
Rumba: An Online Quality Management System for Approximate Computing

Daya S Khudia Babak Zamirai Mehrzad Samadi Scott Mahlke
University of Michigan

{dskhudia,zamirai,mehrzads,mahlke}@umich.edu

Abstract
Approximate computing can be employed for an emerging

class of applications from various domains such as multimedia,
machine learning and computer vision. The approximated out-
put of such applications, even though not 100% numerically
correct, is often either useful or the difference is unnoticeable
to the end user. This opens up a new design dimension to trade
off application performance and energy consumption with out-
put correctness. However, a largely unaddressed challenge
is quality control: how to ensure the user experience meets a
prescribed level of quality. Current approaches either do not
monitor output quality or use sampling approaches to check a
small subset of the output assuming that it is representative.
While these approaches have been shown to produce aver-
age errors that are acceptable, they often miss large errors
without any means to take corrective actions. To overcome
this challenge, we propose Rumba for online detection and
correction of large approximation errors in an approximate
accelerator-based computing environment. Rumba employs
continuous lightweight checks in the accelerator to detect
large approximation errors and then fixes these errors by ex-
act re-computation on the host processor. Rumba employs
computationally inexpensive output error prediction models
for efficient detection. Computing patterns amenable for ap-
proximation (e.g., map and stencil) are usually data parallel
in nature and Rumba exploits this property for selective cor-
rection. Overall, Rumba is able to achieve 2.1x reduction
in output error for an unchecked approximation accelerator
while maintaining the accelerator performance gains at the
cost of reducing the energy savings from 3.2x to 2.2x for a
set of applications from different approximate computing do-
mains.

1. Introduction
Computation accuracy can be traded off to achieve better per-
formance and/or energy efficiency. The techniques to achieve

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage, and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from Permissions@acm.org.
ISCA’15, June 13-17, 2015, Portland, OR, USA
c© 2015 ACM. ISBN 978-1-4503-3402-0/15/06. . . $15.00

DOI: http://dx.doi.org/10.1145/2749469.2750371

this trade off fall under the umbrella of approximate comput-
ing. Algorithm specific approximation has been used in many
different domains such as machine learning, image processing,
and video processing. Different algorithms in these domains
have been approximated by programmers to achieve better per-
formance. Video processing algorithms are good candidates
for approximation as occasional variation in results will not be
noticeable by the user. For example, a consumer can tolerate
occasional dropped frames or a small loss in resolution during
video playback, especially when this allows video playback
to occur seamlessly. Machine learning and data analysis ap-
plications also provide opportunities to exploit approximation
to improve performance, particularly when such programs are
operating on massive data sets. In this situation, processing
the entire dataset may be infeasible, but by sampling the input
data, programs in these domains can produce representative
results in a reasonable amount of time.

However, algorithm specific approximation increases the
programming effort because the programmer needs to write
and reason about the approximate version in addition to the
exact version. Recently, to solve this issue, different software
and hardware approximation techniques have been proposed.
Software techniques include loop perforation [1], approximate
memoization [11, 31], tile approximation [31], discarding
high overhead computations [32, 36], and relaxed synchro-
nization [28]. Furthermore, there are many hardware based
approximation techniques that employ neural processing mod-
ules [16, 4], analog circuits [4], low power ALUs and stor-
age [34], dual voltage processors [15], hardware-based fuzzy
memoization [2, 3] and approximate memory modules [35].
Approximation accelerators [16, 41, 14] utilize these tech-
niques to trade off accuracy for better performance and/or
higher energy savings. In order to efficiently utilize these
accelerators, a programmer needs to annotate code sections
that are amenable to approximation. At runtime, the CPU
executes the exact code sections and the accelerator executes
the approximate parts.

These techniques provide significant performance/energy
gains but monitoring and managing the output quality of these
hardware accelerators is still a big challenge. A few of the re-
cently proposed quality management solutions include quality
sampling techniques that compute the output quality once in
every N invocations [32, 6], techniques that build an offline
quality model based on the profiling data [6, 16].

However, these techniques have four critical limitations:
• As the output quality is dependent on the input values, dif-

ferent invocations of a program may produce results of
different output qualities. Therefore, sampling techniques
are not capable of capturing all changes of the output quality.
Moreover, it is highly possible to miss large output errors
because only a subset of outputs are actually examined, i.e.,
monitoring is not continuous. Also, profiling techniques do
not work efficiently if the profiling data is not representative
of all possible inputs.

• Using these quality management techniques, if the output
quality drops below an acceptable threshold, there is no way
to improve the quality other than re-executing the whole pro-
gram on the exact hardware. However, this recovery process
has high overhead and it offsets the gains of approximation.

• These techniques measure the quality of the whole output
that is usually equal to the average quality of each individual
output element, e.g., pixels in an image. Previous works [16,
4] in approximate computing show that most of the output
elements have small errors and there exist a few output
elements that have considerably large errors, even though
the average error is low. These large errors can degrade
the whole user experience. For example, having a few
pixels with high error in an image can be easily noticed by
a user. Existing quality management techniques treat all
errors equally but large errors have noticeable effect on the
perceivable output quality.

• Tuning output quality based on a user’s preferences is an-
other challenge for the hardware-based approximation tech-
niques. Different users and different programs might have
different output quality requirements. However, it is diffi-
cult to change the output quality of an approximate hard-
ware dynamically.
To address these issues, we propose a framework called

Rumba1, an online quality management system for approxi-
mate computing. Rumba’s goal is to dynamically investigate
an application’s output to detect elements that have large errors
and fix these elements with a low-overhead recovery technique.
Rumba performs continuous light-weight output monitoring
to ensure more consistent output quality. Rumba’s design is
based on the following two observations:

First, approximation error can be accurately predicted by
simple prediction models such as linear, decision tree, and
moving average. Second, we observe that code regions or
functions that are amenable for approximation are often pure.
Pure code regions just read their inputs and only write to their
outputs without modifying any other state. Such sections can
be safely re-executed without any side effects. It gives us the
benefit of re-executing the loop iterations to fix the erroneous
output elements with low overhead.

Rumba has two main components: detection and recovery.
The goal of the detection module is to efficiently predict output
elements that have large approximation errors. Detection is

1The name Rumba is inspired from Roomba R©, an autonomous robotic
vacuum cleaner. It moves around the floor and detects dirty spots on the floor
to clean them.

achieved by supplementing the approximate accelerator with a
low-overhead error prediction hardware. The detection module
dynamically investigates predicted error to find elements that
needs to be corrected. It gathers this information and sends it
to the recovery module on the CPU. In order to improve the
output quality, recovery module re-executes the iterations that
generate high error output elements.

To reduce Rumba’s overhead, recovery is done on the CPU
in parallel to detection on the approximate accelerator. The re-
covery module controls the tuning threshold to manage output
quality, energy efficiency and performance gain. The tuning
threshold determines the number of iterations that need to be
re-executed.

The major contributions of this work are as follows:
• We explore three light-weight error prediction methods to

predict the errors generated by an approximate computing
system.

• The ability to manage performance and accuracy trade offs
for each application at runtime using a dynamic tuning
parameter.

• We leverage the idea of re-execution to fix elements with
large errors.

• 2.1x reduction in output error with respect to an unchecked
approximate accelerator with the same performance gain.
Detection and re-execution decrease the energy savings of
the unchecked approximate accelerator from 3.2x to 2.2x.

2. Challenges and Opportunities
The ability of applications to produce results of acceptable
output quality in an approximate computing environment is
necessary to ensure a positive user experience. Output quality
control for approximate programs is important for the wide
adaptation of this technology.

