
10

Many portable devices must per-
form computationally demanding processing
of images, sound, video, or packet streams.
Current embedded processors cannot meet
these devices’ performance requirements
under tight power and cost constraints. There-
fore, hardware designers must create a new
generation of processors that provide far
greater performance and flexibility while using
less power and space.

Application-specific instruction processors
(ASIPs) have great potential to meet the chal-
lenging demands of pervasive systems. A cus-
tom-designed processor provides highly
specialized computation capabilities to meet
an application’s specific needs. With high
degrees of specialization, ASIPs can achieve
design wins of an order of magnitude in terms
of power, cost, or performance.

Although ASIPs have great potential, build-

ing them entails two critical issues. First, like
most modern processors, ASIPs are both time-
consuming and costly to build. Their com-
plexities require large design teams. As a result,
their use is generally limited to the largest mar-
ket segments, where sales volume can offset
the cost of a large design team. The second
issue is that application-specific customiza-
tion has traditionally resulted in a loss of pro-
grammability. Compilers are ineffective for
ASIPs because of irregular designs and high-
ly specialized data and control paths. There-
fore, hand-coded assembly is often necessary,
particularly for performance-critical portions
of applications.

The key to simultaneously addressing the
critical issues of cost, design time, and pro-
grammability is automation. Reducing the
human involvement necessary in the design
of specialized hardware platforms can enable

Michael L. Chu
Kevin C. Fan

Rajiv A. Ravindran
Scott A. Mahlke

University of Michigan,

Ann Arbor

THIS HIERARCHICAL SYSTEM AUTOMATICALLY DESIGNS HIGHLY CUSTOMIZED

MULTICLUSTER PROCESSORS. IN THE FIRST OF TWO TIGHTLY COUPLED

COMPONENTS, DESIGN SPACE EXPLORATION HEURISTICALLY SEARCHES THE

BASIC CAPABILITIES THAT DEFINE THE PROCESSOR’S OVERALL PARALLELISM.

IN THE SECOND, A HARDWARE COMPILER DETERMINES THE DETAILED

ARCHITECTURE CONFIGURATION THAT REALIZES THE PARALLELISM.

COST-SENSITIVE PARTITIONING IN
AN ARCHITECTURE SYNTHESIS
SYSTEM FOR MULTICLUSTER

PROCESSORS

Published by the IEEE Computer Society 0272-1732/04/$20.00  2004 IEEE

ASIPs to proliferate across both large and
small markets. With stylized architecture tem-
plates, automation can also ensure program-
mability by focusing on more systematic
customization strategies.

The traditional approach to customizing
an ASIP for a particular application is design
space exploration (DSE). DSE is a heuristic-
guided search across a parameterized proces-
sor architecture.1-4 Parameters include number
and type of function units, register file sizes
and ports, cache sizes and associativities, and
so on. At each step in the search, the DSE
engine uses cost and performance feedback
from previous designs to select a new candi-
date design. Next, the system synthesizes the
design to estimate the cost and compiles the
application to produce an estimate of its per-
formance. DSE often starts at an extreme of
the design space: the most expensive machine
(highest performance) or the cheapest
machine (lowest performance). DSE’s objec-
tive is to identify the Pareto-optimal set of
designs for the target application while visit-
ing as few suboptimal points as possible.

To control design space size and facilitate a
reasonable search, traditional DSE limits the
number of architectural parameters. However,
this approach is undesirable because it overly
constrains the possible designs and thus the
possible successful design wins achievable
through customization. We believe all aspects
of the processor architecture and microarchi-
tecture, including the data path, control path,
instruction set, and memory subsystem, must
be specialized to push ASIPs to the next level
of performance, cost, and power efficiency.
Unfortunately, traditional DSE does not gen-
eralize. The design space becomes enormous
and thus too unwieldy to search heuristically.
Furthermore, parameters such as the instruc-
tion set, instruction encoding, and data path
width are not amenable to search. Designers
must determine such parameters more algo-
rithmically, by analyzing the target application.

Our approach combines traditional DSE
and compiler-directed architecture synthesis.
Hierarchically dividing the design space
reduces the search space without artificially
constraining the degree of specialization per-
mitted for any aspect. The search covers basic
capabilities that define the processor’s overall
parallelism, and the compiler determines the

detailed architecture that realizes the paral-
lelism. This article focuses on the latter
topic—compiler-directed architecture syn-
thesis. More specifically, we examine compil-
er-directed synthesis of an ASIP’s data path
architecture. Sophisticated dependence, con-
trol flow, and dataflow analysis techniques per-
mit the discovery of an application’s
computation and communication structure.
The compiler can exploit the discovered struc-
ture and transform the application to create
high-performance, cost-effective ASIPs.

