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Stéphane Lafortune

University of Michigan

stephane@umich.edu

Scott Mahlke

University of Michigan

mahlke@umich.edu

Abstract

In the multicore era, developers face increasing pressure to

parallelize their programs. However, building correct and ef-

ficient concurrent programs is substantially more difficult

than building sequential ones. To address the multicore chal-

lenge, numerous tools have been developed to assist multi-

threaded programmers, including static and dynamic bug de-

tectors, automated bug fixers, and optimization tools. Many

of these tools rely on or benefit from the precise identifica-

tion of critical sections, i.e., sections where the thread of ex-

ecution holds at least one lock. For languages where critical

sections are not lexically scoped, e.g., C/C++, static analysis

often fails to pair up lock and unlock calls correctly.

In this paper, we propose a practical lock/unlock pairing

mechanism that combines static analysis with dynamic in-

strumentation to identify critical sections in POSIX multi-

threaded C/C++ programs. Our method first applies a con-

servative inter-procedural path-sensitive dataflow analysis to

pair up all lock and unlock calls. When the static analysis

fails, our method makes assumptions about the pairing us-

ing common heuristics. These assumptions are checked at

runtime using lightweight instrumentation. Our experiments

show that only one out of 891 lock/unlock pairs violates

our assumptions at runtime and the instrumentation imposes

negligible overhead of 3.34% at most, for large open-source

server programs. Overall, our mechanism can pair up 98.2%

of all locks including 7.1% of them paired speculatively.
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1. Introduction

Most performance-aware programmers are experiencing

ever growing pressure to parallelize their programs because

uniprocessor performance has flattened out and multicore

processors promise more cores in each successive hard-

ware generation. Parallel programming, however, remains a

daunting task for a variety of reasons. First of all, reasoning

about concurrent events and synchronization is inherently

challenging for human programmers, who think sequen-

tially. In addition, concurrency bugs such as deadlocks, data

races, and atomicity violations require global knowledge of

the program. Finally, the nondeterministic execution of par-

allel programs makes these bugs hard to detect, reproduce,

and fix.

There has been much effort to relieve the burden of par-

allel programming. For example, many automatic concur-

rency bug detection tools have been developed [9, 19, 28].

Automated bug fixing tools are also available [15, 31]. In

addition, researchers are exploring ways to adapt classical

compiler optimization techniques for sequential programs to

parallel programs [17, 30].

if (x)

lock(L)

...

if (x)

unlock(L)

Figure 1. Infeasi-

ble path example

The aforementioned techniques of-

ten rely on or benefit from precise

lock usage information, which is very

difficult to obtain for languages with-

out lexically scoped critical sections.

For instance, static bug detection tools

using lockset analysis [28] must map

each statement to the set of locks held

by the thread of execution. Infeasible paths such as the one



illustrated in Figure 1 are a major source of false posi-

tives [9]. Automated bug fix tools often add locks to avoid

deadlock [31] or restore atomicity [15], which may intro-

duce new deadlocks if the usage of existing locks is un-

known. Finally, it is well known that many compiler opti-

mization techniques cannot be directly applied to concurrent

programs [30]. Currently compilers only optimize code sec-

tions that do not involve any lock operation, which can be

quite conservative [17]. Correct identification of critical sec-

tions allows better optimization for concurrent programs.

Numerous static analysis approaches have been devel-

oped and many can be adapted to infer critical sections. In

general, model checking based tools are precise but do not

scale to practical programs [14], while scalable tools using

specially designed algorithms are often imprecise [4, 6, 7].

For example, Saturn [7] is a scalable static analysis engine

that is both sound and complete with respect to the user-

provided analysis script. Writing a script that is sound and

complete with respect to the target program, however, is as

difficult as writing an analysis engine itself. The lock analy-

sis script bundled with Saturn is neither sound nor complete,

most notably because it lacks global alias analysis.

In this paper, we propose a practical lock/unlock pairing

mechanism that combines dataflow analysis with dynamic

instrumentation. Our interprocedural path-sensitive dataflow

analysis is a variant of existing tools [4, 6]. It conservatively

identifies lock acquisition and release pairs. When the anal-

ysis is uncertain, we use heuristics such as those based on

structure types and location proximity to determine the pair.

Finally, we instrument the target program with light-weight

checking instructions to monitor whether the pairing is cor-

rect at run-time.When a violation occurs, feedback informa-

tion is provided to revise the pairing.

This paper makes several contributions. We present a

static lock/unlock pairing analysis algorithm which yields

accurate results in most cases. We develop a lightweight dy-

namic checking mechanism to ensure our analysis is correct.

We demonstrate the effectiveness of our lock/unlock pair-

ing mechanism including both static analysis and dynamic

checking with real-world multithreaded programs such as

OpenLDAP, Apache, and MySQL.

The remainder of the paper is organized as follows. We

first present the challenges with motivating examples in Sec-

tion 2. Next, Section 3 describes how our static lock/unlock

pairing analysis works, and Section 4 discusses how to ex-

tend the analysis for inter-procedural cases. We explain

the dynamic checking mechanism in Section 5. Section 6

presents the experimental results and Section 7 outlines re-

lated work. Finally, we summarize the contributions and

conclude in Section 8.

2. Background and Motivation

While our approach can help any tool that needs accurate

static information about critical sections, we show its effec-

Benchmarks Number of Annotations

OpenLDAP 90

MySQL 71

Apache 19

Table 1. Number of annotations needed to model

tiveness in the context of deadlock avoidance. In this sec-

tion, we briefly provide some background on dynamic dead-

lock avoidance in Gadara [31] and explain what kind of chal-

lenges exist for lock/unlock pairing.

