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h COMPUTATION ACCURACY CAN be traded off to

achieve better performance and/or energy effi-

ciency. The techniques to achieve this tradeoff fall

under the umbrella of approximate computing.

Algorithm-specific approximation has been used in

many different domains such as machine learning,

image processing, and video processing. For exam-

ple, a consumer can tolerate occasional dropped

frames or a small loss in resolution during video

playback, especially when this allows video play-

back to occur seamlessly.

However, algorithm-specific approximation in-

creases the programming effort because the program-

mer needs to write and reason about the approximate

version in addition to the exact version. Recently,

to solve this issue, different software and hardware

approximation techniques have been proposed.

Software techniques include

loop perforation [1], ap-

proximate memoization [9],

and discarding high over-

head computations [10].

Hardware-based approxima-

tion techniques employ

neural processing modules

[3], [6], analog circuits [3],

low-power arithmetic logic

units (ALUs) and storage

[11], and hardware-based fuzzy memoization [2].

Approximation accelerators [5], [6], [12] utilize

these techniques to trade off accuracy for better per-

formance and/or higher energy savings. In order to

efficiently utilize these accelerators, a programmer

needs to annotate code sections that are amenable

to approximation. At runtime, the central processing

unit (CPU) executes the exact code sections and the

accelerator executes the approximate parts.

These techniques provide significant perfor-

mance/energy gains but monitoring and managing

the output quality of these hardware accelerators

is still a big challenge. A few of the recently pro-

posed quality management solutions include qual-

ity sampling techniques that compute the output

quality once in every N invocations [4], [10], tech-

niques that build an offline quality model based

on the profiling data [4], [6].

However, these techniques have four critical

limitations.

· As the output quality is dependent on the input

values, therefore, sampling techniques are not

capable of capturing all changes of the output
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quality. Moreover, it is highly possible to miss

large output errors because only a subset of out-

puts are actually examined, i.e., monitoring is

not continuous.

· Using these quality management techniques, if

the output quality drops below an acceptable

threshold, there is no way to improve the qual-

ity other than reexecuting the whole program

on the exact hardware. However, this recovery

process has high overhead and it offsets the

gains of approximation.

· Previous works [3], [6] in approximate comput-

ing show that most of the output elements have

small errors and there exist a few output ele-

ments that have considerably large errors, even

though the average error is low. These large er-

rors can degrade the whole user experience.

· Tuning output quality based on a user_s prefer-

ences is another challenge for the hardware-

based approximation techniques. Different

users and different programs might have differ-

ent output quality requirements. However, it is

difficult to change the output quality of an ap-

proximate hardware dynamically.

To address these issues, we propose a framework

called Rumba,1 an online quality management sys-

tem for approximate computing. Rumba_s goal is to

dynamically investigate an application_s output to

detect elements that have large errors and fix these

elements with a low-overhead recovery technique.

Rumba performs continuous lightweight output

monitoring to ensure more consistent output quality.

Rumba has two main components: detection

and recovery. The goal of the detection module is to

efficiently predict output elements that have large

approximation errors. Detection is achieved by sup-

plementing the approximate accelerator with a low-

overhead error prediction hardware. The detection

module dynamically investigates predicted error to

find elements that need to be corrected. It gathers

this information and sends it to the recovery module

on the CPU. In order to improve the output quality,

recovery module reexecutes the iterations that gen-

erate high error output elements.

To reduce Rumba_s overhead, recovery is done

on the CPU in parallel to detection on the

approximate accelerator. The recovery module

controls the tuning threshold to manage output

quality, energy efficiency, and performance gain.

The tuning threshold determines the number of it-

erations that need to be reexecuted.

The major contributions of this work are as

follows.

· We explore three lightweight error prediction

methods to predict the errors generated by an

approximate computing system.

· We discuss the ability to manage performance

and accuracy tradeoffs for each application at

runtime using a dynamic tuning parameter.

· We leverage the idea of reexecution to fix ele-

ments with large errors.

· We discuss 2:1� reduction in output error with

respect to an unchecked approximate accelera-

tor with the same performance gain. Detection

and reexecution decrease the energy savings of

the unchecked approximate accelerator from

3:2� to 2:2�.

Challenges
The ability of applications to produce results of

acceptable output quality in an approximate com-

puting environment is necessary to ensure a posi-

tive user experience but quality control faces the

following challenges.

Challenges of managing output quality
Challenge I: Fixing output elements with large
errors is critical for user experience. We ana-

lyze the distribution of errors in the output elements

generated by an application under approximation.

Previous studies [6], [9], [10] reported that the

cumulative distribution function (cdf) of the errors

of an approximated application_s output follows the

curve shown in Figure 1a. Figure 1a shows a typical

cdf of errors in output elements when total average

error is less than 10%. This figure shows that the

most of the output elements (about 80%) have

small errors (lower than 10%). However, there are

few output elements (about 20%) that have signifi-

cant errors.