Related work
Cost-effective data path synthesis has been

widely explored in the literature. Here, we pro-
vide just a sample of the most relevant works.
Most researchers have focused on single basic
blocks and single-cluster systems. Automatic
data path synthesis is the focus of Cathedral-
III.5 This complete synthesis system, developed
at IMEC Laboratory in Belgium, designs a ded-
icated data path for digital signal processing
(DSP) applications on the basis of their signal
flow. Paulin and Knight also propose a tech-
nique for application-specific integrated circuit
data path design.6 Their force-directed sched-
uling technique integrates function unit (FU)
resource allocation and scheduling into a cost-
minimizing synthesis algorithm. The Sehwa
design system automatically designs processing
pipelines on the basis of behavioral specifica-
tions.7 Very long instruction word (VLIW) syn-
thesis is the target of PICO, HP Labs’
Program-In, Chip-Out system for designing
application-specific custom VLIW processors.3

Lapinskii et al. propose design space exploration
of clustered VLIW data paths.4 They use clock
rate and power dissipation as their DSE figures
of merit, varying maximum cluster capacity,
number of clusters, and interconnect capacity.

Multicluster architectures
An underlying processor model for an appli-

cation-specific design is essential for achieving
a design that provides high performance in a
cost-effective manner. A multicluster VLIW
processor model is the focus of our work. Such
processors are attractive for embedded com-
puting because of their relatively low cost and
ability to exploit high levels of instruction-level
parallelism (ILP). The critical problem with
scaling VLIW processors is the centralized

11MAY–JUNE 2004

register file. As the issue width grows, both cost
and access time scale quadratically with the
number of register ports. The multicluster
architecture addresses this growing problem
and reduces the access time penalty by split-
ting the register file into smaller files and
assigning FU subsets to each file.8 These small-
er, decentralized register files are efficient to
design, and they alleviate the register file bot-
tleneck while maintaining the desired ILP. The
idea of decentralized register files can also
extend to instruction and data caches to pro-
duce a scalable architectural platform.9

Compiler support is a major challenge to
clustered architectures because the compiler
must effectively partition operations across
the available resources on each cluster to max-
imize utilization. Moreover, compilers must
achieve this goal while carefully considering
the implications of intercluster communica-
tion. Pairs of producer and dependent con-
sumer operations placed on different clusters
must communicate data across an interclus-
ter communication network. This network is
both slow and bandwidth limited, so the com-
piler must minimize the amount of interclus-
ter communication.

Clustered architectures are either homoge-
neous or heterogeneous. Clusters in homoge-
neous designs are configured identically.
Homogeneity simplifies compilation because
the compiler can take advantage of the
machine’s symmetry to reduce the complexi-
ty of partitioning operations. In addition,
application-specific homogeneous clusters are
easier to design because the design architect

needn’t worry about the performance impact
of altering each cluster’s configuration.

Heterogeneous multicluster processors,
however, permit greater design flexibility and
less hardware redundancy when customized
for a given set of applications. For example,
FUs with high gate cost, such as multipliers
or dividers, can exist in a subset of clusters in
the machine, or a given cluster can support
small bitwidth operations while other clusters
support full-width operations. Thus, a het-
erogeneous multicluster architecture can be
far superior to a homogeneous one in terms
of cost, yet can execute a high-performance
application. Therefore, we chose this model
as our architecture template for ASIP design.

Hierarchical multicluster data path synthesis
system

Figure 1 shows our hierarchical system for
multicluster architecture synthesis. The three-
level system first makes broad, high-level
design decisions and then progressively refines
the details. The idea of this process is to con-
sider first-order cost factors at the outermost
layer through search and then algorithmical-
ly determine the specific hardware realization.

In the first stage, DSE sits above the entire
system, reading in cost and performance mea-
surements from previous architecture designs
to decide on the next high-level machine spec-
ification to explore. In our system, DSE works
much like traditional DSE systems, iterative-
ly searching across a wide range of parallelism
specifications for a clustered machine. There-
fore, it outputs high-level machine informa-

12

COST-SENSITIVE PARTITIONING

IEEE MICRO

Application

High-level
machine
specification

Design
space explorer

Allowable
performance loss

Synthesis
system hierarchy

Design space explorer
defines high-level

machine specification
(number of clusters/FUs)

Hardware compiler
uses cost-sensitive

partitioning to develop
cluster capabilities

Hardware synthesizer
designs actual

architecture using
detailed hardware library

Hardware compiler

Decides:
-Specific opcode repertoire
-Cluster bit width definition

Decides:
-Actual hardware used

Hardware synthesizer
No. of clusters,

generic FUs

Hardware
cost

Rough
design

Machine
description

Decides:
-Actual code schedule

Retargetable
compiler

Performance

(a) (b)