2.1 Gadara

Gadara is a tool that enables multithreaded programs to

avoid circular-mutex-wait deadlocks at runtime. The basic

idea is to intelligently postpone lock acquisition attempts

when necessary to ensure that deadlock cannot occur. It

proceeds in the following phases. First, Gadara constructs

a Petri net model from program source code using com-

piler techniques. Based on structural analysis of the model,

Gadara synthesizes feedback control logic for each structural

construct in the model that contributes to a potential dead-

lock. Finally, it instruments the control logic into the target

program.

Given that the model is correct, Gadara automatically

synthesizes maximally permissive controllers that delay lock

acquisitions only if the program model indicates that dead-

lock might later result if the lock were granted immedi-

ately. Due to lack of accurate information about critical sec-

tions, however, Gadara’s program analysis or control synthe-

sis could fail. In such cases, Gadara requires programmers

to provide annotations. These annotations specify which un-

locksmatch and that no mutex can be held at certain program

points. Table 1 shows the number of annotations needed to

model the benchmarks for Gadara. Providing annotations

can be tedious, difficult, and error-prone even for program-

mers familiar with both the target program and Gadara.

2.2 Challenges for Lock/Unlock Pairing

This subsection discusses the major challenges that a static

lock/unlock pairing analysis should address in order to

model programs accurately in the context of deadlock avoid-

ance. We illustrate the challenges via simplified code exam-

ples.

2.2.1 Infeasible Path

One of the challenges for static lock/unlock pairing is the

ambiguity caused by infeasible paths. The traditional way

in which compilers abstract programs’ control path is to

represent programs with control flow graphs (CFGs). Each

vertex in a CFG represents a basic block and each edge

corresponds to a branch from one basic block to another.

Thus, a sequence of basic blocks connected with edges in a

CFG represents a control path. Not all sequences, however,

are actually possible control paths in program execution;

some are infeasible paths.



1 : if (flag) lock(node->mutex);

2 : while (condition) {

3 : ...

4 : if (flag) unlock(node->mutex);

5 : ...

6 : node = node->next;

7 : ...

8 : if (flag) lock(node->mutex);

9 : ...

10: }

11: if (flag) unlock(node->mutex);

(a)

1 : void callee(task *ptr) {

2 : unlock(ptr->mutex);

3 : ...

4 : lock(ptr->mutex);

5 : }

6 :

7 : void caller(task *ptr) {

8 : lock(ptr->mutex);

9 : ...

10: callee(ptr);

11: ...

12: unlock(ptr->mutex);

13: }

(b)

1 : lock(parent->mutex);

2 : ...

3 : if (condition1) {

4 : lock(child->mutex);

5 : ...

6 : unlock(child->mutex);

7 : }

8 : ...

9 : unlock(parent->mutex);

(c)

Figure 2. Challenges for lock/unlock pairing

Infeasible paths are a challenge for lock/unlock pairing

because there can be cases where a lock is paired up with

unlocks for all feasible paths but not paired up for some

infeasible paths. This can be seen in the example of Fig-

ure 2 (a). If we assume the value of variable flag is not

changed throughout the snippet, all the branches correspond-

ing to the if statements should follow the same direction.

However, a naive static analysis would consider all possi-

ble combinations of branch directions, if it cannot correlate

branch conditions. Another example of infeasible path is in-

finite loops, since we can assume a finite number of itera-

tions for all reasonable executions. In the same example, if

the analysis considers the infinite loop, the lock of line 8

might not be paired up.

This challenge is especially problematic for Gadara,

whose models must have the semiflow property [32]. In-

tuitively, the semiflow property means that a mutex acquired

by a thread should be released later in the model. It is not

always satisfied, however, if we directly translate the CFG

to a Gadara model due to the infeasible path problem as

described above. The semiflow property is one of the most

important characteristics of Gadara models, and it is the

main reason why accurate lock/unlock pairing is important

in the context of deadlock avoidance.

2.2.2 Spanning Function Boundaries

Another challenge arises from the fact that locks and unlocks

need not reside in the same function. For widely used con-

current programs, it is not rare for locks and unlocks to span

multiple levels of call chains. If a lock/unlock pairing analy-

sis operates only within function boundaries it is not possible

to pair up such cases.

Figure 2 (b) illustrates such a case. An intra-procedural

lock/unlock pairing analysis would conclude that the lock

in function caller() is paired up inside the function and

the lock in function callee() is not paired up. However,

actually the lock in line 8 is paired up with the unlock in

line 2 and the lock in line 4 is paired up with the unlock in

line 12, in this calling context.

It gets even more complicated since there can be many

calling contexts. Gadara models function calls by substi-

tuting into the call site a copy of the callee’s Petri net

model [31], thus the model of one function can be analyzed

differently depending on the calling contexts. Therefore, in

order to handle this kind of cases, the lock/unlock pairing

analysis should be inter-procedural and context-sensitive.

2.2.3 Pointers

Imperfect pointer analysis imposes another challenge. Mu-

tex variables are usually passed to lock/unlock functions via

pointers. Since only locks and unlocks on the same mu-

tex variable pair up, it is important to figure out which

lock pointers point to the same location and which point-

ers do not. As widely known, however, even state-of-the-

art pointer analyses cannot provide perfect information. For

some cases, they can only conservatively tell that two point-

ers may alias.