10%

80%

Error

P
er

ce
n
ta

g
e

o
f

O
u
tp

u
t

E
le

m
en

ts

100%

100%

!"#$%&'##(#)

'*%+%,-.)

/
+
"
**
&'
##
(
#)

'
*%
+
%
,
-.
)

Figure 1: Typical cumulative distribution function of errors
generated by approximation techniques. A large number of
output elements have small errors while a few output elements
have large errors.

(a) (b) (c)

Figure 2: An example of variation in image quality with the
changing distribution of errors. Subfigure (a) is the original
image without any errors. Ten percent of the pixels in (b) have
100% error while the rest of the pixels are intact. All pixels in
(c) have 10% error. Although these two images have the same
average quantitative output quality (90%), errors in Subfigure
(b) are more noticeable.

2.1. Challenges of Managing Output Quality

The following are the main challenges of output quality man-
agement in an approximate computing environment.
Challenge I: Fixing output elements with large errors is
critical for user experience. We analyze the distribution of
errors in the output elements generated by an application under
approximation. Previous studies [16, 31, 32] reported that the
Cumulative Distribution Function (CDF) of the errors of an
approximated application’s output follows the curve shown in
Figure 1. Figure 1 shows a typical CDF of errors in output
elements when total average error is less than 10%. This figure
shows that the most of the output elements (about 80%) have
small errors (lower than 10%). However, there are few output
elements (about 20%) that have significant errors.

Although the number of elements with large errors is rela-
tively small, they can have huge impact on the user perception
of output quality. Figure 2 demonstrates this. In this figure,
we generate two images by adding errors such that the overall
average error is 10% in both images. Figure 2(a) is the original
image. In Figure 2(b), only 10% of pixels have 100% errors
while the rest of pixels are exact. On the other hand, all pixels
in Figure 2(c) have about 10% error. Even though the overall
output error is the same for both the generated images, errors
in Figure 2(b) are more noticeable than Figure 2(c) to the end
user. This shows that to effectively improve the output quality,
a quality management system should reduce the long tail of
high errors.
Challenge II: Output quality is input-dependent. Another
characteristic of approximate techniques is that output quality
is highly dependent on the input [16, 31, 32, 6]. In this case,
these techniques must consider the worst case to make sure
that the output quality is acceptable. To show this, we run an
image processing application called mosaic that generates a
large image using many small images. The first phase of this
application computes the average brightness of all input im-
ages. To approximate this phase, a well-known approximation
technique called loop perforation [1] is used. Loop perforation
drops iterations of the loop randomly or uniformly. Therefore,
in this case, instead of computing the average brightness of

0

5

10

15

20

25

0 100 200 300 400 500 600 700 800

O
u

tp
u
t

E
rr

o
r

Image

�������

�����

Figure 3: Mosaic application’s output error for 800 different
images of flowers. This data shows that the output quality is
highly input-dependent.

all the pixels, the approximate version computes the average
brightness of a subset of the pixels.

Figure 3 shows the output error for 800 different images
of flowers [23]. Average error of all the images is about 5%
but there are many images that have output error above the
average, up to a maximum of 23%. Therefore, an approximate
system in the worst case (23% error) may produce unaccept-
able quality results. However, if a quality management system
can reduce the unacceptable outputs, the aggressiveness of
approximate techniques can be increased to get better perfor-
mance and/or energy savings.

Also, since the output quality is highly input-dependent,
previous quality managing systems such as quality sampling
or profiling techniques might miss invocations that have low
quality. In order to solve this problem, a dynamic light-weight
quality management system is required to check the output
quality for all invocations.
Challenge III: Monitoring and recovering output quality
is expensive. One of the challenges that all approximate tech-
niques have is monitoring the output quality. In order to solve
this problem, continuous checks are necessary. Such checks
cannot compute the exact output, but instead need to be predic-
tive in nature. Different frameworks [32, 6] suggest running
an application twice (exact and approximate versions) and
comparing the results to compute output quality. Unfortu-
nately, it has high overhead and it is not feasible to monitor all
invocations. Running exact and approximate at all times will
nullify the advantages of using approximation.

To reduce this overhead, these frameworks utilize quality
sampling techniques that check the quality once in every N
invocations of the program. Therefore, if the invocations that
are not checked have low output quality, these frameworks
will miss them due to the input dependence of output quality
(Challenge II).
Challenge IV: Different users and applications have dif-
ferent requirements on output quality. In an approximation
system, the user should be able to tune the output quality based
on her preferences or program’s characteristics. Software-

based approximation techniques are better at tuning the output
quality. However, for hardware-based techniques, it is a huge
challenge. For example, in a system with two versions of
functional units, exact and approximate, it is hard to control
the final output quality dynamically.

2.2. Rumba’s Design Principles

To overcome the four challenges, Rumba exploits two observa-
tions found in the kernels that are amenable to approximation:
predictiveness of errors and recovery by selective re-execution.

Predictiveness of Errors: Rumba’s detection module is
based on the observation that it is possible to accurately pre-
dict the errors of an approximate accelerator using a computa-
tionally inexpensive prediction model. Figure 5 shows exact
output (a Gaussian distribution), approximate output produced
by an accelerator and errors in approximation. For this case, it
is visually clear that errors are concentrated on certain inputs.
Hence, a simple prediction model can separate cases of high
errors accurately.

Rumba dynamically employs light-weight checkers to de-
tect approximation errors. A threshold on the predicted er-
rors is used to classify errors in the output elements as high.
Therefore, Rumba targets output elements with high errors
as mentioned in Challenge I. Also, since Rumba has light-
weight checkers, the checks can be performed online for all
the elements of each invocation (Challenge III).

Recovery by Selective Re-execution: In computing, a pure
function or code region only reads its inputs and only af-
fects its outputs, i.e., it does not affect any other state. In
other words, pure functions or code regions can be freely re-
executed without any side-effects. Similar characteristics have
been previously used in recovering program from external
errors simply by re-executing [17, 20]. Such functions or code
regions naturally occur in many data-parallel computing pat-
terns such as map and stencil. We analyzed the data parallel
parts of the applications in Rodinia benchmark suite [12] and
found out that more than 70% of them can be re-executed
without any side effects. Rumba detects this characteristic
using these previous techniques to identify such regions in
applications. A more detailed description of recovery is given
in Section 3.1. It is not a new restriction imposed by Rumba as
previously proposed approximate accelerators [16, 4] require
functions or code regions to be pure to be able to map them to
an approximate accelerator.

Therefore, if Rumba detects that one of the accelerator
invocations generates output elements with large error, the
Rumba recovery module can simply re-execute that iteration
to generate the exact output elements. In this case, there is
no need to re-run the whole program to recover those output
elements (Challenge III). Also, using this technique, Rumba
can manage the performance/energy gains by changing the
number of iterations to be re-executed to target Challenge IV.

3. Design of Rumba

3.1. Overview

Approximation errors can be broadly divided into large errors
and small errors. Approximation accelerators generate a large
number of small errors and relatively few large errors as shown
in Figure 3. Rumba is a detection and recovery scheme for
errors in an approximate computing system. Rumba is specif-
ically designed to detect these large errors by a light-weight
checker and then fix these errors. Rumba makes the output
of an approximation accelerator computing system acceptable
by reducing the long tail of large errors. Alternatively, with
Rumba’s error correction capabilities, it will be possible to dial
up the amount of approximation, thus improving performance
and/or energy savings, while still producing user acceptable
outputs.

