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Abstract

The continual trend of shrinking feature sizes and reducing voltage
levels makes transistors faster and more efficient. However, it also
makes them more susceptible to transient hardware faults. Transient
faults due to high energy particle strikes or circuit crosstalk can cor-
rupt the output of a program or cause it to crash. Previous studies
have reported that as much as 70% of the transient faults disturb
program control flow, making it critical to protect control flow. Tra-
ditional approaches employ signatures to check that every control
flow transfer in a program is valid. While having high fault cover-
age, large performance overheads are introduced by such detailed
checking. We propose a coarse-grain control flow checking method
to detect transient faults in a cost effective way. Our software-only
approach is centered on the principle of abstraction: control flow
that exhibits simple run-time properties (e.g., proper path length)
is almost always completely correct. Our solution targets off-the-
shelf commodity embedded systems to provide a low cost protec-
tion against transient faults. The proposed technique achieves its ef-
ficiency by simplifying signature calculations in each basic block
and by performing checking at a coarse-grain level. The coarse-
grain signature comparison points are obtained by the use of a re-
gion based analysis. In addition, we propose a technique to pro-
tect control flow transfers via call and return instructions to ensure
all control flow is covered by our technique. Overall, our proposed
technique has an average of 11% performance overhead in compari-
son to 75% performance overhead of previously proposed signature
based techniques while maintaining approximately the same degree
of fault coverage.

Categories and Subject Descriptors B.8.1 [Performance and Re-
liability]: Reliability, Testing, and Fault Tolerance

General Terms Experimentation; Reliability

Keywords Soft Errors; Control Flow Checking; Fault Injection

1. Introduction

In the quest to make chips faster, cheaper and energy efficient,
transistors are being scaled down in size. As silicon technology
is moving deeper down into the nanometer regime, reliability of
microprocessors is emerging as a critical concern for manufacturers.
Factors such as increasingly smaller devices, reduced voltage levels,
and increasing operating temperatures exacerbate the problem of
reliability of these components. Furthermore, billions of transistors
are packed into modern microprocessors, and a fault in even a single
transistor has the ability to corrupt the output of the application or
crash the entire system.

In this work, we focus on the reliability concerns caused by soft
errors. Soft errors, also referred to as Single Event Upsets (SEUs)
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or transient faults, are caused by high energy particle strikes from
space or circuit crosstalk in an electronic circuit. A high energy
particle such as a neutron from cosmic rays or an alpha particle
from packaging material impurities releases charge in the circuit
that in turn can disturb the functionality or the charge stored at a
semiconductor device. As the name suggests, transients faults do
not cause permanent damage to the chip and devices work correctly
once the effect of the fault is over.

The semiconductor industry has reported many instances of the
problems caused by soft errors over the last few decades. In 1978,
one of the first soft error instances occurred when the packaging ma-
terial used in the chip produced by Intel became contaminated with
uranium from a nearby mine [23]. In another instance of soft errors,
Cypress semiconductor reported that a single soft error caused a
billion-dollar automotive industry to halt every month [40]. In 2005,
HP also reported [27] that cosmic rays were the cause of frequent
crashes of its 2048-CPU system installed at the Los Alamos Na-
tional Laboratory. These studies illustrate the issues caused by soft
errors and necessitate the need for reliability solutions at all levels
(e.g., circuit, architecture or application level) of the system stack.

Traditionally, memory cells have been more vulnerable to tran-
sient faults and are usually protected by mechanisms such as parity
checks or Error Correcting Codes (ECC). The use of smaller tran-
sistors to implement logic circuits in microprocessors increases sus-
ceptibility of logic circuits to transient faults. Shivakumar et al. [35]
reported that Soft Error Rate (SER) for the logic on chip is steadily
rising with technology scaling while SER for memory is expected
to remain stable. SER is the rate at which a component encounters
soft errors. Also, SER scales with number of transistors and level
of integration [12]. Without actively addressing these issues, SER is
expected to rise significantly in new products. Moreover, Venkata-
subramanian et al. [37] reported that more than 70% of the transient
faults lead to disturbance in control flow and are the cause of control
flow errors. Control flow errors are defined as the incorrect change
in the sequence of instructions executed by processors under the in-
fluence of external events such as soft errors.

Traditional solutions in server space for reliability have pro-
vided fault tolerance via DMR (dual-modular redundancy) and
TMR (triple-modular redundancy). IBM Z-Series [5] servers and
HP NonStop [6] systems are two pioneers of such schemes. These
solutions incur a large energy and/or performance overhead and
are not directly applicable in the embedded design space. Signa-
ture based solutions [29] employ signature updates in every basic
block and check that all control flow transfers lead to a correct
target address. This checking results in high instruction overheads
due to the combination of computing, updating, and checking the
unique control signatures of each potential control flow edge. Typ-
ical performance overheads of prior work are on the order of 75%
(Section 2.3 describes such techniques in detail).

In this work, we propose Abstract Control Signatures (ACS)
to provide a practical low cost solution for Commercial Off-the-
Shelf (COTS) embedded microprocessors to protect against control
flow target (i.e., the branch destination address) errors. These er-
rors are usually not covered by redundancy-based data protection
techniques [10, 15], yet they lead to a disproportionately high num-
ber of incorrect executions. ACS is a software-only solution and
does not require any modifications in the hardware. Our solution



is based on the principle of abstraction and the insight that control
flow that exhibits simple but repeated properties of correctness is
almost always entirely correct. ACS achieves abstraction by check-
ing simpler properties (e.g., path length) and promoting control flow
signature checking from individual basic blocks to group of blocks.

ACS is targeted for COTS commodity systems. In the com-
modity embedded market, achieving performance targets in a cost-
effective manner is of paramount importance. Due to the associated
cost of providing high reliability, commodity systems typically can-
not target 100% protection against faults. Our solution is designed
considering these requirements of embedded market space. The pro-
posed solution provides opportunistic fault coverage but does not
guarantee 100% fault coverage and hence is not applicable to mis-
sion critical systems. The contributions of this work are as follows:

• A novel abstraction based technique to insert simplified signa-
tures. Under the proposed scheme, more complex signatures can
be used to explore trade-offs in performance overhead and fault
coverage.

• A novel region based method to insert checking at a coarse
granularity abstracting away the details of fine-grain control
flow.