Figure 2 (c) illustrates how pointers can cause problems

for lock/unlock pairing analysis. Assume that the pointer

analysis concludes that the pointer parent and child may

alias, which is the normal case for heap variables. In this

case, although it is reasonable for a human programmer to

pair up the lock in line 1 and the unlock in line 9, it is not

trivial for a static analysis to reach the same conclusion.

In order to model concurrent programs accurately, the

lock/unlock pairing analysis should work well under such

circumstances with imperfect information about pointers.

Furthermore, Gadara conservatively approximates mutex

pointers based on types [31]. More specifically, it mod-

els the mutexes accessed by pointers, which are enclosed

in the same type of structure, as one resource place. The

lock/unlock pairing analysis can relieve the impact of this

kind of approximation.

3. Static Lock/Unlock Pairing Analysis

In Sections 3 and 4, we discuss how our static analysis pairs

up locks and unlocks to cope with the challenges described



1 : int handle_task(task *job) {

2 : if(job->has_mutex)

3 : lock(job->mutex);

4 : if(job->is_special) {

5 : // Handle special case

6 : if(job->has_mutex) {

7 : unlock(job->mutex);

8 : return result;

9 : }

10: }

11: //Handle normal cases

12: if(job->has_mutex)

13: unlock(job->mutex);

14: return result;

15: }

Figure 3. Simple example of lock/unlock pairing.

in the previous section. Section 3 first covers the detailed

steps for intra-procedural cases and we show how to extend

it for inter-procedural cases in Section 4.

Our static lock/unlock pairing analysis is carried out in

four steps. First, the analyzer extracts an enhanced control

flow graph (CFG) from source code and prunes it. This

CFG is augmented with information about function calls and

branch conditions. It prunes the CFG for computational effi-

ciency, leaving only relevant branches. Second, it maps each

lock to a set of corresponding unlocks through dataflow anal-

ysis traversing the CFG in a depth first manner while man-

aging lock stack data structures. Third, it calculates Boolean

expressions that express the conditions under which each

lock and unlock is executed. Finally, using a SAT solver [8],

it examines whether all locks are paired up with unlocks

on every feasible path. Section 3.1 shows how the analy-

sis works with a simple example, then the rest of the section

describes each of these steps in detail.

3.1 Simple Example of Analysis Flow

This section presents the conceptual flow of our lock/unlock

pairing analysis with a simple example in Figure 3. In this

example, the mutex acquired by the lock in line 3 is always

released before the function handle task() returns by ei-

ther the unlock in line 7 or the unlock in line 13. However,

directly translating the CFG of this example to Petri net vi-

olates the semiflow property due to infeasible paths as de-

scribed in Section 2.2. Our analysis rules out the infeasible

paths and gives accurate lock/unlock pairing results through

the following process.

After pruning the CFG, the corresponding unlock set

mapping decides that both the unlock in line 7 and the

unlock in line 13 can release the mutex acquired by the

lock in line 3. Then, the path condition calculation step

determines the Boolean expressions that represent path

conditions for each lock and unlock. In this example, path

condition ( job→ has mutex 6= 0) must be true for

the lock to be executed. Similarly, the unlock in line 7

has ( job→ is special 6= 0) ∧ ( job→ has mutex 6= 0),
and the unlock in line 13 has ( job→ is special = 0) ∧
( job→ has mutex 6= 0) as their path conditions. The anal-

1 : // Apply analysis to all functions

2 : void traverse_function(fn)

3 : // Traverse CFG to calculate GEN and KILL sets

4 : traverse_bb(entry);

5 : for(each lock discovered)

6 : corresponding_unlocks[lock]

7 : = GEN[lock] - KILL[lock];

8 : end

9 :

10: // Compute GEN and KILL sets for all locks traversing

11: // CFG in a depth first manner while managing lock

12: // stack data structure

13: void traverse_bb(bb)

14: for(each instruction s in bb in order)

15: if(s is a lock)

16: push s to lock stack;

17: else if(s is an unlock)

18: top = top element of lock stack;

19: add s in GEN[top];

20: for(each element e in lock stack, e!=top)

21: add s in KILL[e];

22: pop from lock stack;

23: for(each successor child of bb)

24: traverse_bb(child);

25: end

Figure 4. Finding unlock set corresponding to lock

ysis then translates them into Boolean expressions by as-

signing a Boolean variable to each branch condition. In or-

der to encode the branch correlations into the expressions,

this assignment process assigns the same Boolean variable

to branch conditions that must have the same value. As a

result, the Boolean expression of the lock is (x1), and the

unlock in line 7 and the unlock in line 13 receive (x2 ∧ x1)
and (¬x2∧ x1), respectively.

The final step of the analysis is to check whether the lock

and the corresponding unlocks pair up for all feasible paths.

This can be done by determining whether the statement “if

the path condition for the lock is true, then the disjunction of

the path conditions for corresponding unlocks is true” is al-

ways true or not. In this example, the statement is interpreted

as the Boolean expression (¬x1)∨ (x2∧ x1)∨ (¬x2∧ x1). In
order to verify if it is always true, we apply a SAT solver on

the negation of the Boolean expression. If it is unsatisfiable,

then the statement is always true, and the lock and the corre-

sponding unlocks are paired. Otherwise, they are not paired

up. In this example, the negation of the Boolean expression

is unsatisfiable and the lock is paired up with the unlock in

line 7 and line 13.