A high-level block diagram of the Rumba system is shown
in Figure 4. The offline part of Rumba system consist of
two trainers. The first trainer finds the optimal configuration
of the approximate accelerator for a particular source code.
The second trainer trains a simple error prediction technique
based on the errors produced by the accelerator trainer. The
configuration parameters for both the approximate accelerator
and the error predictor are embedded in the binary.

The execution subsystem of Rumba is shown in the same
figure. For the purpose of exposition, we assume that the
design of our approximation accelerator is similar to the one
proposed by Esmaeilzadeh et al. [16]. However, the same
design principles can apply to other accelerator based approx-
imate computing systems. As shown in the figure, the core
communicates to the accelerator using I/O queues for data
transfers from the core to the accelerator and back from accel-
erator to the core. Rumba’s execution has two components:
detection and recovery modules.

The annotated approximate part of the application code gets
mapped to the approximation accelerator [16, 4]. We augment
the approximate accelerator by an error predictor module to de-
tect approximation errors. A variety of prediction techniques
can be used to predict these errors. We explore three light-
weight checkers that are implemented using three simple error
prediction techniques. These error predictors are described
in Section 3.2. Once a check fires, i.e., approximation for
that particular output element is larger than a tuning threshold
(determined by the online tuner based on user requirements), a
recovery bit for the iteration generating that particular element
is set in the recovery queue as shown in Figure 4. The CPU
collects these bits from the recovery queue and re-executes the
iterations that their recovery bit is set. Output merger choses
the exact or the approximate output as final result. A more de-
tailed description is in Section 3.3. Another important aspect
of Rumba is the dynamic management of output quality and
energy efficiency. By controlling the threshold at which the
checker fires, Rumba can control the number of iterations to be
re-executed. This tuning process is discussed in Section 3.4.

������

���

���	
��������

������ �����

�
�
�
��

��
�
�

������

�������������

������

���������

������

�
�
�

��

�

���������������

������

����������

������

������	����

������

����������

������

���������������

������

������� ��

✶

�!!��"�	���

���������

���	
��#������
$ $ ✶ $ ✶ $ $

�%�� ���

������ ��

����� ����

���

�!����������

���!���	���

Figure 4: A high-level block diagram of the Rumba system. The offline components determine the suitability of an application
for the Rumba acceleration environment. The online components include detection and recovery modules. The approximation
accelerator communicates a recovery bit corresponding to the ID of the elements to recompute with the CPU via a recovery
queue.

0

0.2

0.4

0.6

0.8

1

-16 -11 -6 -1 4 9 14

O
u

tp
u

t
o

r
A

p
p

ro
x

im
a

ti
o

n
 E

rr
o

r

(f
ra

ct
io

n
)

output approximate output errors

Figure 5: Exact output, approximate output and relative errors
in the approximate output. The relative errors in the approx-
imate output are higher for some inputs than the others and
are more easily predictable than the output itself.

3.2. Light-weight Error Prediction

An important first step is the inexpensive detection of large
approximation errors in output elements. Since it is not known
beforehand which output elements will have large errors, run-
time checks should be employed for all the output elements.
Therefore, the light-weight nature of these checkers is of
paramount importance. Complex checkers to detect large ap-
proximation will offset the gains of approximation and, thus,
are not desirable. A desirable dynamic checker should have
low overhead and still be accurate at predicting errors in output
elements.

A dynamic checker does not have access to the exact results,
hence, the errors in approximate output cannot be computed
by comparing with the exact result. Computing exact values is
not an option because that negates the benefits of employing
an approximation system. The Rumba detection module needs
to detect large approximation errors by using inputs to the
accelerator or the approximate output produced by the acceler-
ator. We call a method an input-based method if the method
calculates errors using the inputs to the accelerator. Similarly,
if the errors are detected by just observing the accelerator
output, such a method is called an output-based method. For
input-based methods, approximation errors can be obtained

using a simple predicting model on inputs in the following
two ways:
• Errors by Value Prediction (EVP): predict the output using

a model and then get the error by comparing it with the
approximate accelerator’s output.

• Errors by Error Prediction (EEP): predict the errors directly
using a model.

In our experiments, we observed that if we use the same Pre-
diction model it is more accurate to predict the errors directly
than computing the errors by first predicting the output. We an-
alyzed errors in the approximation of a Gaussian distribution
and found that average distance between exact approxima-
tion errors and errors obtained by EVP and EEP is 2.5 and 1,
respectively, i.e., EEP is more accurate. Therefore, we use sim-
ple prediction models to predict errors in the approximation.
We explore two input-based methods and one output-based
method to detect errors.
3.2.1. Error prediction using a linear model: The first error
prediction method is a linear error predictor and is an input-
based method. A linear error prediction method predicts error
by computing a linear function of inputs to the accelerator.
Equation 1 shows the linear function that is calculated to
compute the error. The number of terms (xis) are determined
by the number of inputs to the code section that is mapped to
the approximate accelerator. A linear model requires relatively
simple computations in the form of multiply-add operations.
Hence, the online prediction of errors for a particular input
does not add much energy overhead. The weights (wis) and
constant c are determined by offline training.

err = w0 ∗ x0 +w1 ∗ x1 ... wN−1 ∗ xN−1 + c (1)

where xi is the ith input, wi is the weight for the ith input and c
is a constant.
3.2.2. Error prediction using a decision tree: The second
error prediction method is a decision tree and is also an exam-
ple of input-based methods. An example of error prediction
using a decision tree is shown in Figure 6. This model con-
tains decision and leaf nodes. The decision nodes typically
have two branches and uses one of the inputs to decide on

!
"
#$#%

"#

!
&
#$#%

&# !
&
#$#%

'#

())#*#+
"#

!
&
#$#%

,#
!
&
#$#%

-# !
"
#$#%

.#

())#*#+
&#

())#*#+
'#

())#*#+
/#

())#*#+
,#

())#*#+
-#

())#*#+
.#

())#*#+
0#

!
"
#$#%

/#

Figure 6: A decision tree with a depth of 3 in decision nodes.
For this example, it predicts errors based on two inputs. The
leaf nodes (gray) give the approximation errors. The coeffi-
cients (cis and vis) are determined by offline training.

whether to traverse the left or right child. This process contin-
ues until it reaches a leaf node in the tree. Leaf nodes store
the predicted error. Training data is used to determine the
values of constants used in making decisions at the decision
nodes and predicted error at the leaf nodes. The computation
required in a decision tree is dependent on the depth of the
tree structure. We limit the tree depth to 7 in our experiments.
Only comparison operations are required to implement this
decision tree and hence it is not a computationally expensive
error prediction method.
3.2.3. Error prediction using moving average: The third
error prediction model is using moving average as the general
trend of data in the sequence. This moving average based
method is an output-based method because it just observes the
accelerator outputs to find out the erroneous elements. The
difference between current element and the moving average
can be used to detect large errors in a number in the sequence.
In this work, we used Exponential Moving Average (EMA)
which can be calculated by the formula shown in Equation 2.

EMA = (e∗α)+(Previous EMA∗ (1−α)) (2)

where e = Current element, α = Smoothing factor = 2
1+N and

N = Number of elements in the history
EMA computes the exponential moving average over a

window of output elements and compare it to each output
element to compute the difference. If the difference is higher
than a tuning threshold, the detection module marks the output
element as erroneous.

Once an application is deemed fit for approximation on
the accelerator, it is transferred to the accelerator augmented
with an error predictor. The dynamic check for each output
element is the predicted error greater than a tuning threshold.
If this predicted error is greater than a tuning threshold, a large
approximation error is suspected and the check fires.

