fault produces a symptom

such as a page fault so that a recovery can be triggered.

A fault is considered under this category only if the

symptom is produced within a number of cycles (1000

for our experiments) after the fault was injected.

• SWDetect: The injected fault was detected by the

software checks inserted at the time of source code

transformation.

• Failure: The injected fault resulted in out-of-bound

address access and resulted in program termination.

Also, faults causing infinite loops in the program are

classified under this category.

• USDC: Faults that generate unacceptable data corrup-

tions are classified into this category. These are the

SDCs that do not have acceptable output.

D. Recovery Support

The proposed solution is a soft error detection-only so-

lution. Once a soft error is detected, we rely on a recovery

mechanism to recover from the detected error. Previously

proposed solutions such as Encore [27], a software-only

recovery scheme can be used for recovery. Checkpointing-

based recovery schemes can also be used in conjunction with

our solution. Moreover, previous works [6], [14] propose that

in future processors, recovering from a checkpointed state

of ∼1000 instructions would be required for aggressive per-

formance speculation. Such a recovery scheme, if available,

can also be integrated with our solution.

V. EXPERIMENTAL EVALUATION AND ANALYSIS

Two of the most important parameters of any reliability

scheme are its performance overhead and provided fault cov-

erage. We obtained performance overhead and fault coverage

results using the experimental setup described in the above

section. We use the simulated runtime of the application as

a performance measure and use this runtime to compare the

performance of different techniques. Our overall technique

is a combination of critical variable checks by duplication

and value checks. To analyze the contribution of each of

these, we present results for both.

Performance Overhead: Figure 12 shows the perfor-

mance overhead measured in terms of runtime. Dup only

column shows the performance overhead if the duplication

of state variables is performed and no expected value checks

are inserted. The mean performance overhead of Dup only

is only 7.6%. Dup + val chks column for each benchmark

shows the performance overhead if the duplication of the
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Figure 11: The fault outcome distribution among different categories is shown. Column original shows the distribution for original
unmodified code. The fault distribution with code duplication and code duplication along with value checks is shown in Dup only and
Dup + val chks, respectively.
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Figure 12: Performance overhead of checking by 1) duplicating
the producer chain of state variables. 2) duplicating the producer
chain as well as inserting value checks wherever necessary.

producer chains of state variables and expected value checks

are inserted. Dup + val chks also includes the two opti-

mizations described in Section III-C that arise out of the

interaction between duplication and inserting value checks.

The mean performance overhead for Dup + val chks is

19.5%. Four benchmarks jpegdec, tiff2bw, mp3dec, h264dec

and tex synth see a relatively bigger increase in performance

overhead from Dup only because these benchmarks have

a number of instructions amenable for value checks. It is

interesting to note that the overhead of svm is lower for

Dup + val chks than Dup only even though we found that

the number of dynamic instructions are higher in Dup + val

chks. This is due to the lower data cache misses and branch

mispredicts in the later case. The average overhead of full

duplication technique (not shown in Figure 12) also used by

Khudia et al. [9] is 57% for the benchmarks used in our

work. Full duplication is maximum amount of duplication

possible without duplicating loads/stores.

Fault Coverage: We analyze the fault coverage results

for unmodified, Dup only and Dup + val chks by injecting

faults using the setup described in Section IV. If a fault

results in Masking, SWDetect or HWDetects, the system

can correctly execute the program. Hence, fault coverage

is defined as the percentage of injected faults that result in

Masking, SWDetect or HWDetects. First, faults are injected

into original unmodified applications and their outputs are

classified among Masked, SWDetects, HWDetects, Failures

and USDCs based on the effect of the fault on the application

execution. The results for this classification are shown in

Figure 11. Y-axis in the figure plots the percent of total

injected faults into an application. Results of fault injections

into unmodified applications are shown in the first column

(Original) for each benchmark. The Original column does

not have any SWDetects because there are no software

checks in the binary. Faults in unmodified applications

generate 3.4% USDCs. Second, fault coverage of state

variable only duplication is shown in Dup only column. It

improves fault coverage for all the benchmarks and reduces

SDCs and USDCs. Dup only, on average, has 1.8% USDCs.

Finally, Dup + val chks column show the fault coverage if

the duplication of state variables along with expected value

checks and all optimizations are used. Dup + val chks has

only 1.2% USDCs. We have also calculated the USDCs for

full duplication and this is not shown in a already dense

Figure 11. The USDCs rate for full duplication is 1.4% at

57% performance overhead. Please note that loads/stores

are not duplicated in full duplication, hence there are a

number of faults that escape detection. This result shows

that selective duplication along with value checks is a more

efficient way than soft computation unaware full duplication

to protect soft computation workloads.