• A global signature based method for protecting control flow
transfers through call and return instructions.

• Microarchitectural fault injection experiments to validate ACS.

2. Background and Motivation

In this section, we present background details that are necessary to
understand ACS and discuss the motivation behind the approach.

2.1 Fault Detection

In order to protect against transient faults, detection of these faults
is a necessary first step. Fault detection can be achieved by intro-
ducing some form of redundancy. For example, time redundancy
involves executing the same instructions twice on the same hard-
ware, space redundancy involves executing the same instructions
on duplicate hardware and information redundancy involves usage
of parity, ECC etc. High reliability systems typically use a mixture
of fault detection techniques such as DMR/TMR and/or ECC for
protection against soft errors. These solutions are too expensive in
terms of energy/performance/area overheads (∼100%) to be used
in the embedded market. A relatively inexpensive class of solutions
for commercial market use time redundancy based software-only
techniques. Data flow and control flow checking are usually em-
ployed in software-based techniques [8, 10, 29, 30, 37] against soft
errors. Data flow checking ensures that computation (e.g., addition)
is correct. Software-based data flow checking techniques work by
replicating instructions. Control flow protection techniques usually
employ signatures to ensure correct control flow [29, 37]. A brief

Table 1: Brief comparison of ACS with other techniques.

Data flow Control flow
Branch calls/rets

High overhead

DMR, TMR DMR, TMR DMR, TMR
SWIFT [29] SWIFT
EDDI [30] EDDI

ALLBB [8] ALLBB (ret only)
ACFC [37]

Low overhead
Shoestring [10]
ProfileBased [15]
ACS+ProfileBased ACS ACS

comparison of related technique to ACS is shown in Table 1. The
techniques are classified based on their relative performance over-
head and whether they handle data flow errors, control flow errors or
both. Control flow protection techniques are further classified into
two categories based on whether they protect branches and call/ret

instructions. The techniques are also classified based on their rel-
ative performance overheads. Techniques having overhead ∼70%
or more are in high overhead row and those with ∼40% or less in
low overhead row. Typically low overhead techniques reduce over-
head by sacrificing on fault coverage. A more detailed description
of related work is presented in Section 6.
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Figure 1: Control flow target errors are ∼2.5x as likely to cause
incorrect executions.

Figure 1 shows the number of incorrect executions resulting
from errors in register files (corrupting the data) and branch targets
for SPECINT2000 benchmarks. A high masking rate (∼75%) for
data errors is consistent with the reported masking data in previous
works [10, 39]. On average, errors in the branch targets are ∼2.5x
more likely to result in incorrect executions. Hence, in this paper,
we focus on efficient detection of control flow errors, in branches as
well as call/ret instructions, and our technique can be combined with
previously proposed [10, 15, 29] code duplication based solutions
for a complete solution (see Section 5.3 for a combined solution).

2.2 Control Flow Errors

Figure 2: Control Flow Target Errors: Corruption of branch target
can result in nearby (Type A) or far away (Type B) displacement of
control flow.

To better understand control flow protection techniques, we need
to comprehend the various cause of control flow errors. A control
flow error can occur in a non-control flow (e.g., add) or in a con-
trol flow (e.g., branch) instruction. A non-control flow instruction
of the application can be converted into a control flow instruction
by a soft error thus erroneously affecting control transfers. Errors
occurring in control flow instructions can be divided into two cat-
egories: Firstly, control flow condition errors are caused by the
errors in the direction of a conditional branch. Secondly, control
flow target errors are caused by the errors in the destination of a
branch. Branch conditions are usually protected by data flow pro-
tection schemes by duplicating the computation leading to a condi-
tion. As shown later in Figure 10 (Section 4.3), the errors in branch
targets result in disproportionately high number of incorrect execu-
tions. Hence, we focus on the control flow disturbances caused by
the errors in branch targets. From here onwards, unless otherwise
specified, the use of control flow errors with respect to ACS refers
to the errors in branch targets. Figure 2 shows a part of a Control
Flow Graph (CFG) containing 4 Basic Blocks (BBs). Two types of
errors that affect branch target are also shown in the Figure. Type
A errors cause the erroneous jump to nearby locations and Type B
errors direct the control flow to far away locations. Type A errors
cause the program to skip a few instructions and are more likely to
result in masking or program output corruptions. In contrast, Type
B errors are more likely to crash the program either by directing the
control flow to out of program scope or to a different function in the
same program. In Section 3, we describe how our proposed method
handles these control flow errors.



2.3 Signature Based Techniques and Associated Overheads

Figure 3: Basic signature scheme: If the correct control flow transfer
takes place, G at dest BB would be equal to s2 otherwise not.

Many of the previously proposed software-only techniques for
control flow protection embed signatures or assertions into BBs at
compile time [3, 13, 29]. This section briefly describes the funda-
mentals of these signature based techniques, especially CFCSS [29].
CFCSS assigns a unique signature Si to each BB in the program.
A general purpose register (G) is used to hold the signature of the
currently executing BB. G is initialized to the signature of first
BB when a program starts. Subsequently, whenever a transition is
made from src BB to dest BBs the value of G is updated with
the newly computed value. This new value is calculated by taking
the xor of G and the static signature difference (xor) of src BB
and dest BB. After this, G should be equal to the unique signa-
ture assigned to dest BB. A comparison of G with unique value of
dest BB is inserted in dest BB to make sure that control flow is
correct. If this comparison fails, an incorrect control flow transfer
has taken place. A simple case of this scheme is shown in Figure 3.
For a complex case of branch-fan-in nodes, extra dynamic adjusting
signatures must be inserted to avoid aliasing [29]. This necessitates
the need for multiple signature updates in branch-fan-in nodes and
dynamic signature computation in predecessors BBs of the branch-
fan-in nodes. These extra updates contribute to the overhead of such
a scheme.

Essentially, every BB in the application contains signature com-
putation or update instructions as well as comparison instructions
for ensuring correct control flow. The cost of embedded signa-
ture checking at runtime in every BB can be prohibitive, making
these techniques impractical. We have implemented CFCSS and
in our experiments on small benchmarks (the same ones used in
CFCSS [29]) we observe, on average, a performance overhead of
68%. Though, for Insertsort benchmark from the set of bench-
marks, it is as high as 222%. For real representative benchmarks
from SPECINT2000, we observe up to a 144% overhead (75% on
average) for the CFCSS technique. The opportunity to reduce this
huge overhead is one of the motivations behind proposing ACS.