Predictor Hardware: Figures 7(a) and 7(b) show the hard-
ware for the linear error and decision tree error predictors. An
approximate accelerator is augmented with these hardware
to predict errors. Coefficient buffers are circular buffers and
contain weights and constants for the linear model and de-
cision constants and errors for the decision tree model. The
coefficients are transferred to these checkers via a config queue

�����������	
�����

����	���

������

�����

������

����
� �

����������

�����������	
�����

���

�����������

���������

������

����	���

����

���	������	����� ���	 �������	!���

Figure 7: Hardware for the approximation error predictors.

� � � � � � � � 	

� � � � � � � � � �

� � � �

����������

���������

���

��������������

Figure 8: An example of overlapping the re-computation of el-
ements by the CPU with the approximation accelerator. For
example, a large error is detected in iteration 0 by the acceler-
ator and the CPU recomputes this iteration while accelerator
is working on the execution of iteration 1 and 2.

(the same queue is used to transfer accelerator configuration)
between the CPU and the accelerator.

EMA detects large approximation errors by comparing the
current approximate outputs with the history of previously
computed approximate outputs. The history is represented by
EMA, the detection module keeps the EMA and calculates
the approximate error in the current approximate output by
comparing it with EMA.

3.3. Low-overhead Recovery

Rumba’s recovery module on the CPU gets an iteration’s re-
covery bit via the recovery queue. If the corresponding bit of
an iteration is set, the recovery module re-executes that itera-
tion and commits the re-computed output while discarding the
accelerator output for that input. The results received by the
CPU from the approximation accelerator are directly commit-
ted to their final destination if the corresponding recovery bit
is not set in the recovery queue. This is how Rumba merges ap-
proximate outputs from the accelerator with the exact outputs
obtained by re-execution on the CPU.

The CPU and the accelerator work in a pipelined fashion,
i.e., while accelerator is working on an iteration, the CPU
recomputes a previous iteration. An example of such an ar-
rangement is shown in Figure 8. For this example, the checks
fire for output elements of iterations 0, 2, 5 and 6. The CPU
re-computes iteration 0 while the accelerator is working on
iteration 1 and 2. Similarly, re-computation of iteration 2 is
overlapped with the execution of 3 and 4 on the accelerator
and so on. In such a setup, the CPU can recompute 50% of
the output elements, assuming a 2x gain for the accelerator,

Application Domain Train Data Test Data NN Topology
(Rumba)

NN Topology
(NPU) Evaluation Metric

blackscholes Financial Analysis 5K inputs 5K outputs 3->8->8->1 6->8->8->1 Mean Relative Error
fft Signal Processing 5K random fp numbers 5K random fp numbers 1->1->2 1->4->4->2 Mean Relative Error
inversek2j Robotics 10K random (x, y) points 10K random (x, y) points 2->2->2 2->8->2 Mean Relative Error
jmeint 3D Gaming 10K pairs of 3D triangles 10K pairs of 3D triangles 18->32->2->2 18->32->8->2 # of mismatches
jpeg Compression 220x200 pixel image 512x512 pixel image 64->16->64 64->16->64 Mean Pixel Diff
kmeans Machine Learning 220x200 pixel image 512x512 pixel image 6->4->4->1 6->8->4->1 Mean Output Diff
sobel Image Processing 512x512 pixel image 512x512 pixel image 9->8->1 9->8->1 Mean Pixel Diff

Table 1: Applications and their inputs.

!"#$%&'(")
!"#$%&'(")

*+,$-").##"/"01($0)
2)

3)

*+
&
'
(4
)

500$0)

60"78#($0)
500$0)9)

(:0;))

<1=)

2)

3)

*+
&
'
(4
)

500$0)

60"78#($0)
500$0)9)

(:0;))

<>=)

.##"/"01($0)
?4"@'/)A'(&'()

Figure 9: Shows the design choices for the relative placement of input-based detectors with respect to the accelerator. Config-
uration in part (a) adds delay, thus impacting overall performance, in the path to invoking accelerator. Configuration in part (b)
wastes energy on invocations of the accelerator that have large error.

and still keep up with the accelerator provided the elements to
recompute are uniformly distributed.

3.4. Online Tuning

The tuning threshold of Rumba is used as a threshold for the
dynamic checks to determine if the current output has large
error. A larger threshold value will result in fewer iterations
to be re-executed. This, in turn, will cause higher energy
savings but lower output quality. Rumba’s tuning threshold
can be determined by user specified requirements either on
energy consumption or output quality. Online tuning can be
programmed in three modes:

TOQ Mode: In this mode, user specifies the target out-
put quality (TOQ). The goal of this mode is to make sure
that all output elements have better quality than TOQ. There-
fore, Rumba compares the predicted quality with TOQ and
re-execute iterations that have lower quality than TOQ.

Energy Mode: If a user specifies an energy target to
achieve, Rumba calculates the number of iterations (iteration
budget) it can re-execute while staying in the energy budget.
For each invocation, it monitors the number of re-executed iter-
ations. If it goes over the iteration budget it stops re-executing
and increases the tuning threshold for the next invocation. If
the current invocation is finished and Rumba still stays within
the iteration budget, the tuning threshold is decreased. This
would result in more iterations to be re-executed for the next
invocation and thus improves output quality while staying in
the same energy budget.

Quality Mode: If a user is more concerned about achieving
the best output quality, Rumba maximizes re-execution of iter-
ations on the CPU until the current invocation of accelerator
finishes. The accelerator performance gain in comparison to

the CPU determines how many elements the CPU can recom-
pute and still keep up with the accelerator. If the CPU is not
fully utilized during recovery, it implies that it can fix more
iterations so the tuning threshold is increased for the next in-
vocation. If accelerator finishes the current invocation and the
CPU still has iterations to re-execute, the tuning threshold for
the next invocation is increased. This results in lesser number
of re-executions for the next invocation.

3.5. Error Detector Placement

An important design choice for input-based methods is the
relative invocation of the error predictor with respect to the
accelerator. An input-based detector can be placed in one of
the ways shown in Figure 9. Figure 9(a) (Configuration 1)
shows the error detector placement before sending the inputs
to the accelerator and Figure 9(b) (Configuration 2) shows the
error detector placement if the error detector and accelerator
simultaneously start working on inputs. These configurations
provide different trade-offs in the design space. Configura-
tion 1 saves the unnecessary accelerator invocations, hence
saves energy, for the cases when error detector detects an er-
ror. However, since error prediction precedes the accelerator
invocation, it delays accelerator computation, hence, has per-
formance overhead. Energy is wasted in Configuration 2 for
accelerator invocations that have errors greater than the thresh-
old. However, error detector in this configuration does not add
any delay in the invocation of the accelerator, hence, does not
add to performance overhead. In our experiments, to minimize
the impact on performance overhead, we use Configuration 2.
Error detector placement for output-based methods is straight
forward and should be invoked after accelerator invocation.

!"

#!"

$!"

%!"

!" &!" #!!"

!"

'"

("

#$"

#)"

!" &!" #!!"

(a)  blackscholes (b) fft (c) inversek2j (e) jmeint

(f) jpeg (g) kmeans (h) sobel

Percentage of fixed elements

O
u
tp

u
t

E
rr

o
r

!"

#!"

$!"

%!"

'!"

!" &!" #!!"

!"

#!"

$!"

%!"

!" &!" #!!"

!"

'"

("

#$"

#)"

!" &!" #!!"

!"

&"

#!"

#&"

$!"

!" &!" #!!"

!"

#!"

$!"

%!"

!" &!" #!!"