Figure 1. Hierarchical synthesis system for multicluster architectures: hierarchy (a), synthesis system flow diagram (b).

tion such as the number of clusters, the data
memory bandwidth, and the generic FUs
within the system—that is, the number of
integer, floating-point, memory, and branch
(IFMB) units per cluster. We assume the
generic FUs support all opcodes at full
bitwidth and are fully interconnected with all
other data path elements in the same cluster.
Thus, these parameters determine the target
machine’s available parallelism. Limiting the
design space explorer to these high-level deci-
sions narrows the once-infeasible design space
to a more manageable size.

The second level of the hierarchy is the
hardware compiler, whose goal is to struc-
ture the resources within the DSE-specified
high-level design. Naturally, the hardware
compiler could design a multicluster data
path such that each cluster supports the
union of all possible opcodes in the applica-
tion. Such a design, although performance
friendly, would be extremely expensive in
terms of gate cost and inefficient because of
redundancy and the lack of enough paral-
lelism in the program to take advantage of
the additional resources. A cost-friendly
approach that tries to maximize performance
while taking into account the repercussions
on hardware can produce a far more efficient
application-specific architecture. Therefore,
this design stage uses a cost-sensitive opera-
tion partitioner to divide the operations
across the clusters defined in the high-level
machine specification. The partitioner uses
hardware cost estimates to determine a set of
opcodes for assignment to each cluster, as
well as the data path bitwidth. These two
specifications (cluster capabilities) then pass
to the third level of the design system.

The third and final level is the hardware
synthesizer, which takes the capabilities and
requirements from the previous phase and
designs the actual multicluster hardware. The
synthesizer selects from a hardware library the
specific components that meet the resource
and parallelism requirements from the previ-
ous levels and the interconnect needed to
combine the components. From this design,
the synthesizer produces more-precise cost
measurements and a machine description for
the retargetable compiler.

Thus, the full system takes the target appli-
cation as input and continually generates new

machines with cost and performance mea-
surements. These hardware models evolve in
a hierarchical mix of both traditional DSE
techniques and heuristic search of possible
design choices for a multicluster data path.
From both the cost and performance per-
spectives, creating a highly customized archi-
tecture requires that all the details of a
multicluster data path be defined, including

• number of clusters, FUs, and register files
per cluster;

• opcode repertoire, bitwidth, and inter-
connectivity of the FUs; and

• width, ports, and number of entries per
register file.

This article focuses on the second level of the
hierarchy, which determines data path
resource functionality (opcode repertoire and
FU bitwidth).

Cost-sensitive operation partitioning
The primary goal of our synthesis system’s

hardware compiler stage is to appropriately
balance hardware cost and performance while
shaping and structuring the resources of the
clustered data path. Intelligently partitioning
operations in a multicluster architecture can
significantly lower the hardware cost of data
path resources. The main technique for spec-
ifying resource capabilities is to use an opera-
tion partitioner, which divides the operations
in a dataflow graph (DFG) into separate
groups and assigns them to clusters. The par-
titioner’s per-cluster output is an assignment
of the opcodes executable on each FU and
each data path element’s bitwidth.

There are many operation-partitioning
approaches (see the “Other clustering algo-
rithms” sidebar). Our synthesis system views
this step as a graph-partitioning problem in
which the nodes are the operations and the
edges represent communication between
them. Like most graph-partitioning algo-
rithms, the system determines a set of possi-
ble choices for node partitions, calculates a
figure of merit for each partition, and then
chooses the most desirable partition on the
basis of its value. The main difficulty is deter-
mining a figure of merit that can balance per-
formance and hardware cost.

When partitioning operations, our synthesis

13MAY–JUNE 2004

system must account for the hardware cost of
design decisions. The resource hardware cost
is a direct byproduct of the operations parti-
tioned to the clusters. When we know how the
operations are grouped, we also know the min-
imum required set of opcodes that each clus-
ter must execute, as well as a minimum
required bitwidth. For example, if a set of oper-
ations assigned to a cluster includes a 32-bit
multiply operation, that cluster’s resources
must include a 32-bit multiplier. Acknowl-
edging the cost of adding expensive FUs by
trying to group all the expensive opcodes per-
mits hardware cost savings. Similarly, grouping
small-bitwidth operations to create an entire-
ly narrow cluster makes bitwidth cost savings
possible. Thus, our synthesis system adds an
estimate of a candidate partition’s hardware
cost to the figure of merit.