3.2 Mapping Lock to Set of Corresponding Unlocks

Before applying the infeasible path analysis, this step groups

corresponding locks and unlocks. More specifically, it maps

a set of corresponding unlocks to each lock. We say an

unlock corresponds to a lock if it can release the mutex

acquired by the lock on any path. Since the mutex acquired

by a lock can be released at different program points, we

map a set of corresponding unlocks and not just a single

unlock. This step is necessary because the same mutex can

be acquired and released multiple times.



This analysis algorithm traverses the CFG in a depth first

manner while managing a stack of locks for each mutex. The

core analysis algorithm is given in Figure 4. Although we

only show it for one mutex in this version, the actual analysis

simultaneously works on all mutexes.

The underlying idea is to add an unlock to the correspond-

ing unlock set of a lock, if there is a path in which the unlock

follows the lock but there is no path in which there is an-

other lock of the same mutex between the lock and unlock.

The top element of the lock stack is the most recent lock

that the traversal encountered, so it adds the unlock to the

GEN set of the top element. Other elements in the lock stack

are the locks that the traversal met before the last lock along

the traversal, so it adds the unlock to the KILL sets of them.

Ultimately, the corresponding unlocks of each lock are the

unlocks that are in the GEN set but not in the KILL set.

3.3 Path Condition Calculation

This step calculates the Boolean expressions for path condi-

tions that must be true for each lock and unlock to execute. It

first calculates path conditions and translates them by assign-

ing a Boolean variable for each branch condition. We define

the path condition of a statement as the Boolean combina-

tion, i.e., AND(∧), OR(∨), NOT(¬), of branch conditions,

which must be true for the statement to be executed.

The core path condition calculation algorithm is illus-

trated in Figure 5. With this algorithm, the path condition of

a statement is the path condition from the entry basic block

to the basic block that the statement belongs to. The under-

lying idea of this algorithm is that the path condition from

the CFG node ‘src’ to ‘dest’ is the disjunction (OR) of

the conditions along the paths which go through ‘child’,

for all children of ‘src’. This idea is reflected in line 18.

This algorithm uses caching and post dominator informa-

tion for computational efficiency. Since there can be an ex-

ponential number of paths to the number of basic blocks, the

naive recursive algorithm is not feasible for real programs.

In order to avoid repetitive computation for the same path,

it uses a path condition cache indexed by (src,dest) pair.

In addition, it uses post dominator (PDOM) information as

a shortcut, to simplify the resulting conditions.

After path condition calculation, the analysis translates

the path conditions to Boolean expressions by assigning a

Boolean variable to each branch condition. To reveal the

branch correlations in the Boolean expressions, our analysis

assigns the same Boolean variable to the branch conditions

that must have the same value. This is possible by using

global value numbering (GVN) and hashing them to map

to Boolean variables.

3.4 Checking Lock/Unlock Pairing

Using the analysis results of the previous steps, this step fi-

nally verifies whether all locks are paired up with the cor-

responding unlocks on every feasible path. To achieve this

goal, we use an open source SAT solver MiniSAT [8]. For

1 : // Recursively calculates path condition from

2 : // src to dest

3 : condition calculate_path_cond(CFG, src, dest)

4 : // Consult path condition cache for efficiency

5 : if (src, dest) is in cache

6 : return condition from cache;

7 : // Always reaches dest if it post-dominate src

8 : if dest PDOM src

9 : return TRUE;

10: // Dead end

11: if src has no successor

12: return FALSE;

13: // The control can reach dest following

14: // each successor

15: for(each successor c of src)

16: cond1 = branch condition of branch (src->c);

17: cond2 = calculate_path_cond(CFG, c, dest);

18: condition = condition OR (cond1 AND cond2);

19: put condition in cache with index (src, dest);

20: return condition;

21: end

Figure 5. Calculating path conditions

each lock, through the previous steps, we have the set of cor-

responding unlocks and the relevant Boolean expressions for

the path conditions of them and the lock. With these anal-

ysis results, to verify the statement “the lock is paired up

with the corresponding unlocks on every feasible path” is

equivalent to checking the proposition “if the Boolean ex-

pression for the lock is true, the disjunction of the corre-

sponding unlocks’ Boolean expressions is always true.” Let

L be the Boolean expression for the lock, andU1,U2, ...,Un

be the Boolean expressions for the corresponding unlocks.

Then our analysis tries to check if the following expression

is always true.

L⇒U1∨U2∨ ...∨Un (1)

or equivalently

¬L∨ (U1∨U2∨ ...∨Un) (2)

Checking whether a Boolean expression is always true or

not can be done with a SAT solver. If the expression is al-

ways true, its negation always evaluates false, which in turn

implies that the negation of the expression is unsatisfiable.

Therefore, we can check whether the lock is paired up with

the corresponding unlocks by applying a SAT solver to the

negation of (2), which is

L∧¬U1∧¬U2∧ ...∧¬Un (3)

3.5 CFG Pruning

One of the hurdles that the static lock/unlock pairing analysis

must overcome is computational complexity. In real world

server programs, the number of basic blocks in a function

easily grows to several hundreds. In addition, the Boolean

satisfiability problem is well known to be NP complete. For

these reasons, we must carefully minimize the number of

clauses in the Boolean expressions, in order to make our

analysis scale to real programs. We achieve this by pruning

the CFG.



Figure 6. Example of CFG pruning.