Acceptable SDCs: Another important analysis is the

number of acceptable outputs among silent data corrup-

tions. In this experiment, we break down SDCs further be-
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Figure 13: Each column represents the silent data corruptions as a percentage of total faults. The stacks in each column further divide
the silent corruptions between acceptable program outputs and unacceptable data corruptions.

tween Acceptable SDCS (ASDCs) and Unacceptable SDCS

(USDCs). Figure 13 shows the result of this analysis for

unmodified, Dup only and Dup + val chks. Each column

in Figure 13 represents the total number of SDCs for the

corresponding benchmark. For example, for kmeans 4.2%

of the total injected faults into the unmodified (Original

column) application resulted in SDCs. Each column is

further divided into ASDCS and USDCs. On average, SDCs

are reduced from 15% down to 9.5% when going from

Original to Dup only while USDCs are reduced from 3.4%

down to 1.8% for the same and SDCs are reduced from

15% down to 7.3% when going from Original to Dup +

val chks while USDCs are reduced from 3.4% down to

1.2% for the same. It is interesting to note that mp3enc and

h264enc have higher SDCs for Dup + val chks than Dup

only. This is due to the interaction of code duplication for

state variables and expected value checks. An optimization

(Optimization 2 in Section III-C) that we implemented to

minimize performance overhead is to insert value checks

instead of code duplication wherever beneficial in terms of

performance overhead. This, however, in some cases can

result in more SDCs if critical value checks are left out.

Sensitivity of results to different inputs: To ascertain

the insensitivity of results to input variations, we performed

2-fold cross-validation on our results. We switched test and

train inputs, i.e. test input was used to obtain profile data

and train input was used in fault injection runs, to obtain

fault coverage results for Dup + val chks. We performed

cross-validation on jpegdec and kmeans from two separate

fields. Cross-validation was performed only on these two

benchmarks due to a large number of runs required for

obtaining fault coverage results. The average performance

overhead difference is 3%. The difference between Masked,

SWDetect, HWDetect, Failures and USDCs is only .2%,

.45%, .05%, .15% and .15%, respectively.

Impact of False Positives: A false positive occurs when

one of the value checks fails at runtime in the absence of

a fault. In such cases, an unnecessary recovery needs to be

triggered. A high false positive rate increases the overhead

due to unnecessary recoveries in a fault detection and

recovery system. For pipeline-flush based recovery, Racunas

et al. [13] calculate that 1 recovery initiation per 1000

instructions does not degrade the performance significantly

(2% to 6%). This degradation in performance is dependent

on the particular recovery technique. In comparison, in our

case, the average false positive rate across all the evaluated

benchmarks is 1 value check fail per 235K instructions. For

our current implementation, the profiling is done only on one

input but the false positive rate can be further reduced by

combining profiling form multiple inputs and thus inserting

checks only on more stable invariant values.

Comparison with prior work: Thomas et al. [21] define

the notion of Egregious Data Errors (EDCs) for the outputs

that deviate significantly from error-free outputs. Their work

develops heuristics for placing detectors by analyzing the

pointer and control data affected by a fault. In contrast, the

main novelty of our scheme lies in the judicious combination

of selective use of expensive duplication for critical state

variables and inexpensive value checks for non-state parts

of an application. The coverage of their scheme is measured

assuming ideal (100% detection accuracy) detectors. Mem-

ory dependence (reaching stores for loads) in backward-

slice-based detectors is not considered and hence coverage

with actual detectors is expected to be lower. At 20%

and 25% performance overhead (extra LLVM IR instruc-

tions) they report a 85% and 86% coverage of EDCs with

ideal detectors, respectively. In comparison, even though

it represents comparing IR instruction overhead and ideal

detector coverage with runtime overhead and actual detector

coverage, our technique shows 82.5% actual implemented

detectors coverage of USDCs at 19.5% performance over-

head (runtime).

VI. RELATED WORK

Li et al. [8] propose the notion of application level

correctness and also introduce the concept of acceptable



quality. We have used acceptable output quality measure in

evaluating our work. The idea of user acceptable outputs

has been used in previous research [5] to trade-off between

energy efficiency/execution time and output solution quality.

Li et al. [1] also previously proposed a light-weight recovery

mechanism and soft instruction classification. They show a

fault coverage of 96% with relaxed definition of correctness

in comparison to 97.8% of fault coverage of our solution.

Performance overhead of their technique is not reported in

the paper. In comparison, we propose a technique to utilize

the soft computing nature of applications and insert expected

value checks to propose a low cost fault detection solution.

There are a few solutions proposed in the area of

Software Implemented Hardware Fault Tolerance (SIHFT).