The multilevel region-based hierarchical
operation-partitioning (RHOP) algorithm
proposes an initial partition of a DFG to a set
of clusters and then continually improves the
partition by moving operations between the

assigned clusters.10 Using its figure of merit as
the factor determining whether moving an
operation or a set of operations is beneficial,
the algorithm decides whether the move is
actually made. With a cost estimate added to
the figure of merit, RHOP can consider cost-
performance tradeoffs.

DFG coarsening
The algorithm’s multilevel nature means it

has two main phases: coarsening and refine-
ment. Coarsening, which groups potentially
related operations for consideration as a unit,
consists of many stages of pairing operations.
When coarsening completes, the algorithm
creates an initial DFG partitioning and then
refinement begins. Refinement moves back-
ward through the coarsening stages and con-
siders moving any coarsened operations that
exist in those stages to different clusters. When
the algorithm finds no more beneficial moves,
it again uncoarsens the DFG.

Figure 2 demonstrates coarsening on a sam-
ple DFG. Grouping operations permits initial
coarse-grained partition decisions, leaving fine-
grained decisions to the end. Thus, refinement
begins with very few choices for movable oper-
ations because every operation has been coars-
ened; refinement continues until every
operation is back in the uncoarsened state. In
the final state, every operation is a candidate
for a possible move, and operations with a high
affinity are grouped on the same cluster. Our
coarsening stage uses edge weights on the graph
to prioritize operation grouping. The edge
weights result from estimates of the scheduling
impact of splitting edges across clusters.

Refining the partition
After coarsening, the partitioner has the

same number of partitions as clusters. Then,
RHOP assigns each partition to a cluster and
calculates both the initial performance met-
ric and the cost metric. The initial partition’s
performance is simply the schedule length
estimate of the operations assigned to the cur-
rent clusters with generic FUs. The data path
elements (FUs and register files) required to
execute those operations constitute the hard-
ware cost.

The refinement phase then iteratively works
backward across each of the coarsening stages
in Figure 2 and tries to move coarsened oper-

14

COST-SENSITIVE PARTITIONING

IEEE MICRO

Other clustering algorithms
Traditionally, the operation-partitioning phase in a software compiler for multicluster archi-

tectures simply focuses on dividing operations efficiently across multiple clusters to maximize
performance.1-3 A significant amount of work exists on different techniques for partitioning
operations; most of it uses schedule length as the metric for determining good partitions. That
is, given two possible partition choices, the partition with the shorter schedule is selected.

The best-known clustering algorithm is the Bottom-Up Greedy (BUG) algorithm imple-
mented in the Bulldog compiler.2 BUG recurses depth-first along the dataflow graph, critical
paths first, greedily assigning operations to clusters on the basis of estimates of the earli-
est possible operation scheduling. The clustering work most similar to ours uses graph-par-
titioning methods to decide on cluster assignment. Aletà et al. proposed a similar multilevel
graph partitioner but worked mainly on determining the optimal initiation interval for a mod-
ulo-scheduled loop using a pseudoscheduler.1 Özer et al. introduced a unified approach to con-
sider the interrelated problems of clustering, scheduling, and register allocation.3 The rich
history of previous work on clustering algorithms has mostly focused on partitioning opera-
tions in a performance-based manner and has targeted fixed machine specifications.

References
1. A. Aletà et al., “Exploiting Pseudo-Schedules to Guide Data Dependence Graph

Partitioning,” Proc. Int’l Conf. Parallel Architectures and Compilation (PACT 02),
IEEE Press, 2002, pp. 281-290.

2. J. Ellis, Bulldog: A Compiler for VLIW Architectures, MIT Press, 1985.
3. E. Özer et al., “Unified Assign and Schedule: A New Approach to Scheduling for

Clustered Register File Microarchitectures,” Proc. Int’l Symp. Microarchitecture
(MICRO 31), IEEE CS Press, 1998, pp. 308-315.

ations across clusters to improve performance
or cost. At each stage, the algorithm must con-
sider moving coarsened operations as a single
unit. While backtracking across these coars-
ened stages, the algorithm must decide how
the proposed moves affect performance and
hardware costs.

Two estimates determine the improvement
a move can achieve: est_cycles for performance
and est_cost for hardware cost. The tradition-
al, performance-centered RHOP uses the
est_cycles metric to determine a partition’s
schedule length. RHOP creates this metric by
calculating node weights, which estimate the
operation’s resource utilization, and edge
weights, which estimate the performance
impact of cutting the edge across clusters. The
node weights estimate the resource load factor,
expressed as the number of cycles required to
execute the operations. The edge weights esti-
mate the number of extra cycles that inter-
cluster communication requires to transfer
values across the interconnection network.
These two estimates combine to generate
est_cycles, the total estimated cycles required
for a given partition.