Our analysis tool prunes the CFG without losing any rel-

evant information needed for the analysis based on control

dependence analysis [10]. Intuitively, CFG node X is control

dependent on node Y if the outgoing edges from Y deter-

mine whether X is executed or not, and control dependencies

can be calculated by finding post-dominator frontiers in the

CFG. Given this property of control dependence, when we

calculate the path condition for a basic block X, we must

consider the basic blocks on which X is control dependent,

the basic blocks on which those basic blocks are dependent,

and so forth. Therefore, if we calculate the control depen-

dence closure for the basic block, the basic blocks in the clo-

sure are the only ones that are relevant for the path condition

calculation. We calculate the control dependence closure by

iteratively including basic blocks until it converges.

The CFG pruning algorithm works as follows. It starts

with the basic blocks of interest as input. Then, it calculates

the control dependence closure for them, i.e., the closure

relevant basic blocks. Finally, we prune the CFG by max-

imally merging irrelevant basic blocks that are connected.

The CFG pruning algorithm can be easily understood with

the example in Figure 6. In this example, basic block 9 is

the basic block of interest. It is control dependent on basic

block 7; furthermore basic block 7 is control dependent on

basic block 1. After calculating the control dependence clo-

sure {1,7,9}, the rest of the basic blocks can be merged if

they are connected. The simplified CFG on the right results

from pruning. By working on this pruned CFG, the path con-

dition calculation and the resulting Boolean expressions get

much simpler.

4. Inter-procedural Analysis

As discussed in Section 2.2.2, many lock/unlock pairs span

function boundaries. In order to model concurrent programs

for most cases, our lock/unlock pairing analysis must be

inter-procedural and context-sensitive. In this section, we

describe how to extend the analysis presented in the previous

section for inter-procedural cases.

One straightforward way to make the analysis inter-

procedural is a top-down approach that performs the analysis

on the whole program CFG by conceptually replacing call

instruction with the CFG of callee function at every call

site, starting from the main() function. However, this can

cause a computational complexity problem by producing an

excessively large CFG to analyze.

Instead of flattening out the CFG for the entire program,

we divide the problem into small pieces and perform the

analysis on subgraphs in order to limit the analysis time. We

first partition the callgraph with a proximity-based heuris-

tic, and analyze the subgraphs in a bottom-up manner. We

describe the details of this analysis in the following subsec-

tions.

4.1 Proximity-based Callgraph Partitioning

Wemade two observationswhile we were trying to manually

pair up locks and unlocks across function boundaries. The

first observation is that the calling contexts of a lock and

paired unlocks differ from a lowest common ancestor in the

callgraph with respect to the root node main(), in most

cases. Suppose that a mutex acquired by a lock with the

calling context of main ⇒ f1 ⇒ ... ⇒ fn ⇒ fl1 ⇒ ... ⇒
fln is released by an unlock with the calling context of

main ⇒ f1 ⇒ ... ⇒ fn ⇒ fu1 ⇒ ... ⇒ fun on a path, then

the other unlocks, if any, that pair up with the lock usually

have calling context that sharesmain⇒ f1 ⇒ ...⇒ fn and fn
is a lowest common ancestor of them in the callgraph. The

second observation is that the depths from locks and unlocks

to the lowest common ancestor of the pairing context are

relatively small (< 5) for most cases.

Based on the above observations we use a heuristic of

proximity-based callgraph partitioning to keep the inter-

procedural lock/unlock pairing analysis tractable. The parti-

tioning algorithm works as follows. It starts from functions

that have unpaired locks and follows upward the callgraph.

It continues until it reaches a node that has the nodes with

potentially pairing unlocks as descendants or a predefined

depth threshold. Then, it cuts the subgraph from the node as

a root. In this way, we can limit the size of Boolean expres-

sions to be small enough to analyze.

4.2 Extending Lock/Unlock Pairing for

Inter-procedural Analysis

For inter-procedural lock/unlock pairing, we apply the anal-

ysis described in Section 3 on the subgraph partitioned in the

previous subsection. The inter-procedural lock/unlock pair-

ing analysis must handle function calls in a different way

from the intra-procedural analysis, which just ignores func-

tion calls except locks and unlocks. The information about

locks and unlocks in callee functions must be considered

when the analysis meets a function call. Our analysis takes

two different approaches to do so for mapping a lock to the

set of corresponding unlocks and for path condition calcula-

tion.

Mapping a lock to the set of corresponding unlocks can

be modified to be inter-procedural in a relatively straight-



1 : Connection *c = NULL;

2 : for(; index < tblsize; index++) {

3 : ...

4 : if (connections[index].state == C_USED) {

5 : c = &connections[index];

6 : lock(&c->c_mutex);

7 : break;

8 : }

9 : }

10: ...

11: if (c!=NULL) unlock(&c->c_mutex);

Figure 7. Example of uncaught infeasible path.

forward way. It can be considered as conceptually inlining

function calls. When it meets a function call it follows the

CFG of the callee function.When the function returns it goes

back to the caller function’s CFG. Other than that, it is iden-

tical to the mapping algorithm explained in Section 3.2. It is

a simple extension but it is enabled by the proximity-based

callgraph partitioning.

On the other hand, path conditions are calculated in a

bottom-up manner. In order to calculate the path condition

that decides the execution of a lock, it first calculates the

lock’s path condition in the leaf node function that contains

the lock. Then, following the context recognized in the par-

titioning, it calculates the path condition of the function call

in its caller function, and its caller function, and so forth un-

til it reaches the root function of the partition. These condi-

tions get merged with a conjunction operator to finally cal-

culate the context-sensitive path condition for the lock. Af-

ter it calculates the context-sensitive path conditions for the

locks and the unlocks, the remaining steps are identical to

the intra-procedural analysis.