3. Abstract Control Signatures

Fundamentally, there are two critical aspects of any signature based
control flow protection scheme. The first is signature computations
(or updates) in each BB and the second is signature comparisons
(or checking) to check for erroneous control flow. These two com-
putations are the main contributors to the performance overhead of
signature-based control flow checking schemes. To reduce perfor-
mance overhead, we propose raising the level of abstraction of sig-
nature checking and simplifying signature updates in every BB. The
abstraction level is raised by working at the levels of regions∗. The
whole program is divided into regions that are larger than just a
BB. These regions are more than just a collection of BBs and ide-
ally should possess certain properties that help in minimizing the
number of signature comparisons and signature updates. Each re-
gion has a signature variable associated with it. For example, one

∗In this paper, region is used to refer to a single entry multiple exit code
section that satisfies the following property among others: loop back edges
are only allowed to the entry node (see Section 3.1).

Figure 4: Abstract signatures: The whole program is divided into
regions at a higher abstraction level. Such regions are enclosed by
dashed light blue (grey) lines in this Figure. Every region is assigned
a signature. Every abstract region updates its signature based on the
control transfers among the BBs inside it. These signatures are only
checked in other abstract regions.

desirable property of regions is to have a single entry point so that
the associated signature variable need not be initialized at every en-
try point. As shown later (Section 3.2), this reduces the number of
required signature comparisons. The signature variable associated
with a region is checked in other regions that are the target of the
control flow edges from the region under consideration. Essentially,
signature information flows between these abstract regions. The sig-
nature associated with each region represents the correctness of con-
trol flow internal to that region. In this sense, checking control flow
outside regions abstracts away the details about control flow inside a
region, hence the name ACS (Abstract Control Signatures). A high
level diagram for ACS concept is shown in Figure 4. In Figure 4 the
signature sig1 is associated with region 1 and is updated inside the
BBs of region 1. Assuming a BB in region 1 has a control flow edge
to a BB in region 3, sig1 would only be checked in that BB in region
3.

3.1 Design of ACS

The idea of ACS is very generic and can be realized in various
ways. ACS can be implemented by forming regions at various
granularity levels and different signature updates according to the
required trade-offs in performance overhead and fault coverage. The
signature update inside each BB can also be tuned. For example,
the signature update inside each BB can be as simple as having a
parity bit set/reset and the corresponding check would be to check
against 0 if even number of blocks were traversed and against 1 if
odd number of blocks were traversed. These updates can be more
complex such as usage of hash functions or xors. Similarly, the
region formation can also be customized. For example, if the region
is a single BB then this scheme is the same as regular signature
checking in each BB.

For ACS implemented as a part of this work, we have made fol-
lowing choices for signature updates and regions. We use a simple
counter variable as the signature. For signature updates, we incre-
ment the signature by 1 in the beginning of every BB. The intuition
behind using increment by 1 is as follows: Consider 2 points in a



program, X is a region entry and Y is the corresponding region exit.
If control reaches X, we expect it to reach Y. If in going from X
to Y, a valid number of BBs are traversed and the first instruction
in each of those BBs is executed, we hypothesize that control flow
is likely correct. Obviously, this is not always true, but our experi-
ments have confirmed that small disruptions (fault in the lower bits
of the branch target) in the control flow will result in changes to the
path length due to positioning of counter updates at the beginning
of BBs and large disruptions (fault in upper bits) will result in Y
never being reached. Thus, if the hypothesis is statistically true, in-
dividual control transitions need not be checked with minimal loss
in fault coverage. This allows only the higher level information to
need checking. To see the usefulness of such counters, let us con-
sider the control flow errors shown in Figure 2. On one hand, Type B
errors (far away erroneous jumps) that would transfer control from
one region to another, are easily caught. On the other hand, Type
A errors (nearby erroneous jumps) are likely to skip the signature
updates, so they are also caught. We use intervals [2] as regions be-
cause of the desirable properties they possess.
Intervals: An interval is a set of BBs such that every BB except
the header BB in the interval has its predecessors in the interval. An
interval satisfies the following, and many other, properties.

1. The header block of an interval dominates all the BBs in that
interval. Basically, this implies that control can only enter at the
header node of an interval.

2. If a loop is part of an interval then the loop header and interval
header are the same. The header BB of a loop is the target BB
of back edges in that loop.

Figure 5 shows an example of intervals for a CFG that has nested
loops. Interval 1 contains only bb1 and its header is also bb1.
Interval 2 contains all the remaining blocks shown in the Figure.
Interval 2 contains a loop and note that loop header bb2 is also
the header node of the interval 2. Another interesting observation
is that the outer loop is never contained in a single interval. We use
intervals formed according to the maximal interval definition [26].
A latch BB of a loop is defined as the block that has a branch to the
header of the loop. For example, bb latch1 is the latch block for the
inner loop starting at bb2.

Figure 5: Intervals in the Figure are shown by enclosed dashed light
blue (gray) lines. This Figure shows two intervals for a control flow
graph that has a nested loop.

A basic overview of the implemented scheme is shown in Fig-
ure 6. The counter C1 (signature for the shown region) is incre-
mented by 1 in each BB, and in the successor BB of bb4, a check
would be inserted to make sure that the value of C1 is 3. In the pres-
ence of a control flow error, assume that the transition happens such
that after bb1, either signature updates of bb2 or bb3 is skipped or
bb4 is executed. The signature value would not be 3 in the succes-
sor BB of bb4 and this would be detected. We put the increment as
the first instruction in the BBs so that the signature won’t get up-
dated in case of small erroneous jumps. Thus, very small changes to

Figure 6: Every interval is associated with a signature. In our
scheme, signature are simple counters. The signature is initialized
in the header and incremented by 1 in other blocks. The signature
checks are made in the BBs that are destination BBs of exits out of
an interval.

the branch target are caught because of this positioning of signature
updates.