The hardware cost estimate metric, est_cost,
approximates the number of gates needed to
realize a multicluster data path that supports
all the operations as currently partitioned. To
compute this estimate, cost-sensitive RHOP
uses gate cost estimates for the resources at the
operations’ required bitwidths. For every pro-

posed move, the algorithm can compute the
original cost of the clustering before the move,
est_costo, and the original performance,
est_cycleso. Similarly, it can estimate the clus-
tering’s cost and performance after the pro-
posed move, est_costn and est_cyclesn.

Given the partition, the first refinement
step is to find all free moves—that is, moves
that decrease cost at either the same or high-
er performance, or increase performance at
the same or lower cost. These moves—posi-
tive in both respects—occur immediately;
they cannot hurt either cost or performance.
Then the algorithm considers the remaining
operations for movement across clusters.

The remaining coarsened operations fall
into one of three categories: the move decreas-
es cost but lowers performance, raises perfor-
mance but increases cost, or both increases cost
and lowers performance. Obviously, potential
moves in the third category are bad choices.
For all other possible moves, the following
equation shows the move benefit calculation:

This benefit metric identifies the point of
diminishing returns on cost reduction as per-
formance decreases. Therefore, this clustering

benefit
est cost est cycles

est cost e

=
×

−
×

1

1

_ _

_

n n

o sst cycles_ o

15MAY–JUNE 2004

LB LBLB LB

+

CMP

BR

PBR

LW LW

*

*

*

SW

LW

LB

*

*

*

SB

LB

+

CMP

BR

PBR

LW LW

*

*

*

SW

LW

LB

*

*

*

SB

LB
+

CMP

BR

PBR

LW LW

*

*

*

SW

LW

LB

*

*

*

SB

LB

+

CMP

BR

PBR

LW LW

*

*

*

SW

LW

LB

*

*

*

SB

LB

LB
SB
BR

CMP
LW

PBR
SW

Load byte
Store byte
Branch
Compare
Load word
Prepare to branch
Store word

Figure 2. Coarsening on a sample dataflow graph. Shaded operations are 8 bits and nonshaded are 32 bits. Dashed lines rep-
resent the grouping of operations defined by each stage of coarsening.

estimate compares the original cost-perfor-
mance with the new cost-performance. A pos-
itive value indicates a good move.

One final check before making the move
ensures that overall performance remains
within a reasonable estimated schedule length
from the original performance-based RHOP
operation assignment.

We varied the allowed performance decrease
from 5 percent to 40 percent. This gave the
partitioner more freedom to make moves that
produce a greater performance decrease for
potentially larger hardware cost savings.

Refinement example
Returning to the earlier example (Figure 2),

assume that the partitioner had coarsened and
initially placed the operations as shown in Fig-
ure 3a. Each refinement step carries the clus-
tering’s current cost and performance estimate
(each loop iteration’s estimated schedule
length). After this first uncoarsening stage,
there are three groups of coarsened operations:
one containing operations 1 through 6, one
containing operations 7 through 11, and one
containing operations 12 through 18. Refine-
ment begins with the partitioner considering
operations for movement. Because cluster 1

is more heavily loaded, it’s the first candidate
for moving operations. Moving the coarse
operation group containing operations 1
through 6 would significantly affect cluster
performance because too many operations
would contend for resources at the same time.
However, this move would reduce the cost
somewhat by removing all the costly multi-
plies from cluster 1.

On the other hand, moving the coarse oper-
ation in the dashed circle in Figure 3a doesn’t
increase performance much, and it lets cluster
1 shrink to an entirely 8-bit cluster, produc-
ing a large cost savings. Therefore, the parti-
tioner moves this coarsened operation
because, according to the benefit calculation
equation, the move creates a benefit. The per-
formance penalty would be too high to make
any more moves at this level of coarsening.
Figure 3b shows the resulting assignment.
This move causes a slight increase in the esti-
mated execution time, from seven cycles to
eight, but it drops the cost estimate from
28,114 to 15,065 gates.