5. Dynamic Checking

Our static lock/unlock pairing analysis can be potentially

incorrect in some cases due to the assumptions and heuristics

it uses. In this section, we discuss these potential sources

of incorrect analysis results and explain how our dynamic

checking instrumentation can detect them.

One important reason why our analysis might yield po-

tentially incorrect results is pointers as described in Sec-

tion 2.2.3. Due to the limitations of the default memory de-

pendency analysis, we augment it with generic aggressive

refinements. Although the probability is very low, they can

result in incorrect analysis results.

The second source of potentially incorrect analysis results

is the proximity-based callgraph partitioning heuristic. Al-

though we could not find a real example, it is theoretically

possible that one lock has two pairing unlocks whose lowest

common ancestors with the lock differ. In that case, our par-

titioning algorithm can give an incorrect subgraph to analyze

and end up with an incorrect analysis result.

Lastly, there are cases where our analysis maps unlocks

correctly but cannot guarantee the lock is paired up with

unlocks for all feasible paths due to the limitations of our

analysis. An example of this case is shown in Figure 7. Our

1 : lock_wrapper(mutex, callsite, callstack) {

2 : lock(mutex);

3 : LOCK_ID = get_id(callsite, callstack);

4 : mutex_to_lock_id[mutex] = LOCK_ID;

5 : ROOT_FID = SEMIFLOW_RESULT[LOCK_ID];

6 : held_mutex[ROOT_FID].insert(mutex);

7 : }

8 : unlock_wrapper(mutex, callsite, callstack) {

9 : UNLOCK_ID = get_id(callsite, callstack);

10: LOCK_ID = mutex_to_lock_id[mutex];

11: mutex_to_lock_id.erase(mutex);

12: assert(LOCK_UNLOCK_PAIR[LOCK_ID][UNLOCK_ID]);

13: ROOT_FID = SEMIFLOW_RESULT[LOCK_ID];

14: held_mutex[ROOT_FID].erase(mutex);

15: unlock(mutex);

16: }

Figure 8. Instrumentation wrapper for lock and unlock

analysis can map the unlock in line 11 as the corresponding

unlock of the lock in line 6. However, it cannot guarantee

the lock is paired up for all feasible paths due to the lack

of understanding about program semantics. A human pro-

grammer can easily figure out that the variable c is not NULL

when the lock in line 6 is executed, thus the lock is paired up

with the unlock in line 11 if the value of c is not modified in

between. However, it is difficult for a static analysis to un-

derstand such program semantics. In this case, our analysis

provides the mapping for the modeling as the best effort re-

sult. However, this type of best effort analysis result might

be incorrect for other cases.

For these reasons, our lock/unlock pairing mechanism

needs a way to verify whether all of the analysis results are

correct or there exists any violation of the assumptions it

made. In order to do that, we need to check two types of

conditions. First, the mapping of unlocks to each lock should

be checked. If the mutex acquired by a lock is released by

an unlock that is not in the corresponding unlock set, it

should be detected. Second, the semiflow requirement has to

be checked. In other words, whether each lock is paired up

with an unlock for all feasible paths or not is to be checked.

In the following subsections, we discuss these two types of

checking in detail.

5.1 Checking Lock-to-Unlocks Mapping

We instrument all locks and unlocks to check whether the

mapping of each lock to corresponding unlocks is correct or

not. We first assign a unique ID to each lock and unlock. At

runtime, the instrumented code manages a thread-local data

structure that keeps the acquiring lock’s ID of each mutex.

Since the data structure is thread local, it does not need to

synchronize with other threads to access the data structure.

When an unlock releases the mutex, the instrumented code

looks up the acquiring lock’s ID of the mutex and checks

whether its own ID is in the corresponding unlock set of the

lock.

The IDs of locks and unlocks can be simply assigned

as a unique number to each calling instruction for intra-

procedural cases. However, if they are paired up by the inter-



Our Approach

Benchmarks LOC Number Trivial DFT Statically Speculatively Total Unpaired Static

of lock Paired Paired Paired Analysis

OpenLDAP 271,546 357 110 267 319 34 353 4 152.7%

MySQL 926,111 499 147 428 463 26 489 10 211.8%

Apache 224,884 19 0 0 17 0 17 2 33.9%

pbzip2 4,011 3 0 1 2 1 3 0 23.4%

pfscan 752 11 8 10 10 1 11 0 50.0%

aget 835 2 2 2 2 0 2 0 43.8%

Table 2. Coverage of static lock/unlock pairing analysis

procedural analysis, we need to manage different IDs for

different calling contexts even for the same lock or unlock.

This is achieved by managing private call stacks. For the

functions that appear in the subgraph analyzed by the inter-

procedural analysis, we assign IDs and instrument the en-

trances and exits to push and pop the ID in the private call

stack. This call stack information is concatenated to the IDs

of locks and unlocks in order to make it context sensitive.

Figure 8 is the pseudo code for our locks and unlock

wrapper functions. It obtains context sensitive IDs of the

locks used by the acquisition and release functions at lines 3

and 9, respectively. We verify whether the released lock is in

the unlock set corresponding to the acquired lock at line 12.