However, if we naively insert the increments in each BB of the
program, the counter value at the exit points of the interval will
depend on 1) the path taken during runtime 2) the particular exit
taken. For example, consider the CFG shown in Figure 7. If at
runtime, edge bb1 → bb2 is traversed, the signature value at the
exit out of bb3 would be 3 since each BB increments signature by
1. However, if the edge bb1 → bb3 is traversed signature value at
the same point would be 2. Another similar problem exists if there
are multiple exit points from an interval. The signature values at the
exit points of an interval would be different if the exits originate
from different BBs. Different signature values from an interval exit
would imply that checks would need to be inserted with different
values. To solve this problem, we make sure that from every exit
out of an interval, the same signature value needs to be checked no
matter which exit is taken. To tackle the aforementioned problems,
we have developed a method to calculate extra balancing increments
required along edges. The details of this method are described in the
next subsection.

3.2 Calculating Balancing Increments

Figure 7: The extra increments required to be inserted along control
flow edges is shown. This balances out signature values at the exits
out of an interval.

The goal is to calculate the extra balancing increment required to
be inserted along the imbalanced edges in the CFG. Figure 7 shows
an imbalanced CFG. An imbalanced CFG implies that at every
exit there could be multiple signature values depending on the path
traversed during runtime. If the CFG is not balanced, we will need
to check against multiple values at exit points. Checking against
multiple values will require multiple comparison instructions.

We solve these problems by using a technique of slack distri-
bution, a modified version of the algorithm used by Chu et al. [9]
for optimal work partitioning. Our adapted version of the technique
works as follows: First, every exit out of an interval is connected to
a dummy exit node. All BBs in the interval are assigned a fCount



of 0. All edgeWeights are initialized to 1 and represent an initial
increment along the associated edge. fCount is a number associ-
ated with each BB that represents the path length from the header
of an interval to the BB under consideration. The algorithm starts
from the header BB of the interval. By iterating over predecessors,
the sum of edgeWeight and fCount for each predecessor is cal-
culated. fCount for the current block is then maximum value over
all predecessors. This can be written as follows: fCount(bb) =
maxx∈predecessors(bb)(fCount(x) + edgeWeight(x → bb)). For
every interval, this calculation is repeated until there is no change
in fCount value of any BB. The pseudo code of the algorithm
is described in Algorithm 1. Every BB is also associated with a
number called bCount . bCount is the number calculated starting
from dummy exit nodes and traversing the predecessors. bCount
are initialized to fCount for each BB. Using an algorithm sim-
ilar to the one shown in Algorithm 1, bCount is calculated for
every BB in the interval. The update equation of bCount is
as follows: bCount(bb) = minx∈successors(bb)(bCount(x) −
edgeWeight(x → bb)). Note that during the calculation of fCount
and bCount only the successors and predecessors that are in
the interval are considered. The dummy exit block is consid-
ered a part of the interval during analysis. Once the fCount and
bCount calculation is completed for every BB in the interval,
the amount of extra balancing increment to be inserted along an
edge between srcBB and destBB can be calculated as follows:
extraIncrement [srcBB → destBB ] = fCount [destBB ] −
edgeWeight [srcBB → destBB ]− bCount [srcBB ].

Figure 7 shows an example of extra increment calculation for
a CFG. Numbers on the left side of blocks represent fCount and
numbers on right side of the BB represent bCount . Numbers on
the edges are the extra increments required to be inserted along that
edge. e.g., based on the algorithm described above edge bb1 → bb3
edge gets an increment of 1 and edge bb1 → bb4 gets an increment
of 2. Once this step is executed, all the required increments are
inserted along all edges of an interval.

Create dummy exit block and connect all exit edges to this block;
Initialize all edgeWeight to one;
Initialize all fCount to zero;
change = 1;
while change do

change = 0;
for each bb in Interval do

maximum = max(fCount(x) + edgeWeight(x → bb)) for x in
predecessors[bb] and x → bb is not a backEdge;
if fCount[bb]< maximum then

change = 1;
fCount[bb] = maximum;

end

end

end

Algorithm 1: Algorithm for calculating fCount for every BB in
an interval.

3.3 Error Detection Analysis

LetCi be the counter associated with an interval. Every block inside
that interval updates the counter by 1 and at every exit out of the
interval the counter value should be the maximum path length (since
we insert balancing increments) through that interval. Let that max
value for an interval be CMax . If Ci is not equal to CMax when
control exits out of the interval then the control flow inside the
program got disturbed. For all the intra-interval control flow errors,
if any update to the path length counter is skipped, the path length
calculation would be wrong and hence the control flow error will get
caught. Erroneous jumps to other intervals are detected as the path
length is not correct at the entry point of those intervals. However,
there could be multiple paths of same length inside the interval. In
the presence of single errors, the probability of traversing a different
path of the same length path and still having the same CMax at
exits is very low as explained below. We refer to this probability as

aliasing probability. Consider two BBs BBi and BBj and assume
that an error occurs while executing the branch in BBi transferring
control to BBj . In such a case and under single bit errors, aliasing
occurs if all of the following three conditions are satisfied:

{

pathLength(BBj) == pathLength(BBi) + 1
BBj /∈ successors (BBi)
BBi jumps to the first instruction of BBj

pathLength(BBi) is the length of the path (number of BBs re-
quired to be traversed) from the interval header to BBi. The first
condition implies that the path length at erroneous destination block
should be 1 more than source block. The second condition requires
that BBj is not a valid successor of BBi according to the CFG and
the third condition requires the jump to be at the beginning of the
BB. If the jump is not at the beginning of the BBj , the counter up-
date would be skipped and the error would be caught. Fortunately,
this a very specific case, so the aliasing probability is very low,
dependent on the structure of the CFG. For SPECINT2000 bench-
marks, the probability of such an aliasing is on the order of 10−5.
This is calculated by analyzing the CFG for such a case. This prob-
ability encompasses the aliasing probability between predecessor
blocks (an erroneous jump between two predecessors) of a common
successor BB in the same interval. An erroneous change in branch
condition can transfer control to a statically valid target in the CFG
and is another case of aliasing. We assume that such a case can be
handled by data flow protection methods.

3.4 Insertion of Checking Instructions

An important part of the technique is to find the BBs where the
comparison instructions should be inserted. Each interval has a
unique signature variable. We compare this variable with the stat-
ically known CMax to test that the proper number of increments
occurred. For our initial implementation, we chose to insert checks
at all the exit points of an interval and in the latch block of loops.
However, this is suboptimal and in the next section we show that
how this can be further optimized.