*+,-." /-0+12" 3045162" 789" .40,-676616:" ;6,,76616:"

Figure 10: Output error with respect to the number of output elements fixed.

Parameter Value Parameter Value
Fetch/Issue width 4/6 Load/Store Queue Entries 48/48
INT ALUs/FPUs 2/2 L1 iCache 32KB
Load/Store FUs 1/1 L1 dCache 32KB
Issue Queue Entries 32 L1/L2 Hit Latency 3/12 cycles
ROB Entries 96 L1/L2 Associativity 8
INT/FP Physical Registers 256/256 ITLB/DTLB Entries 128/256
BTB Entries 2048 L2 Size 2 MB
RAS Entries 16 Branch Predictor Tournament

Table 2: Microarchitecutral parameters of an X86-64 cpu used in experiments.

4. Experimental Setup

We evaluate Rumba with a Neural Processing Unit (NPU) style
accelerator [16]. Although we evaluate Rumba using a NPU-
style accelerator, the design of Rumba is not specific to an
accelerator as the core principles can be applied to a variety of
approximation accelerators [41, 4]. We use the same hardware
parameters as used by the NPU work for modeling the core
and the accelerator. The remainder of this section describes the
benchmarks, accelerator outputs and energy modeling setup
used to evaluate the effectiveness of Rumba.

Benchmarks: We evaluate a set of benchmarks from vari-
ous domains that map to approximate accelerators. The bench-
marks represent a mix of computations from different domains
and illustrate the effectiveness of Rumba across a variety of
computation patterns. We use the same set of benchmarks as
used in the NN accelerators [16, 4]. A brief description of
these benchmarks along with their domain, train and test data
is given in Table 1. Rumba NN (Neural Network) topology
column in the table shows the NN topology used by Rumba.

For example, 6->4->4->1 for kmeans implies that the NN has
6 inputs, two hidden layers of 4 neurons each and 1 output.
The final column in this table shows the NN topology used
by the unchecked NPU. In all cases, Rumba’s error detection
capabilities make it possible to chose a smaller or equal, there-
fore efficient, NN. The output quality of applications is usually
measured by an application specific error metric [32, 31, 16].
This application specific error metric is given in the evaluation
metric column in Table 1. We target a 90% output quality. This
is in commensurate with the previous works in approximate
computing [16, 6, 34].

Accelerator Output: We obtain the accelerator output (ap-
proximate output) by implementing NN using pyBrain [37]
library. We find the best NN configuration by searching the
NN topology space. The best configuration for our case is the
smallest NN that does not produces excessive errors. The NN
topology space is large thus the NN we consider have at most
2 layers and the number of neurons are restricted to at most
32 neurons in each layer (same restriction as in NPU [16]).

Energy Modeling: We run each application using the
GEM5 [7] simulator to calculate the different microarchitec-
tural activities. These activities are fed to McPAT [38], which
calculates the baseline energy for the entire application. We
use an X86-64 model for the cpu core and the microarchitec-
tural parameters are given in Table 2. The accelerator design
is an 8-Processing Elements (PEs) NPU and uses the same
parameters for various structures of the PEs as given in the
NPU paper [16]. We model the energy of the multiply-and-add
for the linear error model and comparator in the same way as
in the NPU paper. We calculate the energy for the light-weight
checkers separately. The energy of these checkers and the en-
ergy of re-computation of elements on the CPU are combined
to calculate the total energy for a particular scheme.

5. Evaluation
We evaluate Rumba for output quality, energy savings, false
positives and the coverage of large errors. We also analyze the
energy savings of Rumba for different target output qualities.

5.1. Output Quality

Output Error: Output errors are measured using the applica-
tion specific metric given in Table 1 on the whole application
output. Figure 10 shows the output error with respect to the
number of output elements fixed for different techniques under
consideration. Output error is directly related to the output
quality. Output error of 5% represents 95% output quality.
The y-axis of each plot in this figure shows the output error,
while the x-axis shows the number of elements that need to be
fixed to achieve that particular output error. Random fixes a
given percentage of randomly selected output elements. For
example, for fixing 10% of the elements Random selects 10%
of output elements randomly and then recomputes them. Simi-
larly, Uniform shows the output error when a given percentage
of output elements to be fixed are chosen uniformly among
all output elements. Ideal has the oracle knowledge about the
approximation errors in all the output elements and it uses
this oracle knowledge to fix a given percentage of the output
elements. The data for Ideal is generated by sorting approxi-
mation errors in output elements by the error magnitude and
then fixing the highest error elements. For example, to obtain
output error when 10% of the elements are fixed for the Ideal
scheme, the top 10% approximation error elements are fixed.
Finally, EMA, linearErrors and treeErrors represent the output
error when the errors are calculated by using the prediction
models described in Section 3.2.

The techniques that are closest to the Ideal line in these plots
represent the best possible achievable results. For a point on
the x-axis, if the corresponding y value for a technique is close
to y value of Ideal at the same x point, the technique is closer
to the ideal case. For inversek2j, if 30% elements are fixed,
Ideal, Random, Uniform, EMA, linearErrors and treeErrors
will have 2.1%, 9.7%, 9.6%, 5.9%, 2.6 and 2.7% output errors,
respectively. Hence, linearErrors and treeErrors are better

!"

#"

$!"

$#"

%!"

%#"

&!"

&#"

'!"

()*+,-+./)0-" 1" 23405-0,%6" 670238" 690:" ,70*3-" -/(0)" :0/70*3"

!
"
#$
"
%
&'
(
"
)*
+)
+'
,-
"
).
*
-/
0
1
"
-)

;*3</7" =32>/57" ?@A")230*5?55/5-" 8500?55/5-"

Figure 11: False positives at 90% target output quality. Ideal
have zero false positives. A low number of false positives for
linearErrors and treeErrors indicate their effectiveness in de-
tecting large approximation errors.

techniques than Random, Uniform and EMA but worse than
Ideal.

These plots also show that for some benchmarks (e.g.,
kmeans) linearErrors performs better and for others (e.g.,
blackscholes) treeErrors performs better. Overall, error predic-
tion accuracy of a particular scheme is benchmark dependent.

False Positives: A false positive is a large error detected
by a particular scheme that was not actually a large error.
An error prediction scheme will have a false positive if the
predicted error is high but the actual error is not. It is important
to have low numbers of false positives for a technique for it
to be practical. A high number would imply that the CPU
would need to fix a large number of elements thus partially
offsetting the gains of approximation. Figure 11 shows the
number of false positives for 90% target output quality, i.e.,
10% output error in output elements. For example, the first bar
from the left for the blackscholes benchmark represents 32%
false positives for Random if we target 90% output quality.
Random and Uniform have a large percentage of false positives
since these techniques randomly and uniformly, respectively,
pick approximate output elements to fix and do not have any
detection method. Ideal does not have any false positives
since it has oracle knowledge of the errors in output elements.
On average, Ideal, Random, Uniform, EMA, linearErrors and
treeErrors have 0%, 14.8%, 14.5%, 13.3%, 2.1% and .76%
false positives for 90% target output quality. linearErrors and
treeErrors show a very low percentage of false positives and
thus are effective at detecting large approximation errors.

Fixed Elements: Figure 12 shows the number of elements
that are need to be fixed (recomputed) to achieve 90% output
quality. A lower number of fixes implies that the energy
overhead of re-execution on the CPU will be lower. Hence,
a technique that fixes lower number of elements to achieve
the same quality is better. For example, on average, Random
requires 41% (29% more than Ideal) of the output elements
to be fixed to achieve 10% output error. In comparison to
Ideal, linearErrors and treeErrors just require 9% and 6%
extra elements to be fixed to achieve the same output quality,
respectively.