Figure 3b shows the next uncoarsening
stage, which separates operation 7 from oper-
ations 8 through 11. Again, the interesting
uncoarsened operation appears in a dashed

16

COST-SENSITIVE PARTITIONING

IEEE MICRO

LB
1

Cluster 1 Cluster 2

PBR
10

*
3

LB
2

*
4

*
5

LB
7

SB
6

LW
12

*
14

LW
13

*
15

*
17

LW
16

SW
18

*
3 +

8

CMP
9

BR
11

est_costo: 28114
est_cycleso: 7

est_costo: 15065
est_cycleso: 8

est_costo: 15065
est_cycleso: 7

(a)

Cluster 1 Cluster 2

LB
1

LB
2

*
4

*
5

LB
7

SB
6

*
3

PBR
10

+
8

CMP
9

BR
11

LW
12

*
14

LW
13

*
15

*
17

LW
16

SW
18

(b)

Cluster 2Cluster 1

LW
12

*
14

LW
13

*
15

*
17

LW
16

SW
18

PBR
10

+
8

CMP
9

BR
11

LB
1

LB
2

*
4

*
5

LB
7

SB
6

*
3

(c)

LB
SB
BR

CMP
LW

PBR
SW

Load byte
Store byte
Branch
Compare
Load word
Prepare to branch
Store word

Figure 3. Uncoarsening and cost-sensitive refinement: original partition and first move (a); backward move for load balancing
(b); final partition (c). Shaded operations are 8 bits and nonshaded are 32 bits.

circle. In this case, moving operation 7 from
cluster 2 to cluster 1 increases the partition’s
performance by merging the edge between
operations 5 and 7. It also helps balance the
workload because one less operation must exe-
cute on cluster 2. At the same time, this move
doesn’t increase the cost of cluster 1 because
operations 1 and 2 already support the load-
byte (LB) opcode in this cluster. Therefore,
operation 7 is a free move. After this move,
there are no more moves that improve cost-
performance, and the final partition appears
in Figure 3c. This partition has created one
large-bitwidth cluster and one small-bitwidth
cluster.

Experimental evaluation
We implemented our hardware compiler

using the Trimaran tool set, a retargetable
compiler for VLIW processors.11 Synopsys
design tools and a popular 0.18-micron stan-
dard cell library were used to estimate the gate
cost. For each opcode the system supports, we
used a width-parameterized cost formula cre-
ated by synthesizing a series of hardware com-
ponents to implement the opcode and fitting
a curve to the reported cost. The compiler
gathered bitwidth information by propagat-
ing the required widths for literals and vari-
able types, as discussed by Mahlke et al.12

Because we were focusing on partitioning
operations in a cost-sensitive manner, we ran
the most frequently executed loops from sev-
eral kernels and selected applications from the
Mediabench, Mibench, and Netbench suites.

The baseline hardware cost and perfor-
mance measurements result from running
RHOP without any cost-sensitive metric,
simply the original performance-centered par-
titioning. The algorithm estimates hardware
cost on the resulting partition, and the sched-
ule length serves as the performance mea-
surement. To focus on the hierarchical
system’s second level, we targeted the paral-
lelism specification at the high-level machine
under design. This machine specification calls
for the following generic FUs in each cluster:
two integer units, one floating-point unit, one
memory unit, and one branch unit, in both
two- and four-cluster variants (abbreviated as
2111 IFMB).

We compare the baseline machine’s cost
and performance with the same measure-
ments on the final partition produced by the
cost-sensitive RHOP. We define the final
partition as the point at which the perfor-
mance loss rate exceeds the cost savings rate.
Table 1 shows the results of these experi-
ments on the two-cluster machine. Overall,
the cost-sensitive operation partitioner

17MAY–JUNE 2004

Table 1. Effectiveness of cost-sensitive partitioning versus performance-centered partitioning

on a two-cluster 2111 (IFMB) machine.

 Performance and cost Savings breakdown
Relative Gate cost Opcode Bitwidth

Benchmark performance (%) reduction (%) repertoire (%) reduction (%)
channel 100.0 17.5 66.3 33.7
dct 96.6 4.9 54.9 45.1
fft 88.2 38.2 100.0 0.0
fsed 93.3 36.0 46.1 53.9
huffman 98.0 7.2 100.0 0.0
LU 100.0 13.3 100.0 0.0
rls 86.3 38.0 100.0 0.0
rawcaudio 89.7 0.7 91.0 8.9
rawdaudio 100.0 15.2 92.6 7.4
gsmdecode 83.0 36.3 92.6 7.4
gsmencode 100.0 38.6 97.9 2.1
blowfish 89.5 9.1 94.3 5.7
crc 100.0 5.8 46.0 54.0
url 100.0 25.3 100.0 0.0
Average 94.6 20.4 84.4 15.6

reduced the two-cluster machine’s total cost
by an average of 20.4 percent while retain-
ing an average of 94.6 percent of the original
performance. For a four-cluster machine,
results were even better, with average cost
savings of 28 percent at 97.5 percent of the
original performance. Note that in six bench-
marks, performance did not decrease at all.
In these cases, the cost-unaware traditional
RHOP could easily have clustered the oper-
ations in a more cost-effective manner but
failed to do so. Additionally, the cost-sensi-
tive partitioner reduced cost by more than
35 percent for five benchmarks. These
benchmarks were highly amenable to cost-
sensitive partitioning because they contained
a few expensive operations that could be
grouped in a single cluster.