Although the number of elements with large er-

rors is relatively small, they can have huge impact

on the user perception of output quality. Figure 2

demonstrates this. In this figure, we generate two

1The name Rumba is inspired from Roomba, an autonomous robotic vacuum

cleaner. It moves around the floor and detects dirty spots on the floor to clean

them.
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images by adding errors such that the overall aver-

age error is 10% in both images. Figure 2 is the

original image. In Figure 2, only 10% of pixels have

100% errors while the rest of pixels are exact. On

the other hand, all pixels in Figure 2 have about

10% error. Even though the overall output error is

the same for both generated images, errors in

Figure 2 are more noticeable than Figure 2 to the

end user. This shows that to effectively improve the

output quality, a quality management system

should reduce the long tail of high errors.

Challenge II: Output quality is input dependent.
Another characteristic of approximate techniques is

that output quality is highly dependent on the input

[4], [6], [9], [10]. In this case, these techniques

must consider the worst case to make sure that the

output quality is acceptable. To show this, we experi-

mented with an image processing application called

Bmosaic[ that generates a large image using many

small images under a well-known approximation

technique called loop perforation. Loop perforation

drops iterations of the loop randomly or uniformly.

Under this experiment, average error for 800 im-

ages of flowers is about 5% but there are many im-

ages that have output error above the average, up to

a maximum of 23%. Therefore, an approximate sys-

tem in the worst case (23% error) may produce unac-

ceptable quality results. This shows that the output

quality is highly input dependent and previous qual-

ity managing systems such as quality sampling or pro-

filing techniques might miss invocations that have

low quality. In order to solve this problem, a dynamic

lightweight quality management system is required to

check the output quality for all invocations.

Challenge III: Monitoring and recovering
output quality is expensive. One of the chal-

lenges that all approximate techniques have is moni-

toring the output quality. In order to solve this

problem, continuous checks are necessary. Such

checks cannot compute the exact output, but in-

stead need to be predictive in nature. Different

frameworks [4], [10] suggest running an application

twice (exact and approximate versions) and compar-

ing the results to compute output quality as shown

in Figure 1b. Unfortunately, it has high overhead and

it is not feasible to monitor all invocations. Running

exact and approximate versions at all times will nul-

lify the advantages of using approximation.

Figure 2. (a) Exact output. In (b) and (c), there is the
same average error (90%). However, errors in (b) are
large errors, hence, more noticeable.

Figure 1. (a) Approximation techniques typically produce a small number of large errors
and a large number of small errors. (b) The common technique of sampling to detect
quality violations can miss bad quality results.
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To reduce this overhead, these frameworks uti-

lize quality sampling techniques that check the

quality once in every N invocations of the pro-

gram. Therefore, if the invocations that are not

checked have low output quality, these frameworks

will miss them due to the input dependence of

output quality (Challenge II).

Challenge IV: Different users and applications
have different requirements on output quality.
In an approximation system, the user should be

able to tune the output quality based on her prefer-

ences or program_s characteristics. Software-based

approximation techniques are better at tuning the

output quality. However, for hardware-based tech-

niques, it is a huge challenge. For example, in a

system with two versions of functional units, exact

and approximate, it is hard to control the final out-

put quality dynamically.

Design of Rumba
A high-level block diagram of the Rumba sys-

tem is shown in Figure 3. The offline part of the

Rumba system consists of two trainers. The first

trainer finds the optimal configuration of the ap-

proximate accelerator for a particular source code.

The second trainer trains a simple error prediction

technique based on the errors produced by the ac-

celerator trainer. The configuration parameters for

both the approximate accelerator and the error

predictor are embedded in the application binary.

The execution subsystem of Rumba is also

shown in the same figure. The core communicates

to the accelerator using input/output (I/O) queues

for data transfers from the core to the accelerator

and back from accelerator to the core. We augment

the approximate accelerator by an error checker

module to detect approximation errors. Once a

check fires, i.e., approximation for that particular

output element is larger than a tuning threshold (de-

termined by the online tuner based on user require-

ments), a recovery bit for the iteration generating

that particular element is set in the recovery queue,

as shown in Figure 3. The CPU collects these bits

from the recovery queue and reexecutes the itera-

tions that their recovery bit is set. Output merger

chooses the exact or approximate output as final re-

sult. Another important aspect of Rumba is the dy-

namic management of output quality and energy

efficiency. By controlling the threshold at which the

checker fires, Rumba can control the number of iter-

ations to be reexecuted.