5.2 Checking Semiflow Property

Another condition that we need to check dynamically is

the semiflow property. As described in Section 2.2.1, the

semiflow property guarantees that a mutex acquired by a

thread will always be released later. With the static analysis

we check this property by testing whether locks are paired

with unlocks for all feasible paths. If the condition is not

satisfied due to incorrect analysis, the dynamic checking

should be able to detect it.

We also check this property by instrumenting locks, un-

locks, and function exits. For this type of check, the in-

strumented code maintains the information about held mu-

texes indexed with the acquiring lock’s ID. Again, these IDs

are concatenated with call stack information for context-

sensitive cases. We instrument the root node functions of the

subgraphs partitioned by the proximity-based partitioning to

check whether it is holding any lock that should be paired

up inside the calling context when it returns. This is done

by checking whether the held mutex[FID] set (kept in line 6

of Figure 8) is empty when the root node function (FID) re-

turns.

6. Experimental Results

We have implemented the lock/unlock pairing mechanism

including both the static analysis and checking instrumen-

tation as a pass of the LLVM compiler infrastructure [18].

Our implementation operates on the LLVM intermediate

representation and provides both analysis results and in-

strumented code. For the aggressive refinement of LLVM’s

memory dependency analysis, we use Gadara’s type-based

method for mutex pointers and memory profiling for other

variables.

All of our experiments were executed on a 2.50GHz Intel

Core 2 Quad machine with 8GB of memory running Linux

2.6.32. We evaluate the effectiveness of our lock/unlock

pairing with Apache 2.2.11 web server [1], MySQL 5.0.91

database server [24], OpenLDAP 2.4.21 lightweight direc-

tory access protocol server [26], pbzip2 1.1.4, pfscan 1.0,

and aget 0.4.

6.1 Effectiveness of Static Analysis

Table 2 shows the effectiveness of our static lock/unlock

pairing analysis. The third column is the total number of

locks and the fourth column is the number of locks trivially

paired up in a basic block. We also compare our approach

against depth first traversal (DFT) of control flow graph,

which is used by previous static lockset-based tools such

as RacerX [9]. Statically paired locks mean the number of

locks that could be paired up with infeasible path analysis.

Speculatively paired locks are the ones that our analysis

could successfully map the corresponding unlock sets but

could not guarantee pairing for all feasible paths due to the

limitation described in Section 5. Thus the sums of the sixth

and seventh columns are the numbers of locks that our static

analysis could pair up with unlocks. As can be seen in the

table, our static analysis works effectively for nearly all of

the cases. Overall, trivial pairing fails to handle 70% of

locks and DFT fails to handle 20.5% of locks. By contrast,

our approach handles all but 1.8% of locks—an eleven-fold

improvement compared with DFT.

There are still unpaired locks, although the number of

such cases is relatively small. There are three types of causes

for these cases. First, there are inherently unpaired locks

in the programs. Three unpaired locks of OpenLDAP are

from one function, ldap new connection(), and in this

category. When the function is called in certain contexts,

these locks are paired up and our analysis can catch those

cases. In other contexts, however, they are not paired up and

thus our analysis cannot pair them up.

The second category of unpaired locks is due to the type-

based memory dependency analysis refinement that we use

for mutex pointers. This refinement assumes that two mutex

pointers do not alias if the types of wrapper structures en-

closing the mutex variables are different. With this assump-

tion our analysis cannot pair up a lock and unlocks if they



1 : class THD {

2 : struct st_my_thread_var *mysys_var;

3 : ...

4 : char* enter_cond(mutex_t* mutex) {

5 : ...

6 : mysys_var->current_mutex = mutex;

7 : ...

8 : }

9 : void exit_cond(char* old_msg) {

10: ...

11: unlock(mysys_var->current_mutex);

12: ...

13: }

14: };

15: ...

16: bool wait_for_relay_log_space(RELAY_LOG_INFO* rli) {

17: THD *thd = rli->mi->io_thd;

18: char *save_proc_info;

19: ...

20: lock(&rli->log_space_lock);

21: save_proc_info = thd->enter_cond(&rli->log_space_lock);

22: ...

23: thd->exit_cond(save_proc_info);

24: ...

25: }

Figure 9. Example of unpaired lock due to type mismatch.

have different types. The example in Figure 9 shows how

this can cause a problem. In this example, the lock in line 20

and the unlock in line 11 are called on the same mutex, be-

cause the call of enter cond() in line 21 saves the mutex in

a pointer and passes it to exit cond(). The problem is that

the types of wrapping structure for the lock and the unlock

are different. The wrapping type is RELAY LOG INFO for the

lock and st my thread var for the unlock. The type based

memory dependency refinement would consider them not to

alias, and consequently our lock/unlock pairing analysis can-

not pair them. Among the unpaired locks of MySQL, eight

of them are in this category.

The last cause of unpaired unlocks is function pointers.

The current implementation of our lock/unlock pairing anal-

ysis cannot track the inter-procedural cases in which a func-

tion is called via a function pointer, since it uses the call-

graph information which only puts edges for direct function

calls. One of OpenLDAP’s locks, two of MySQL’s locks,

and two of Apache’s locks could not be paired up for this

reason.

Static analysis time as a percentage of compilation time is

presented in the last column of Table 2. Analyzing MySQL

and OpenLDAP takes considerably longer than analyzing

other benchmarks because they have more complex control

flows and include more lock/unlock function calls. Table 3

presents the number of basic blocks in a function before and

after CFG pruning, as described in Section 3.5. Our CFG

pruning significantly reduces both average and maximum

number of basic blocks, which is essential for the scalability

of our static analysis procedure.