SWIFT [28] uses instruction duplication in a single thread

of execution. SWIFT protects the stores by duplicating their

computation. However, the overhead of SWIFT is 1.41x even

on an aggressive ILP-friendly Intel Itanium processor( more

favorable for exploiting ILP offered by interleaved duplica-

tion). Our proposed solution only has 19.5% performance

overhead on a ARM processor.

Shoestring [6] used the idea of protecting only global

stores in order to lower performance overhead. Khudia et

al. [9] improved Shoestring by utilizing profiling infor-

mation. Both of these solutions, unlike our solution, do

not use the notion of user acceptable outputs and do not

incorporate application domain characteristics to increase

the efficiency of their proposed solution. We compare with

error detector placement work by Thomas et al. [21] in

Section V. Sundaram et al. [29] propose selective replication

of instructions that has 30% to 75% performance overhead.

Cong et al. [30] propose an approach to protect instructions

based on their criticality. The technique is a combination of

static analysis and dynamic monitoring. The authors report

energy savings and overhead of runtime monitoring but a

combined performance overhead for duplication and runtime

monitoring is not reported. Pattabiraman et al. [31] derived

program level detectors using static analysis to find the best

location for detectors to be placed in program to avoid

system crashes. They identify certain properties such as

fanout and lifetime from dynamic dependence graph of the

program for detector placement. Unlike our work, their focus

is not on reducing the large output corruptions but to avoid

system crashes and in fault containment.

Likely program invariants have previously been used

in checking validity of data streams, detecting software

bugs [32], [33] and to lower SDC rates due to permanent

hardware faults [34]. Range-checks used in this paper are

also a form of likely invariants. However, we combine

range-based checks with duplication to provide an effective

transient fault detection solution. For transient faults (usually

a single-bit upset), range-based checks should be frequent

while permanent hardware faults continuously produce error

hence sparing use of range-checks suffices. Our solution is

optimized to have low-overhead even though relatively fre-

quent checks are required to detect a single-bit upset. Other

than high-cost high-reliability server class solutions such

as DMR (Dual-Modular Redundancy) and TMR (Triple-

Modular Redundancy), an approach to soft error reliability is

Redundant Multithreading (RMT). Since processors which

can execute multiple threads simultaneously are increasingly

commonplace, the idea of using separate threads for error

checking is a possibility. AR-SMT [35] introduced the idea

of RMT on SMT cores. The actual work is done by a leading

thread, and the trailing thread checks for the correctness. In

comparison, our solution does not need to run any extra

thread/process to provide fault detection.

There exist a number of hardware based solutions to

provide protection against soft errors. In comparison, our

solution is able to achieve high fault coverage with a

low performance overhead without needing any specific

hardware additions. Racunas et al. [13] present an hardware

mechanism that can identify 85% of the injected faults to

ensure that much of the program intermediate data falls

within certain bounds. Their use of bounds on intermediate

values in hardware is similar to our use of value checks in

software. Argus [36] relies on a series of hardware checker

units to perform online invariant checking to ensure correct

application execution. Lee et al. [37] propose hardware-

based scheme for partitioning failure critical and non-critical

data into soft-error prone and soft-error protected caches.

Soft error detection by anomalous microarchitectural be-

havior has been used by researchers to propose reliability

solutions. Symptoms such as memory exceptions, branch

mispredicts and cache misses are used in ReStore [14] to

detect soft errors. These symptoms are an attractive way to

detect soft errors at a relatively low cost. However, fault

coverage starts to saturate as more symptoms are included

and performance overhead starts rising. For example, using

cache miss as a symptom might result in too many false

detections. mSWAT [22] presented a solution that detects

anomalous software behavior to provide a reliable system.

mSWAT requires special simple hardware detectors to detect

faults. Our solution, however, uses only the available symp-

toms such as page faults to classify faults under HWDetects

category.

VII. CONCLUSIONS

The relentless pursuit of technology scaling in order to

gain performance, energy efficiency and higher densities

have made transistors more susceptible to soft errors. A

growing number of applications from domains such as mul-

timedia, computer vision, machine learning etc. do not need

their output to be 100% correct. This numerically incorrect

but acceptable output property of such applications can be

exploited to provide an efficient fault tolerant solution.

In this paper, we propose a software-only solution that

exploits the inherent fault tolerant nature of soft computing



applications. Our solution duplicates producer chains of

certain critical variables and inserts expected value checks

on other variables. We show that a combination of these

two is helpful in reducing the number of unacceptable

silent data corruptions. Overall, on average, SDCs are down

from 15% to 7.3% and unacceptable SDCs are down from

3.4% to 1.2% in comparison to unmodified application. The

performance overhead of the proposed technique is only

19.5% and it does not require any hardware modifications.
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