To overcome the four challenges outlined in an

earlier section, Rumba exploits two observations

found in the kernels that are amenable to approxi-

mation: predictiveness of errors and recovery by

selective reexecution.

Lightweight error prediction
Rumba_s detection module is based on the obser-

vation that it is possible to predict the errors of an

approximate accelerator using a computationally

inexpensive prediction model. Rumba dynamically

employs lightweight checkers (predictors) to detect

approximation errors. A threshold on the predicted

errors is used to classify errors in the output elements

Figure 3. High-level block diagram of the Rumba system. The offline components determine the
suitability of an application for the Rumba acceleration environment. The online components
include detection and recovery modules. The approximation accelerator communicates a recovery
bit corresponding to the ID of the elements to recompute with the CPU via a recovery queue.
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as high. Therefore, Rumba targets output elements

with high errors as mentioned in Challenge I. Also,

since Rumba has lightweight checkers, the checks

can be performed online for all the elements of each

invocation (Challenge III). Complex but more accu-

rate checkers to detect large approximation will off-

set the gains of approximation and, thus, are not

desirable. We call a method an input-based method

if the method calculates errors using the inputs to

the accelerator. Similarly, if the errors are detected

by just observing the accelerator output, such a

method is called an output-based method. For input-

based methods, we consider linear and decision tree

models for error prediction, i.e., the error is pre-

dicted using one of these models. For output-based

methods, we use a moving-average-based method.

The difference between current element and the

moving average can be used to detect large errors in

a number in the sequence. We used exponential

moving average (EMA).

Low-overhead recovery
In computing, a pure function or code region

only reads its inputs and only affects its outputs, i.e.,

it does not affect any other state. In other words,

pure functions or code regions can be freely reexe-

cuted without any side effects. Similar characteristics

have been previously used in recovering program

from external errors simply by reexecuting [7]. Such

functions or code regions naturally occur in many

data-parallel computing patterns such as map and

stencil. We analyzed the data parallel parts of the ap-

plications in Rodinia benchmark suite and found

out that more than 70% of them can be reexecuted

without any side effects. It is not a new restriction

imposed by Rumba as previously proposed approxi-

mate accelerators [3], [6] require functions or code

regions to be pure to be able to map them to an ap-

proximate accelerator.

Therefore, if Rumba detects that one of the ac-

celerator invocations generates output elements

with large error, the Rumba recovery module can

simply reexecute that iteration to generate the ex-

act output elements. In this case, there is no need

to rerun the whole program to recover those out-

put elements (Challenge III). Also, using this tech-

nique, Rumba can manage the performance/

energy gains by changing the number of iterations

to be reexecuted to target Challenge IV. These two

techniques are described in detail in [8].

Experimental setup and results
We evaluate Rumba with a neural processing

unit (NPU)-style accelerator [6]. Although we eval-

uate Rumba using an NPU-style accelerator, the de-

sign of Rumba is not specific to an accelerator as

the core principles can be applied to a variety of

approximation accelerators [3], [12]. We use the

same hardware parameters as used by the NPU

work for modeling the core and the accelerator.

Benchmarks and NPU modeling
We evaluate a set of benchmarks (blackscholes,

fft, inversek2j, jmeint, jpeg, kmeans, and sobel)

from various domains. The benchmarks represent

a mix of computations from different domains and

illustrate the effectiveness of Rumba across a vari-

ety of computation patterns. The output quality of

applications is usually measured by an application-

specific error metric [6], [9], [10], and we use

metric such as mean relative error or the number

of mismatches depending on the benchmark. We

target a 90% output quality. This target quality is in

commensurate with the previous works in approxi-

mate computing [4], [6], [11].

Output quality
Output error. Figure 4 shows the average output

error across benchmarks with respect to the num-

ber of output elements recomputed for different

techniques under consideration. Output error is di-

rectly related to the output quality. Output error of

5% represents 95% output quality. The y-axis in this

Figure 4. Output error versus the number of
recomputed elements.
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figure shows the output error, while the x -axis

shows the number of elements that need to be re-

computed to achieve that particular output error.

Uniform shows the output error when a given per-

centage of output elements to be fixed are chosen

uniformly among all output elements. For example,

for recomputing 50% of the elements, Uniform se-

lects every other output element and then recom-

putes it. Ideal has the oracle knowledge about the

approximation errors in all the output elements,

and it uses this oracle knowledge to fix a given per-

centage of the output elements. The data for Ideal
is generated by sorting approximation errors in

output elements by the error magnitude and then

fixing the highest error elements. For example, to

obtain output error when 10% of the elements are

fixed for the Ideal scheme, the top 10% approxima-

tion error elements are fixed. Finally, EMA, Linear-
Errors, and TreeErrors represent the output error

when the errors are calculated by using the predic-

tion models described in Section III.