The last two columns of Table 1 show the
cost savings source breakdown. Both opcode
repertoire and bitwidth cost savings were
prevalent in the benchmarks. Several bench-
marks achieved 100 percent of their cost sav-
ings from the cost-sensitive partitioner’s
improvements on the FU opcode repertoires.
In these cases, the benchmarks performed
most if not all their operations at the full 32-
bitwidth, limiting the amount of available
bitwidth savings. For benchmarks with a large
variation in bitwidths—for example, channel,
dct, and fsed—the cost-sensitive algorithm
intelligently used the bitwidth information to
reduce cost.

Although Table 1 shows a single design
point created by the algorithm, the system
actually examines many data path architec-
tures during partitioning. We now examine
the full design space for two representative
applications. Figure 4a shows a Pareto chart
of the possible cluster assignments the cost-
sensitive partitioner considered on the fsed
kernel. Each point on the chart indicates the
relative estimated schedule length and rela-
tive cost for a given clustering chosen during
the partitioner’s run. The cost values are rel-
ative to the cost of the machine designed by
the baseline performance-centered RHOP.
The curved line roughly indicates the Pare-
to-optimal designs, which offer the best per-
formance possible at a given cost or the lowest
cost for a given level of performance. The
dashed line indicates the machine designed
by the baseline performance-centered RHOP
algorithm. As we expected, better perfor-
mance typically came at a much higher cost.
The vertical bands of points in the chart
appear when the partitioner first explores the
band’s lowest point, where performance is
very low, and the partitioner begins making
all the free moves that improve the perfor-
mance at the same cost.

Figure 4b is a Pareto chart of cluster assign-
ments for the LU kernel. In this example, the
algorithm produced two groupings while
determining the cluster assignment. This
behavior occurred in several benchmarks,
generally because the application required an
expensive unit, such as a multiplier. When
both clusters support the expensive opera-
tion, the cost-sensitive algorithm typically
begins at the higher-cost grouping. During

18

COST-SENSITIVE PARTITIONING

IEEE MICRO

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

(a)

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

R
el

at
iv

e
pe

rf
or

m
an

ce

(b)

R
el

at
iv

e
pe

rf
or

m
an

ce

0.55 0.60 0.65 0.70 0.75 0.80

Relative cost (gates)

Relative cost (gates)
0.85 0.90 0.95 1.00 1.05

0.80 0.90 1.00 1.10 1.20 1.30 1.40 1.50 1.60

Figure 4. Set of possible cluster assignments the cost-sensitive partitioner
considered for the fsed kernel (a) and the LU kernel (b) on a two-cluster
configuration.

partitioning, the algorithm reaches a point
where it shifts all the expensive operations to
one cluster, thus forming the lower-cost
grouping. Again, the dashed line indicates the
machine designed by the performance-cen-
tered algorithm. In this case, the perfor-
mance-centered RHOP correctly designed
toward the lower-cost grouping, but it decid-
ed, purely for performance reasons, to group
operations requiring expensive resources.
Even within this lower-cost grouping, the
cost-sensitive RHOP designed cheaper
machines.

Overall, substantial hardware cost savings
were possible in many applications with min-
imal performance impact. These cost savings
came from specializing the FUs’ opcode reper-
toire as well as paring down the bitwidths of
certain clusters. Therefore, application-driven
partitioning is an effective method for cus-
tomizing a high-level data path specification
to an application.

This work completes the first step of our
hierarchical architecture synthesis system

for multicluster processors. Our ongoing work
focuses on expanding the hardware compila-
tion techniques beyond the data path to
include the memory subsystem, the control
path, and the instruction set. Additional areas
of our ongoing work include the design of a
hierarchical architecture description language
to represent customized ASIP architectures,
and the hardware synthesis to realize these
designs in Verilog. MICRO

Acknowledgments
This research was supported in part by

National Science Foundation (NSF) grant
CCR-0325898, NSF Career Award grant
CCF-0347411, the WIMS Engineering
Research Center, and equipment donated by
Intel.

References
1. J. Hoogerbrugge and H. Corporaal,

“Automatic Synthesis of Transport
Triggered Processors,” Proc. 1st Ann. Conf.
ASCI, 1995.

2. J.A. Fisher, P. Faraboschi, and G. Desoli,
“Custom-Fit Processors: Letting Applications
Define Architectures,” Proc. 29th Ann. Int’l

Symp. Microarchitecture (MICRO 29), IEEE
CS Press, 1996, pp. 324-335.