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

+,-./0.12,30" 4" 5673803/$9" 9:356;" 9<3=" /:3-60" 02+3," =32:3-6"

!
"
#$
"
%
&'
(
"
)*
+)
&*
&'
,)
"
,"
-
"
%
&.
)

>?3-," @-6?2:" A65B28:" CDE" ,563-8C88280" ;833C88280"

Figure 12: The number of elements that are required to be re-
executed for a 90% target output quality.

!"

#!"

$!"

%!"

&!"

'!!"

()*+,-+./)0-" 1" 23405-0,#6" 670238" 690:" ,70*3-" -/(0)" :0/70*3"

;
0
)*
<
4
0
"+
/
4
0
5*
:
0
"/
="
)*
5:
0
"0
55
/
5-
"

;*3>/7" ?32=/57" @AB")230*5@55/5-" 8500@55/5-"

Figure 13: Relative coverage of large errors at 90% target out-
put quality. Ideal has 100% coverage.

Large Error Coverage: Relative coverage is defined as
the normalized ratio of detected large errors (larger than 20%)
and the total number of fixes required. This ratio is normal-
ized with respect to Ideal. This shows how good a prediction
scheme is with respect to Ideal. Figure 13 shows the relative
coverage of large errors for 90% target output quality. For
example, the first bar from the left for blackscholes benchmark
represents that relative coverage of Random is 29.2%. The
relative coverage of scheme is high if it fixes a less number
of elements to cover more large error elements for a given
target output quality. On average, linearErrors and treeEr-
rors are able to achieve 57.6% and 67.2% relative coverage,
respectively.

5.2. Energy Consumption and Speedup

Figure 14 shows the energy consumed by various techniques in
comparison to the CPU baseline for a target output quality of
90%. This figure shows the whole application energy savings.
First column (labeled NPU) for each benchmark represents the
energy savings of the unchecked NPU, i.e., no error checking
mechanism is employed. NPU [16] reduces, on average, the
CPU energy consumption by 3.2x. Note that since NPU does
not have any fixing mechanism for large errors and so the
output application quality is not always 90%. Without fixing
any errors, output error, on average, is 20.6%. The other bars
from left to right for each benchmark show energy consumed
by Ideal, Random, Uniform, EMA, linearErrors and treeErrors
schemes, respectively. The energy consumption shown for

!"

#"

$"

%"

&"

'"

()*+,-+./)0-" 1" 23405-0,$6" 670238" 690:" ,70*3-" -/(0)" :0/70*3"

!
"
"
#$
%&
'
(
)
*+
)
,
-.
/
*0
,
1
2
%'
(
)
*

;<=" >?0*)" @*3?/7" =32A/57" BCD")230*5B55/5-" 8500B55/5-"

$
&
E%
"

#
$
E&
"

#
#
EF
"

#
$
E%
"

Figure 14: Energy consumption of Rumba, including the cost
of re-computation and the energy used for the prediction of
large approximation errors. treeErrors saves 2.2x energy while
the unchecked NPU saves 3.2x energy.

!"

#"

$"

%"

&"

'"

("

)*+,-.,/0*1." 2" 34516.1-$7" 781349" 7:1;" -81+4." .0)1*" ;1081+4"

!
"
"
#$
%&
'
(
)
*+
"
,
,
-
.
"
*

<=>" ?@1+*" A+4@08" >43B068" CDE" *341+6C6606." 9611C6606."

Figure 15: Speedup of each technique with respect to the CPU
baseline. Rumba (linearErrors or treeErrors) maintains the
same speedup (2.2x) as the NPU.

each of the schemes in this figure includes energy required
to recompute the elements on the CPU and also the energy
required for the checkers in the accelerator. As also observed
in the NPU work [16], kmeans has very little energy gains and
achieves slowdown because the code region that gets mapped
to the NPU is very small and can be efficiently executed on the
CPU itself. Energy savings of sobel decrease significantly for
linearErrors and treeErrors schemes because this particular
benchmark requires relatively large number of re-executions
due to the lower prediction accuracy of errors.

Figure 15 shows the speedup all the schemes described
earlier. Each scheme also factors in performance loss due
to re-execution on the CPU if the CPU cannot keep up with
the accelerator. Since Rumba (linearErrors or treeErrors)
overlaps recovery on CPU with the accelerator execution, it
is able to maintain the same speedup (2.1x) as the NPU. Our
energy savings and speedup for the NPU baseline are close to
the ones given in the NPU paper [16] but do not exactly match
as we use different neural network libraries and simulation
infrastructure.

Time for prediction: Figure 17 shows the time taken by
the two error predictor model normalized with respect to the
NPU. For all the benchmarks, linearErrors and treeErrors re-
quire less time than the NPU. Therefore, the predicted error is

���

���

���

���

���

� � � � ��

�
�
�
��
�
��
�
�
	

�
�
�
��
��
��
�
�
��
�
��
��
�
�

�����������

�	
��

�

���
��

���	����������

���

Figure 16: Energy consumption vs target error rate for fft.

!"

!#$"

!#%"

!#&"

!#'"

("

)*+,-.,/0*1." 2" 34516.1-$7" 781349" 7:1;" -81+4." .0)1*" ;1081+4"

!
"
#
$
%
&'
()
*
+#
,
-
.
$
)
+

<=>" *341+6?6606." 9611?6606."

Figure 17: Time used by error prediction models in compar-
ison to the NPU. This is normalized with respect to the NPU.
Error prediction model are faster in all the cases, hence, the
accelerator never needs to wait for the error prediction model
to finish execution.

always available before NPU finishes and the NPU never needs
to wait for the error predictor to finish, i.e., error prediction
does not slow down the NPU.

Rumba reduces approximation errors overall by 2.1x (20.6%
to 10%). Rumba achieves this error reduction while maintain-
ing the same performance improvement as the NPU accel-
erator but reduces the energy savings from 3.2x to 2.2x in
comparison to the unchecked NPU.

5.3. Case Studies

Energy vs. Output Quality: Figure 16 shows the energy
consumption of different schemes with varying requirements
on output quality for the fft benchmark. Energy savings for the
unchecked NPU for fft is 3.3x. As expected, Ideal achieves the
best energy savings among all techniques. treeErrors achieves
energy savings close to the Ideal scheme for higher target
error rates (> 7%). Note that the gap between treeErrors and
Ideal increases as the demands on output quality increases (
greater than 97%). This is because Ideal knows exactly which
elements to fix to achieve certain target output quality while
treeErrors (or linearErrors) must predict such cases. This
causes the false positives for treeErrors (or linearErrors) to
start increasing, requiring more re-computation and more en-
ergy consumption. Thus, the gap between Ideal and treeErrors
(or linearErrors) is larger at high demands on output quality.

CPU Activity: In this second case study, we show an ex-
ample of the CPU activity in conjunction with the accelerator.
The top half of Figure 18 shows the percentage difference

0

0.5

1

P
er

ce
n
ta

g
e

D
if

fe
re

n
ce

0.33

�������

���	
���

0

1

0 50 100 150 200

C
P

U
 A

ct
iv

it
y

Output Elements

Figure 18: The approximation accelerator and the CPU work in
tandem. The CPU works on re-computing detected large error
iterations while the accelerator continues with the execution.
In this case, 0.33 is the tuning threshold used to achieve 10%
target error rate.

of each output element (on y-axis) with treeErrors for 200
elements (on x-axis). To achieve 10% target output error, a
tuning threshold of 0.33 is required on this percentage differ-
ence (y-axis). The bottom half of the figure shows the CPU
activity. The accelerator and the CPU work in tandem, i.e., the
CPU fixes the detected large approximation errors while the
accelerator executes other iterations. Only 30 elements out of
these 200 (15%) are above this threshold and thus the CPU
can keep up with an approximate accelerator as fast as 6.67x.