3.5 Optimization for Loops

(a) Checks for loops (b) Optimized insertion of
checking instruction

Figure 8: Optimizing signature checking for loops: The checks on
signatures are moved out of loops to exit blocks so that they are not
executed in each iteration.

A naive way to insert a checking instruction for a loop is as
shown in Figure 8(a). The latch block contains the checking instruc-
tion (the instruction that compares C1 to 3). However, in this situa-
tion, the check is executed once every loop iteration. This can be op-
timized as shown in Figure 8(b). In the optimized case, the checking
instruction is moved out of the loop and check is now made against a
remainder. Essentially, a multiple of loop path length gets tested by
the remainder. Remainders are a costly operation and one important
issue to consider here is the fact that loop increments are inserted in



such a way that the remainder is always taken by a power of two.
This is shown in Figure 8(b), in bb4 counter C1 is incremented by 2
instead of 1 to make sure that remainder by 4 is taken. If this is the
case the remainder instruction can simply be converted to a bitwise
and instruction (e.g., remainder by 4 can be computed as bitwise
and with 3).

3.6 Call and Return Instructions

A source of control flow transfers are call and return instructions.
In this work, we propose a new technique to protect the control flow
from caller to callee header and the return from callee to caller. The
idea is akin to the path length approach used for branches except
each function call has a unique path length (a unique number) that
is checked upon entry of the callee and upon return to the caller to
ensure call/returns go to and return from proper targets. We make
the path length unique for each function to ensure that there is no
aliasing among calls to different functions. The technique works as
follows: Let F be the set of all the functions in an application. Every
fi ∈ F is assigned a unique code such a way that the following is
true.

HammingDistance(ACode(fi), ACode(fj)) > 1

∀fi, fj ∈ F and i 6= j

For binary numbers a and b, Hamming distance is equal to the num-
ber of positions at which the corresponding bits in a and b are differ-
ent. Simply put, Hamming distance is the number of errors required
to transform a to b, and vice versa. HammingDistance(a, b) is the
Hamming distance between a and b.ACode(fi) represents the code
assigned to fi. Every function in the application is assigned a unique
code in a way such that the Hamming distance between any two
codes is greater than 1. This ensures that there is no aliasing among
calls because of erroneous transition from one function to another
function in presence of single bit errors. Figure 9 shows an exam-

Figure 9: Handling call and return instructions. Instructions in bold
represent the inserted instructions.

ple of instrumented code. The Global Signature Register (GSR) is
updated before and after the call as shown. RConst is a convenient
constant (power of 2) chosen in a way such that the costly remain-
der operation can be converted to simple bit shift operation. 34 is
the Hamming code assigned to the function Foo. Inside the callee,
the GSR is updated in the entry BB of the callee and return BB of
the callee. This ensures that other calls inside Foo can use the same
type of instrumentation. If source code of a call (e.g., library calls) is
not available then the increments inside the callee cannot be inserted
and only the increments around the call are inserted. In such a case,
the transition to the beginning of the callee cannot be checked but
the instrumented code ensures the return from callee should be right
after the call instruction. Calls through pointers and compiler built-
ins (i.e., compiler intrinsics) are treated in the same way as library
calls.

4. Experimental Setup

A common practice in the literature to evaluate transient fault detec-
tion solutions is to use Statistical Fault Injections (SFIs) into a mi-
croarchitectural model of a processor. We believe that SFI provides
the opportunity to inject faults into various hardware structures and
hence are close to real transient fault scenarios. SFI has been previ-
ously [10, 32] used in validating the solutions proposed to protect
against soft errors.
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Figure 10: The incorrect executions as a percentage of unmasked
faults caused by disturbance in control flow targets. Faults are in-
jected in register file as well as branch targets.

4.1 Compiler Transformations

We have used the LLVM [16] compiler infrastructure to insert ACS
into an application’s code. Firstly, application source code is con-
verted into LLVM’s internal representation called LLVM IR (Inter-
mediate Representation). ACS is implemented as a pass over LLVM
IR. ACS insertion pass should be run after all the optimization
passes on IR so that these passes do not interfere with ACS code.
Our ACS insertion pass takes IR as input and as output it generates
IR with signature computations and checks embedded into it. An
LLVM interval formation pass is internally run and the information
is used to insert control flow checking signatures. Some optimiza-
tion passes such as constant propagation in code generation phase
can propagate the constant initialization of signatures into the next
BB. This can effectively remove the effect of inserted signature from
the BB where the signature was initialized to its successors BBs. We
have disabled such optimizations during the phase when LLVM pre-
pares the IR for code generation.

4.2 Benchmarks

We have used 11 benchmarks from the SPECINT2000 benchmark
suite (gzip, vpr, gcc, mcf, crafty, perlbmk, parser, gap, vortex, bzip2,
twolf) as representative workloads in experiments. All these bench-
marks were compiled with -O3 option of gcc frontend for LLVM.
SPECINT2000 benchmarks. In the context of embedded systems, if
the change in execution time affects program output, these programs
might not run correctly after control flow protection. We do not con-
sider multithreaded benchmarks in this work. However, we do not
foresee any problems of using ACS with multithreaded programs.