3. S. Aditya and B.R. Rau, Automatic
Architecture Synthesis and Compiler
Retargeting for VLIW and EPIC Processors,
tech. report HPL-1999-93, HP Labs, 1999.

4. V.S. Lapinskii, M.F. Jacome, and G.A. de
Vaciana, “Application-Specific Clustered
VLIW Datapaths: Early Exploration on a
Parameterized Design Space,” IEEE Trans.
Computer-Aided Design of Integrated
Circuits and Systems, vol. 21, no. 8, Aug.
2002, pp. 889-903.

5. S. Note et al., “Cathedral-III: Architecture-
Driven High-Level Synthesis for High
Throughput DSP Applications,” Proc. 28th
Design Automation Conf. (DAC 28), IEEE CS
Press, 1991, pp. 597-602.

6. P. Paulin and J. Knight, “Force-Directed
Scheduling for the Behavioral Synthesis of
ASIC’s,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems,
vol. 8, no. 6, June 1989, pp. 661-679.

7. N. Park and A. Parker, “Sehwa: A Software
Package for Synthesis of Pipelines from
Behavioral Specifications,” IEEE Trans.
Computer-Aided Design of Integrated
Circuits and Systems, vol. 7, no. 3, Mar.
1988, pp. 356-370.

8. K. Farkas et al., “The Multicluster
Architecture: Reducing Cycle Time through
Partitioning,” Proc. 30th Ann. Int’l Symp.
Microarchitecture (MICRO 30), IEEE CS
Press, 1997, pp. 149-159.

9. E. Gibert, J. Sánchez, and A. González, “An
Interleaved Cache Clustered VLIW
Processor,” Proc. 16th Ann. Int’l Conf.
Supercomputing (ICS 16), ACM Press, 2002,
pp. 210-219.

10. M. Chu, K. Fan, and S. Mahlke, “Region-
Based Hierarchical Operation Partitioning for
Multicluster Processors,” Proc. Conf.
Programming Language Design and
Implementation (PLDI 03), ACM Press, pp.
300-312.

11. “Trimaran: An Infrastructure for Research in
Instruction-Level Parallelism,” http://www.
trimaran.org.

12. S. Mahlke et al., “Bitwidth Cognizant
Architecture Synthesis of Custom Hardware
Accelerators,” IEEE Trans. Computer-Aided
Design of Integrated Circuits and Systems,
vol. 20, no. 11, Nov. 2001, pp. 1355-1371.

19MAY–JUNE 2004

Michael L. Chu is a PhD candidate working
in the Advanced Computer Architecture Lab-
oratory of the Electrical Engineering and
Computer Science Department at the Uni-
versity of Michigan, Ann Arbor. His research
interests include multicluster compilation and
automatic design and synthesis of application-
specific processors. Chu has BS and MS
degrees in computer science and engineering
from the University of Michigan.

Kevin C. Fan is a PhD student working in the
Advanced Computer Architecture Laborato-
ry at the University of Michigan, Ann Arbor.
His research interests include automated
design of application-specific processors and
compilation for irregular and embedded
architectures. Fan has a BS from UCLA and
an MS from the University of Michigan, both
in computer science and engineering.

Rajiv A. Ravindran is a PhD candidate in the
Department of Electrical Engineering and
Computer Science at the University of Michi-
gan, Ann Arbor. His research interests include

compilation for low-power embedded DSPs,
automatic compiler and architecture synthe-
sis, and compilation for high-performance
processors. Ravindran has an MTech in com-
puter science from the Indian Institute of
Technology, Kanpur. He is a student member
of the IEEE and the ACM.

Scott A. Mahlke is an assistant professor in
the Electrical Engineering and Computer Sci-
ence Department at the University of Michi-
gan, Ann Arbor. His research interests include
application-specific processors, high-level syn-
thesis, compiler optimization, and computer
architecture. Mahlke has a PhD in computer
engineering from the University of Illinois.
He is a member of the IEEE and the ACM.

Direct questions and comments about this
article to Michael Chu, Advanced Computer
Architecture Laboratory, Dept. of Electrical
Engineering and Computer Science, Univer-
sity of Michigan, 1301 Beal Ave., Ann Arbor,
MI 48109-2122; mchu@umich.edu.

20

COST-SENSITIVE PARTITIONING

IEEE MICRO

SET
INDUSTRY

STANDARDS

computer.org/standards/

HELP SHAPE FUTURE TECHNOLOGIES • JOIN A COMPUTER SOCIETY STANDARDS WORKING GROUP AT

Computer Society members work together to define standards like
IEEE 1003, 1394, 802, 1284, and many more.

Posix

FireWire
token rings

gigabit Ethernet

wireless
networks

enhanced parallel ports