6. Related Work

Approximate computing, where the accuracy is traded off
for better performance or higher energy efficiency, is a well-
known technique. Approximate computing techniques can
be broadly classified into two categories: Software-based and
hardware-based approaches. Software-based approaches are
usually algorithmic modifications and can be utilized with-
out any hardware modifications. Loop perforation [1] is one
of the well-known software approximation techniques which
skips the iterations of loops randomly or uniformly. Rinard
et al. [30] use early phase termination technique to terminate
parallel phase as soon as there are too few remaining tasks to
keep the processor busy to prevent the processors from being
idle and wasting energy. Sartori et al. [36] introduce a software
approximation technique which targets control divergence on
GPUs. Paraprox [31] is a software framework which detects
patterns in data parallel applications and applies different ap-
proximation techniques such as loop perforation, approximate
memoization, and tile approximation based on the detected
patterns. All these software approximation techniques need
a quality management system to monitor the output quality
and control the aggressiveness of the approximation during
execution.

Different hardware approximation techniques have also
been proposed to save energy while improving performance.
EnerJ [34] proposed hardware techniques such as voltage scal-
ing, width reduction in floating point operations, reducing

DRAM refresh rate, and reducing SRAM supply voltage to
reduce energy consumption. Esmaeilzadeh et al. [15] demon-
strated dual-voltage operation, with a high voltage for pre-
cise operations and a low voltage for approximate operations.
The low-voltage pipeline introduces faults in the operations
and hence these operation are approximate. We compare
against the hardware neural network [16] proposed by the
same authors extensively in our results section. Du et al. [14]
also use hardware neural networks to trade off accuracy for
energy savings. Amant et al. [4] design limited precision
analog hardware to accelerate approximable code sections.
Other works [39, 41] design different approximate accelera-
tors. Sampson et al. [35] improve memory array lifetime using
approximation. Flikker [22] is an application-level technique
that reduces the refresh rate of DRAM memories which store
non-critical data. The Rumba quality management system can
be added to these hardware-based approximation techniques
to control and improve their output quality.

There exist a few quality management solutions to con-
trol quality in an approximate computing system. Ansel et
al. [5] use a genetic algorithm to find the best approximate
code that provides the acceptable quality. In this work, the
programmer writes runtime low overhead checking functions
to verify output quality online. However, Rumba can auto-
matically manage the output quality without programmer’s
help. CCG [33] is another quality monitoring technique. In
this technique, while GPU runs the approximate version, the
CPU is responsible to check the quality of a subset of data for
the next invocation. To reduce the performance overhead of
monitoring, size of the subset that is processed by the CPU is
small and thus, CCG’s accuracy to predict the output quality
is limited. Unlike CCG, Rumba has light-weight checkers and
therefore, it can investigate larger subset of the data compared
to CCG.

Green [6] is a framework that developers can use to take
advantages of approximation opportunities to achieve better
performance or reduce energy consumption. Green builds a
quality of service model based on the profiling data that gets
used at runtime. In order to make sure that output quality is ac-
ceptable, Green checks the output quality once in every N invo-
cations. SAGE [32] is an approximation framework for GPUs
that automatically generates approximate versions of the input
program using skipping atomic expressions, compressing data,
and tile approximation. SAGE also uses a similar quality sam-
pling strategy as Green to check the output quality frequently.
However, in contrast to these techniques, because of its light-
weight checkers, Rumba checks all invocations to reduce large
errors and to make sure that the output quality is acceptable
for all invocations. Some other techniques [9, 10, 29, 27, 24]
statically analyze applications assuming an input distribution
to reason about the output quality under approximation. Such
techniques do not need sampling but can only handle limited
computational patterns and approximation methods.

PowerDial [18] is a framework that dynamically monitors

the application’s performance during runtime. When the per-
formance drops below target performance, PowerDial will
increase the aggressiveness of the approximation to match the
performance requirements. Their goal is to maximize accu-
racy while maintaining application’s performance. Several
probabilistic reasoning models [25, 10, 8, 26, 11] are also in-
troduced to compute the probability of the output being wrong.
In contrast, Rumba dynamically monitors the output quality
during runtime and recovers from the large errors generated
by an approximation technique.

Hardware reliability for soft computations and approximate
computing share the same basic underlying philosophy. Hard-
ware reliability solutions [19, 40, 21] for soft computations
aim to allow errors in error tolerant parts of an application
with the goal of lowering the cost of reliability. The idea of re-
execution has previously been used in the context of reliability
to recover against hardware faults [13, 17]. We leverage this
idea in the context of recovering against approximation errors
and it fits well with the nature of the code regions (pure) that
are mapped to approximate accelerators.

7. Conclusions
Approximate computing can be employed for an emerging
class of applications from various domains such as multime-
dia, machine learning and computer vision. Approximate
computing trades off accuracy for better performance and/or
energy efficiency. However, the quality control of approxi-
mated outputs has largely gone unaddressed. In this work, we
propose Rumba for online detection and correction of large
errors in an approximate computing environment.

Rumba predicts large approximation errors by light-weight
checkers and corrects them by recomputing individual ele-
ments. Our results demonstrate that Rumba is effective at
predicting large errors and follows an ideal case very closely.
Across a variety of benchmarks from different domains, we
show that Rumba reduces the output error by 2.1x in com-
parison to an accelerator for approximate programs while
maintaining the same performance improvement. To achieve
this, the Rumba framework reduces the energy savings, on
average, from 3.2x to 2.2x in comparison to an unchecked
accelerator.

Acknowledgments
This research is supported by the National Science Foundation
XPS grant CCF-1438996 and by C-FAR, one of six centers
of STARnet, a Semiconductor Research Corporation program
sponsored by MARCO and DARPA. We would like to thank
Gaurav Chadha for suggesting the name Rumba and the fellow
members of the CCCP research group for numerous productive
discussions. We would also like to thank the anonymous
reviewers for their constructive comments and suggestions for
improving this work.

References
[1] A. Agarwal, M. Rinard, S. Sidiroglou et al., “Using code perforation

to improve performance, reduce energy consumption, and respond
to failures,” MIT, Tech. Rep. MIT-CSAIL-TR-2009-042, Mar. 2009.
[Online]. Available: http://hdl.handle.net/1721.1/46709

[2] C. Alvarez, J. Corbal, and M. Valero, “Fuzzy memoization for floating-
point multimedia applications,” IEEE Transactions on Computers,
vol. 54, no. 7, pp. 922–927, 2005.

[3] C. Alvarez, J. Corbal, and M. Valero, “Dynamic tolerance region
computing for multimedia,” IEEE Transactions on Computers, vol. 61,
no. 5, pp. 650–665, 2012.

[4] R. S. Amant, A. Yazdanbakhsh, J. Park et al., “General-purpose code
acceleration with limited-precision analog computation,” in Proc. of
the 41st Annual International Symposium on Computer Architecture,
2014, p. To Appear.

[5] J. Ansel, Y. L. Wong, C. Chan et al., “Language and compiler support
for auto-tuning variable-accuracy algorithms,” in Proc. of the 2011
International Symposium on Code Generation and Optimization, 2011,
pp. 85 –96.