4.3 Fault Injection Campaign

To evaluate the proposed approach, we ran an extensive fault injec-
tion campaign. An acceptable way in literature to model transient
faults is using single bit-flips. These faults are inserted by flipping
a random bit at a random cycle during the course of the applica-
tion run. We injected faults in the register file (a large part of the
processor’s architectural state) and branch targets. A fault in a reg-
ister used as branch target or in the computation of branch targets
for indirect branches can disturb the control flow. Figure 10 shows
the results of this experiment and Y-axis in the Figure is incorrect
executions caused by control flow target errors as a percentage of
the unmasked faults. The results show that a large percentage (on
average 42%) of the unmasked faults result in incorrect executions
and are caused by control flow faults. 175.vpr and 300.twolf (100%
bars in the Figure 10) have high masking rate and all the remain-
ing incorrect executions for these two benchmarks are caused by
control flow faults. Even though the size of branch target (32 bit)
is smaller than register file (16 registers of size 32 each), the con-
tribution of branch target errors to incorrect executions is dispro-
portionately high. Hence, control flow faults are an important cate-
gory of faults to consider. Therefore, for the rest of the experiments,



we chose to inject faults in branch targets only. Injecting faults in
branch targets represents stress testing (a pessimistic case) control
flow protection schemes since all the injected faults are guaranteed
to disturb the control flow and subsequently do not inflate coverage
numbers as they result in less masking compared to data errors as
shown in Figure 1. The same method of fault injection is used for
the baseline (CFCSS). To inject a fault, the program runs normally
until it encounters the first control flow instruction after the selected
random point is encountered. Once the control flow instruction is
selected, a random bit is selected from the target address of the con-
trol flow instruction. This selected random bit is flipped to complete
the injection of fault. Faults in PC (Program Counter) and other ad-
dress circuitry are expected to disturb the control flow in a similar
manner. Our technique is also capable of detecting faults injected
into other microarchitectural units that affect the program control
flow.

We used the GEM5 [7] simulator to simulate the workloads and
implemented fault injection infrastructure into this simulator. The
simulator was run in ARM syscall emulation mode and modeled
the ARMv7-a profile of ARM architecture. To obtain performance
overhead, workloads are simulated in an out-of-order model of the
target processor. We use atomic model for processor configuration
to inject control flow faults. The details of the processor configura-
tion for out-of-order model used for the experiments are in Table 2.

Table 2: GEM5 Simulator parameters (models an ARMv7-a profile
of ARM architecture).

Processor core @ 2GHz

Simulation configuration out-of-order core
Simulation mode Syscall emulation
Physical integer register file size 256 entries
Reorder Buffer Size 192 entries
Issue width 2

Memory

L1-D cache 64KB, 2-way
L1-I cache 32KB, 2-way
DTLB/ITLB 64 entries (each)

We have chosen to inject 1100 faults per technique to evaluate
the solution. The statistical significance of these faults can be cal-
culated by leveraging the work done by Leveugle et al. [17]. The
calculation for our experimental setup shows that we need 96 fault
injection trials for each benchmark to have a 10% margin of error
and confidence level of 95%. Note that the margin of error only ap-
plies to fault coverage data. The performance overhead shows the
exact simulation cycles consumed by the simulator. Therefore, we
chose 100 fault injection trials for each benchmark to yield results
with reasonable accuracy in a timely manner. After the fault injec-
tion, the program runs until completion. The result of each simula-
tion trial is classified into one of the following five categories:

• Masked: The injected fault did not corrupt the program output.
Application-level or architecture-level masking occurred in this
case.

• HWDetect: The injected fault produces a symptom such as
a page fault so that a recovery can be triggered. A fault is
considered under this category only if the symptom is produced
within a number of cycles (2000 for our experiments) after the
fault was injected.

• CFDetect: The injected fault was detected by the control flow
checking instructions inserted at the time of compiler transfor-
mation.

• Failure: The injected fault resulted in out-of-bound address ac-
cess and resulted in simulation termination. Also, faults causing
infinite loops in the program are classified under this category.

• SDC: Faults that corrupt the program output are classified into
this category. These are Silent Data Corruptions.

Traditionally, the fault tolerance research community considers
a program to be correct if the architectural state is correct at every
cycle. Li et al. [20] showed that 17.6% of the multimedia and AI
applications showed correct results even though they had architec-
turally incorrect states. We believe that user-visible program output
corruptions truly matter to end users and cycle-by-cycle correct ar-
chitectural state is not important to them. So in the context of evalu-
ating this work, a program is considered to have executed correctly
if the final output of the program matches. The result classifications
of the injection experiments in this work are based on the fact that
only program output corruptions really matter. Therefore, for this
work we do not regard the number of faults that propagate to the mi-
croarchitectural state as a metric of importance. The percentage of
faults that actually do corrupt program output are considered harm-
ful because these faults corrupt program output without any hint of
failure and represent the worse case scenario.

4.4 Recovery Support

ACS, like CFCSS, is a detection-only solution for control flow er-
rors. Once a control flow error is detected, we rely on a recovery
mechanism to recover from the detected error. A software-only re-
covery scheme such as Encore [11] or checkpointing-based recov-
ery schemes can be used in conjunction with our solution. Feng
et al. [10] and Wang et al. [38] proposed that future microproces-
sors with aggressive performance speculation will need recovery
support. If available, the same scheme can be used by our solu-
tion. However, the cost of checkpointing-based and software-only
schemes increases with respect to the number of instructions exe-
cuted from recovery point. So, one important target for our scheme
is to keep a bound on fault detection latency.
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Figure 11: The performance (Runtime on simulated core) overhead
for all techniques.

5. Experimental Evaluation and Analysis

Using the experimental setup described in Section 4, we obtain per-
formance overhead and fault coverage results. Figure 11 shows the
performance overhead measured in terms of runtime. These over-
heads are in comparison to unmodified applications compiled at
-O3 optimization level. CFCSS shows the runtime overhead for
the CFCSS scheme [29] and CFCSS ivl bar shows the instruction
overhead if the interval information is used in conjunction with
CFCSS to insert checking at a coarser granularity. CFCSS ivl has
the xor (same as CFCSS) signature update inside every BB and in
contrast to CFCSS only signature checking is moved at a coarser
granularity. Also, CFCSS ivl does not have any loop optimizations
(Section 3.5). The third and fourth bar for each benchmarks shows
the runtime overhead when we use ACS. ACS w/o calls rets bar
in this Figure shows the overhead without the protection for calls
and returns (Section 3.6) and ACS w/ calls rets the overhead if
protection for calls and rets is included. Overall, the performance
overhead is 75%, 57.8%, 11% and 28.8% for CFCSS, CFCSS ivl,
ACS w/o calls rets and ACS w/ calls rets, respectively. We have
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Figure 12: CFCSS bar shows the fault coverage for CFCSS and CFCSS ivl shows the fault coverage with checking inserted using interval
information. ACS w/o calls rets shows the fault coverage without protection for calls/returns and ACS w/o calls rets shows the fault
coverage if calls/returns are also protected.

also measured the impact of code size expansion on application bi-
naries and on average code size overhead is 22% with ACS. The
code size overhead is largest for 176.gcc showing largest perfor-
mance overhead. To give more insight on the reduction in overhead,
we measured the number of intervals and basic blocks in bench-
marks. On average, there are 13302 basic blocks and 1993 intervals
across the evaluated benchmarks and the number of checks required
to be inserted are 2461. This represents a 5.4x decrease in the num-
ber of checks by abstracting from BBs to intervals.
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Figure 13: Comparison of fault detection latency with CFCSS. The
fault detection latency is not adversely affected.