The techniques that are closest to the Ideal line
in this plot represent the best possible achievable

results. For a point on the x-axis, if the correspond-

ing y value for a technique is close to the y value

of Ideal at the same x point, the technique is closer

to the ideal case. Hence, LinearErrors and TreeEr-
rors are better techniques than Random, Uniform,

and EMA, but worse than Ideal. The best perform-

ing technique (TreeErrors) reduces the output er-

ror by 2:1� in comparison to an unchecked

approximate accelerator (21% to 10%).

Energy consumption and speedup. Rumba

(LinearErrors or TreeErrors) overlaps recovery on

CPU with the accelerator execution, and it is able

to maintain the same speedup ð2:1�Þ as the NPU.

However, to achieve 2:1� error reduction, the

Rumba framework (TreeErrors) reduces the energy

savings, on average, from 3:2� to 2:2� in compari-

son to an unchecked accelerator. Detailed energy

and speedup results are presented in [8].

Checker design space. Figure 5a shows energy

cost versus error for different NPU versus NN and

decision tree checker configurations for Black-
scholes benchmark. Each circle on this graph is a

combination of a particular configuration for the

NPU and a particular configuration of the NN

checker. For example, a point on this graph can

correspond to an NPU configuration of two hidden

layers of 32 neurons each and a checker NN con-

figuration that has eight neurons in a single layer.

The points represented by indexed square are the

configurations that do not have any checker, i.e.,

these are the NPU only design points. A single

square on this graph shows the error and cost for

no accelerator, i.e., all the computations are per-

formed exactly on the CPU. Points shown by a

cross sign correspond to an NPU and decision tree

of certain depth. On the x -axis of this graph is the

energy cost of a configuration relative to the CPU.

The CPU has a cost of 1 and output error of 0% as

shown in the figure. In this figure, output error for

a configuration is shown on the y-axis. The number

in the box corresponding to each design point is

the number of neurons in each hidden layer. For

example, the box with 64� 964 and 8� 98 implies

that the NPU has two hidden layers of 64 neurons

each and the checker has two hidden layers of

eight neurons each. Similarly, the box with 64�
964 and 5 implies that the NPU has two hidden

layers of 64 neurons each and the decision tree

checker has a depth of 5. This figure only shows

some selective points and labels them. The NN to-

pology space is large thus the NN we consider, for

NPU as well as checker, has at most two layers and

the number of neurons is restricted to at most

128 neurons in each layer. With this design con-

straint, in total, 5761 design points are possible for

benchmarks, and for Blackscholes, all these are

plotted in Figure 5b.

Some trends are clearly demonstrated in these

figures. First, there is no NPU configuration that is

able to achieve output error less than 20% for the

Blackscholes benchmark. So if 20% error is not ac-

ceptable in output then this benchmark cannot be

approximated with an NPU accelerator. NPU only

designs are efficient in terms of energy but have

high error (all are in top left half of the plot). Sec-

ond, with the combination of the NPU and a

checker, we can improve energy efficiency with re-

spect to the CPU and keep the error low as well.

Third, a benchmark that produces unacceptable

output is able to produce acceptable outputs with

a combination of the NPU accelerator and an NN

or decision tree checker.

We have explored the NPU-checker design space

for all the benchmarks given in earlier. Let us suppose

that a user wants to obtain a design that has half the
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error of the best NPU-only design for a particular

benchmark. We can obtain these best half error de-

signs by analyzing the design space exploration re-

sults. An analysis of these results shows that for

blacksholes, fft, and inversek2j, the best checker (low-

est energy cost) to achieve half error is a neural

checker and for jmeint, jpeg, and kmeans, decision

tree checker works best. sobel benchmark has very

low error with almost all the configuration of the

NPU, hence, we do not get much benefits of using a

checker with this benchmark. These results demon-

strate that the best checker type to achieve 50% less

error is application dependent.

Overall, the results show that NPU-checker co-

design provides many choices, and a user can

pick a design based on the error requirements for

a particular application.

APPROXIMATE COMPUTING CAN be employed for

an emerging class of applications from various do-

mains such as multimedia, machine learning, and

computer vision to tradeoff accuracy for better per-

formance and/or energy efficiency. In this work,

we propose Rumba for online detection and cor-

rection of large errors in an approximate comput-

ing environment.

Rumba predicts large approximation errors by

lightweight checkers and corrects them by recom-

puting individual elements. Across a set of bench-

marks from different domains, we show that Rumba

reduces the output error by 2:1� in comparison to

an accelerator for approximate programs while

maintaining the same performance improvement. To

achieve this, the Rumba framework reduces the en-

ergy savings, on average, from 3:2� to 2:2� in com-

parison to an unchecked accelerator. h
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