[6] W. Baek and T. M. Chilimbi, “Green: a framework for supporting
energy-conscious programming using controlled approximation,” in
Proc. of the ’10 Conference on Programming Language Design and
Implementation, 2010, pp. 198–209.

[7] N. Binkert et al., “The gem5 simulator,” ACM SIGARCH Computer
Architecture News, vol. 39, no. 2, pp. 1–7, Aug. 2011.

[8] J. Bornholt, T. Mytkowicz, and K. S. McKinley, “Uncertain<T>: A
first-order type for uncertain data,” in 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2014, pp. 51–66.

[9] M. Carbin, D. Kim, S. Misailovic, and M. C. Rinard, “Proving accept-
ability properties of relaxed nondeterministic approximate programs,”
in Proc. of the ’12 Conference on Programming Language Design and
Implementation, 2012, pp. 169–180.

[10] M. Carbin, S. Misailovic, and M. C. Rinard, “Verifying quantitative
reliability for programs that execute on unreliable hardware,” in Proc. of
the 2013 ACM SIGPLAN international conference on Object-Oriented
Systems and applications, 2013, pp. 33–52.

[11] S. Chaudhuri, S. Gulwani, R. L. Roberto, and S. Navidpour, “Proving
programs robust,” in Proc. of the 19th ACM SIGSOFT symposium and
the 13th European conference on Foundations of software engineering,
2011, pp. 102–112.

[12] S. Che, M. Boyer, J. Meng et al., “Rodinia: A benchmark suite for het-
erogeneous computing,” in Proc. of the IEEE Symposium on Workload
Characterization, 2009, pp. 44–54.

[13] M. de Kruijf, S. Nomura, and K. Sankaralingam, “Relax: An architec-
tural framework for software recovery of hardware faults,” in Proc. of
the 37th Annual International Symposium on Computer Architecture,
Jun. 2010, pp. 497–508.

[14] Z. Du, A. Lingamneni, Y. Chen et al., “Leveraging the error resilience
of machine-learning applications for designing highly energy efficient
accelerators,” in Proc. of the 19th Asia and South Pacific Design Au-
tomation Conference, 2014, pp. 201–206.

[15] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Architec-
ture support for disciplined approximate programming,” in 17th In-
ternational Conference on Architectural Support for Programming
Languages and Operating Systems, 2012, pp. 301–312.

[16] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger, “Neural ac-
celeration for general-purpose approximate programs,” in Proc. of the
45th Annual International Symposium on Microarchitecture, 2012, pp.
449–460.

[17] S. Feng, S. Gupta, A. Ansari et al., “Encore: low-cost, fine-grained
transient fault recovery,” in 2011 44th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2011, pp. 398–409.

[18] H. Hoffmann, S. Sidiroglou, M. Carbin et al., “Dynamic knobs for
responsive power-aware computing,” in 16th International Conference
on Architectural Support for Programming Languages and Operating
Systems, 2011, pp. 199–212.

[19] D. S. Khudia and S. Mahlke, “Harnessing soft computations for low-
budget fault tolerance,” in 2014 47th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO). IEEE, 2014, pp. 319–330.

[20] M. Kruijf, K. Sankaralingam, and S. Jha, “Static analysis and com-
piler implementation of idempotent processing,” in Conference on
Programming Language Design and Implementation, Beijing, China,
2012.

[21] X. Li and D. Yeung, “Exploiting soft computing for increased fault
tolerance,” in Workshop on Architectural Support for Gigascale Inte-
gration, 2006.

[22] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn, “Flikker:
Saving dram refresh-power through critical data partitioning,” in 16th
International Conference on Architectural Support for Programming
Languages and Operating Systems, 2011, pp. 213–224.

[23] Mazaika, “Software solutions for photographic mosaics,”
http://www.mazaika.com.

[24] S. Misailovic, D. Kim, and M. Rinard, “Parallelizing sequential pro-
grams with statistical accuracy tests,” ACM Transactions on Embedded
Computing Systems, vol. 12, no. 2s, pp. 88:1–88:26, May 2013.

[25] S. Misailovic, D. M. Roy, and M. C. Rinard, “Probabilistically ac-
curate program transformations,” in Proc. of the 18th Static Analysis
Symposium, 2011, pp. 316–333.

[26] M. Rinard, “Probabilistic accuracy bounds for fault-tolerant computa-
tions that discard tasks,” in Proc. of the 2006 International Conference
on Supercomputing, 2006, pp. 324–334.

[27] M. Rinard, “Probabilistic accuracy bounds for perforated programs: A
new foundation for program analysis and transformation,” in 20th ACM
SIGPLAN Workshop on Partial Evaluation and Program Manipulation,
2011, pp. 79–80.

[28] M. Rinard, “Parallel synchronization-free approximate data structure
construction,” in Proc. of the 5th USENIX Workshop on Hot Topics in
Parallelism, 2012, pp. 1–8.

[29] M. Rinard, H. Hoffmann, S. Misailovic, and S. Sidiroglou, “Patterns
and statistical analysis for understanding reduced resource comput-
ing,” in Proc. of the 2010 ACM SIGPLAN international conference on
Object-Oriented Systems and applications, 2010, pp. 806–821.

[30] M. C. Rinard, “Using early phase termination to eliminate load im-
balances at barrier synchronization points,” in Proc. of the 22nd ACM
SIGPLAN international conference on Object-Oriented Systems and
applications, 2007, pp. 369–386.

[31] M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke, “Paraprox: Pattern-
based approximation for data parallel applications,” in 19th Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, 2014, pp. 35–50.

[32] M. Samadi, J. Lee, D. A. Jamshidi et al., “SAGE: Self-tuning approxi-
mation for graphics engines,” in Proc. of the 46th Annual International
Symposium on Microarchitecture, 2013, pp. 13–24.

[33] M. Samadi and S. Mahlke, “CPU-GPU collaboration for output quality
monitoring,” in 1st Workshop on Approximate Computing Across the
System Stack, 2014, pp. 1–3.

[34] A. Sampson, W. Dietl, E. Fortuna et al., “EnerJ: approximate data
types for safe and general low-power computation,” Proc. of the ’11
Conference on Programming Language Design and Implementation,
vol. 46, no. 6, pp. 164–174, Jun. 2011.

[35] A. Sampson, J. Nelson, K. Strauss, and L. Ceze, “Approximate storage
in solid-state memories,” in 2013 46th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), 2013, pp. 25–36.

[36] J. Sartori and R. Kumar, “Branch and data herding: Reducing control
and memory divergence for error-tolerant GPU applications.” in IEEE
Transactions on on Multimedia, 2012, pp. 427–428.

[37] T. Schaul, J. Bayer, D. Wierstra et al., “Pybrain,” The Journal of
Machine Learning Research, vol. 11, pp. 743–746, 2010.

[38] L. Sheng, H. A. Jung, R. Strong et al., “Mcpat: An integrated power,
area, and timing modeling framework for multicore and manycore
architectures,” in Proc. of the 42nd Annual International Symposium
on Microarchitecture, 2009, pp. 469–480.

[39] O. Temam, “A defect-tolerant accelerator for emerging high-
performance applications,” in Proc. of the 39th Annual International
Symposium on Computer Architecture, 2012, pp. 356–367.

[40] A. Thomas and K. Pattabiraman, “Error detector placement for soft
computation,” in International Conference on Dependable Systems and
Networks. IEEE, 2013.

[41] S. Venkataramani, V. K. Chippa, S. T. Chakradhar et al., “Quality
programmable vector processors for approximate computing,” in Proc.
of the 46th Annual International Symposium on Microarchitecture,
2013, pp. 1–12.