In the next experiment, we explore the fault coverage provided
by these techniques. We define fault coverage as the percentage of
faults out of total injected faults that do not result in Silent Data
Corruptions (SDCs). SDCs are the most harmful errors because the
program silently corrupts data while the user thinks that applica-
tion worked as expected. The faults classified in HWDetects imply
that these symptoms can be used to trigger recovery [10, 38]. Each
bar in Figure 12 shows the distribution of faults among different
categories when the instrumented application runs with fault injec-
tions. The four bars are the fault distribution for CFCSS, CFCSS ivl,
ACS w/o calls rets and ACS w/ calls rets and the average fault
coverage for these techniques is 98.8%, 98.4%, 96.6% and 96.3%,
respectively. All these techniques reduce the number of SDCs in
comparison to unprotected application, but ACS without calls/rets
protection has only 11% performance overhead in comparison to
75% performance overhead of CFCSS.

5.1 Fault Detection Latency

Another important metric with regard to fault detection techniques
is the detection latency. Fault detection latency is directly related

to the overhead of a recovery scheme. A longer latency implies
that either the fault cannot be recovered or the recovery overhead
would be high. Figure 13 shows the latency of ACS with respect to
CFCSS. WithIn2K represents the number of faults detected in less
than 2000 (2K) cycles of injections. Similarly,WithIn5K,WithIn10K
and WithIn100K represents the number of fault detected within
5000, 10000 and 100000 cycles of injection, respectively. These cat-
egories are cumulative and faults classified under WithIn5K include
all the faults detected with in 5K cycles, i.e., it subsumes the faults
classified under WithIn2K. Similar rules apply for faults detected
with in 10K and 100K cycles. The bars in the figure are normal-
ized with respect to the number of faults detected in WithIn2K. For
example, the WithIn5K bars represent the ratio of the number of
faults detected with in 5K cycles and number of faults detected with
in 2K cycles. In case of ACS, on average, WithIn5K contains 2%
more thanWithIn2K. Similarly,WithIn10K andWithIn100K contain
only 3% and 5% more faults thanWithIn2K. The same numbers for
CFCSS are 0%, 1% and 1% for 5K, 10K and 100K cycles, respec-
tively. Overall, ACS only increases the detection latency for at most
5% of the faults detected within 2K cycles.

5.2 Analysis of SDCs

In this subsection, we discuss some of the cases that escape the de-
tection by CFCSS and ACS control flow methods and eventually
result in silent data corruptions. LLVM IR supports the switch state-
ments as the terminating instruction of BBs. When the code genera-
tion phase converts this switch statement to machine instructions, it
is converted into multiple branches. Since these branches were not
visible to our code instrumentation pass, these do not get protected
by ACS or CFCSS. Some of the faults that affect such unprotected
branches eventually cause SDCs. One way to handle these switch
statements is to convert all the switch statements to if-else in the
LLVM IR itself before running our code instrumentation pass. An-
other frequent case of SDCs is the faults that displace target address
(i.e., faults in low order bits) only by few instructions usually result
in SDCs. For example, we noticed that a fault in second bit of tar-
get address of a back edge caused only two extra instructions to be
executed. Those two extra instructions happened to be immediate
mov instructions and they just disturbed the value of two registers.
Affected registers were written to memory and hence caused SDC.
A similar problem also exists with CFCSS.

5.3 Data and Control Flow Protection

In this subsection, we present the results for combining a profile-
based data flow [15] and our proposed control flow solution. Fig-
ure 14 shows the performance overhead on the primary vertical
axis and fault coverage on the secondary vertical axis when a com-



bination of ACS and profile based data flow protection is used.
SWDetects category in the fault outcome classification represents
the number of faults detected by software (both data and control
flow) and other category are same as previously mentioned. Control
flow condition errors are handled by duplicating the computations
for branch conditions. A combined solution incurs an average per-
formance overhead of 47.4% and provides 96.5% fault coverage.
The binary is 35% larger and overhead on dynamic instructions is
55.4%. SWIFT [32] is another solution that used data duplication.
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Figure 14: Performance overhead and fault coverage for complete
data and control flow protection.

By leveraging the ideas from CFCSS, SWIFT also enhances con-
trol flow protection. In comparison to ACS with data duplication,
SWIFT incurs an increase of: 2.3x for dynamic instructions, 2.3x
for binary size and 1.53x for execution time over the same set of
benchmarks as used in this work even though the performance over-
head of SWIFT was measured on a aggressive server class worksta-
tion targeting a different ISA (IA64) than our evaluations (ARM).
An IA64 system can take better advantage of instruction level par-
allelism introduced by duplication of instructions.

5.4 Discussion and Limitations

Similar to other signature based schemes [3, 29], ACS cannot detect
faults in branch conditions. Though other schemes [13, 36] can de-
tect errors in a branch condition if the error occurs after the branch
condition is evaluated. This still misses the errors happening before
condition evaluation and in variables used in evaluation of that con-
dition. Corrupt branch conditions or other variables used to compute
branch conditions can cause control flow condition errors. These er-
rors in branch conditions can be handled by combining ACS with
data flow protection based methods as described in Section 5.3. In
this paper, we focus on the faults in branch targets and other vari-
ables used in computing branch targets.

In the presence of an error in the inserted checking code, the
following scenarios can occur: 1) If the check evaluates to True, then
the error in signature comparison branch will result in skipping the
signature updates of next basic block, hence the error will be caught
at the next check. 2) If the check is wrong (i.e., an error has already
occurred), then considering that a transient fault is a rare event, a
second error in this short span of time in signature comparison is
probabilistically unlikely to occur.

In LLVM, the CFG is the basis of data flow analysis and many
optimizations. To facilitate this data flow analysis, LLVM doesn’t
allow the address of a BB to be taken and then jump to it. Jumps to
a location specified in a variable can only exist in the form of call
instructions and for other control flow instructions target BBs are
known at LLVM IR level. So at LLVM IR level, there is no special
handling for indirect branches is required.

6. Related Work

Control flow protection is becoming an increasingly important con-
cern for reliability researchers. Two particularly noteworthy pieces

of software-only work in this area are CFCSS [29] and ECCA (En-
hanced Control Flow Checking using Assertions) [3]. In our exper-
imental results, we have compared our work with CFCSS in detail.
ECCA assigns a unique prime identifier to each BB in the program
and checks prime identifier at runtime using an assertion in every
BB. The authors of [37] reported that ECCA incurs 150% memory
overhead. Venkatasubramanian et.al [37] use parity in each BB to
check for correct control flow. Control flow is checked by special
variables inserted in each routine. The main difference with respect
to these techniques and ACS lies in the fact that we raise the level
of abstraction for checking and the signature update is simplified in
each BB. Borin et al. [8] presented a control flow error detection
technique where the signature checks are made in 1) every BB, 2)
only in the BBs with back edges and BBs with return instructions,
3) only in BBs with return instructions and 4) only at the end of the
application. This previous work reports 77% overhead for the case
1 and 37% for the case 3, in comparison to 11% overhead of ACS.
Fault coverage data or detection latency for these different checking
granularity is not reported in the paper. It is expected that delay-
ing the checking to loop end points (blocks with back edges) and
function ends (return blocks) will result in relatively more failures
and program corruptions or will affect detection time. CEDA [36] is
an assertion based scheme that assigns static signatures while min-
imize aliasing. The overhead of CEDA for common benchmarks is
27.1% in comparison to 11% of ACS. CEDA work also presents
comparison with CFCSS and YACCA [13]. The performance over-
head of CEDA reported in that paper is comparable to CFCSS for
the chosen five benchmarks with a slightly better fault coverage.
Since ACS has lower overhead than CFCSS, it will also have lower
overhead than CEDA. The paper reports YACCA’s overhead even
larger than that of CFCSS and CEDA.

A comparison with SWIFT [32] is already described in Sec-
tion 5.3. Other works such as CRAFT and PROFIT [33] improve
upon the SWIFT solution by using additional hardware structures
and architectural vulnerability factor (AVF) analysis [28]. Our goal
in this work is to make the control flow protection practical for com-
modity embedded systems by reducing the performance overhead.
Our experimental results demonstrate that this can be achieved at
significantly less performance overhead than these previously pro-
posed techniques.

Symptom detection based solutions rely on anomalous microar-
chitectural behavior to detect soft errors. A light-weight approach
for detecting soft errors, ReStore [38], analyzes symptoms includ-
ing memory exceptions, branch mispredicts, and cache misses.
mSWAT [18] presented a solution which detects anomalous soft-
ware behavior to provide a reliable system. It requires special simple
hardware detectors to detect faults. These techniques are orthogo-
nal to ACS, as they rely on specialized hardware. If available, they
can be leveraged along with ACS to increase the number of faults
detected under HWDetects category.

A category of previous works related to control flow protec-
tion are watchdog processor based solutions [22]. The general idea
of these techniques is to have a watchdog processor, along side
the main processor, that monitors and checks the program execut-
ing on the main processor. These solutions rely on the availabil-
ity of watchdog processor and in some cases even propose specific
changes to the watchdog processors. A variety of watchdog based
solutions [21, 25, 36] are proposed in literature by modifying some
aspect (e.g., changing the type of signatures) of the technique. Some
recent solutions also suggest the idea of distributed checking in the
core for various components. Argus [24], for example, relies on a se-
ries of hardware checker units to perform online invariant checking
to ensure correct application execution (data flow as well as control
flow). Argus achieves very low overhead by adding extra hardware.
In comparison to these techniques, ACS targets COTS components
and does not require any hardware changes.

An interesting approach to soft error reliability is using Redun-
dant Multithreading (RMT). AR-SMT [34] introduced the idea of
RMT on SMT cores; The work is done by a leading thread, and the



trailing thread checks for the correctness. Subsequent works [14, 31]
in this category have tried to reduce the overhead due to RMT. All
these techniques come with the overhead of running an extra thread
which executes a skeleton of the original program.

Another compiler assisted solution for control flow checking
uses extra hardware to minimize the overhead [19]. It requires
compiler, as well as hardware changes. Ours is a software-only
approach to produce protected programs.

There is a large body of related work in Control Flow Integrity
(CFI) [1] for computer security against external software attacks.
CFI works by making sure that all the control transfer occur as
determined by the static CFG. The failure model targeted by CFI
schemes is very different from soft errors failure mode. In CFI, con-
stant destinations (direct branches ) are statically verified and while
computed (dynamic branches) are verified for correct destination
by instrumenting the code. Soft errors can affect the direct as well
as indirect branches and hence CFI, as is, is not directly applicable
for soft errors. Though direct branches can also be protected in a
manner similar to dynamic branches, but the already high overhead
(20%-60% for dynamic branches only) would become prohibitive.

Path profiling [4] finds the execution count of a path in a Directed
Acyclic Graph (DAG). It is a related problem to our work and
gives an unique number for each path in a DAG. However, we
want to have a balanced path length along with information about
edges in the path to insert balancing increments. This can not be
obtained with path profiling. Moreover, usually profiling is created
with training inputs but later the program might be executed with
a different set of inputs. In ACS, we need the correct path length
with the current inputs a program is executing. Therefore, the data
produced by off-line profiling can not be used in ACS.

7. Conclusions

The ever increasing desire to create powerful and efficient micropro-
cessors, with each successive new generation, has led to the use of
increasingly smaller transistors into these devices. Aggressive scal-
ing makes transistor devices more susceptible to transient faults.
To tackle the problem of control flow protection at minimal per-
formance overhead, we have proposed Abstract Control flow Sig-
natures (ACS). ACS achieves its efficiency by working at a coarse-
grain level than the previously proposed signature based techniques
and also by simplifying signature updates in each basic block. ACS
reduces performance overhead, on average, from 75% down to 11%
while maintaining the similar level of fault coverage in comparison
to a previously proposed approach (CFCSS [29]).
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