Benchmarks Before Pruning After Pruning

Average Maximum Average Maximum

OpenLDAP 20.19 818 2.22 80

MySQL 5.88 3513 1.18 112

Apache 12.12 465 1.02 13

pbzip2 6.16 431 1.06 10

pfscan 10.57 48 3.61 33

aget 12.11 35 1.83 16

Table 3. Number of Basic Blocks before/after Pruning

6.2 Runtime Overhead of Dynamic Checking

Figure 10 presents the runtime overheads of the dynamic

checking instrumentation. For server programs, it is mea-

sured as the comparison of average response time to clients

on the same machine. For pbzip2, pfscan, and aget, the

execution times are compared. Four parallel clients and

worker threads are used for the servers and the other pro-

grams, respectively. As can be seen in the graph, our check-

ing instrumentation imposes very small overheads for the

programs. The runtime overheads range from 0.5% to 3.4%

and the average is 1.6%.

As discussed in Section 6.1, our static analysis yields

three types of results: statically paired, speculatively paired,

and unpaired. For both statically and speculatively paired

locks, our framework instruments the checking mechanism

presented in Section 5, whose major overhead comes from

the executions of locks and unlocks. Therefore, even if our

analysis does not work well so that it yields more specu-

latively paired locks, the runtime overhead would not be

drastically increased. For unpaired locks, the current im-

plementation of our framework falls back to programmer

annotations and does not add checking instrumentation. It

is possible to add more heuristics to make guesses for un-

paired locks, but the dynamic checking overhead would be

still roughly proportional to the number of the executions of

locks and unlocks even for those cases.

Compared to the native implementation of lock and un-

lock, our instrumentation slows down a pair of lock and un-

lock by roughly 18×. Thus, it is possible that our dynamic

checking incurs excessive overhead if the target program

locks and unlocks too many times without doingmuch work.

However, it is not a common practice to make programs lock

and unlock too often, and such programs would already suf-

fer poor performance. Furthermore our current instrumen-

tation implementation is a simple un-optimized use of the

C++ STL library, and overheads can be further reduced by

optimizing the implementation of instrumented code.

6.3 Assumption Violation

Although the frequency is very low, our static lock/unlock

pairing analysis can potentially yield incorrect results due

to the assumptions and heuristics it uses as described in

Section 5. Once the instrumented dynamic checking de-

tects a problem, the information is fed back to the analyzer

and the underlying client system revises the model. While



Figure 10. Runtime overheads of dynamic checking.

we perform the experiments on the six programs, only one

such case actually occurred for OpenLDAP and the dynamic

checking instrumentation detected it.

The code snippet that caused the violation is summarized

in Figure 11. The cause of this incorrect analysis result is

the type-based memory dependency analysis refinement that

we use for mutex pointers. As opposed to the cases where

different types for lock and unlock cause a problem, two

distinct mutexes having same type is the problem in this

case. The programmer’s intention is that the lock in line 9

and the unlock in line 11 are called for different mutexes

in the same iteration because ei2 is supposed to point to

one of the children of the node pointed by eip. Since both

pointers have the same wrapper type, however, our mapping

algorithm results in mapping the unlock in line 11 to the lock

in line 9 and the unlock in line 16 to the lock in line 3. In real

execution the mutex acquired by the lock in line 9 can be

released by either the unlock in line 11 of the next iteration

or the unlock in line 16 after breaking the loop. The lock in

line 3 should also be paired up with both unlocks in line 11

and line 16. The instrumented checking code for the lock-to-

unlocks mapping check detects this violation and reports the

incorrect analysis result.

7. Related Work

In order to better model concurrent programs by pairing up

locks and unlocks, we combine static analysis and dynamic

checking. Since existing static analysis methods cannot pro-

vide a perfect solution to our purpose, we obtain best-effort

analysis results with static analysis and check them at run-

time to verify whether the results are correct. In this sec-

tion, we first survey previous work on static analysis and dy-

namic monitoring techniques, focusing on the application of

the lock/unlock pairing problem. Then, we provide possible

use case scenarios for our framework.

Static analysis. Existing static techniques applicable to

the lock/unlock pairing problem can be largely divided into

model checking methods that emphasize precision, and pro-

gram analysis methods that emphasize scalability.

1 : EntryInfo *eip, *ei2;

2 : ...

3 : for (lock(&eip->kids_mutex); eip; ) {

4 : ...

5 : // Search children in tree-like in data structure

6 : ei2 = avl_find(eip->kids, ...);

7 : ...

8 : // Lock for next iteration

9 : lock(&ei2->kids_mutex);

10: // Unlock current node

11: unlock(&eip->kids_mutex);

12: eip = ei2;

13: ...

14: }

15: ...

16: unlock(&eip->kids_mutex);

Figure 11. Incorrectly paired lock due to pointer problem.

Software model checking has a long history. We recom-

mend an excellent survey for the background on this sub-

ject [14]. Here we summarize several results relevant to this

paper. Classical model checking techniques model systems

as labeled transition systems and verify properties specified

in temporal logic. These techniques scale poorly for soft-

ware verification due to the state explosion problem. Most

software model checking tools are execution based and state-

less. These tools systematically explore all program paths in

hope to find bugs more quickly than stress testing [3, 22].

Abstract model checking scales to real software by map-

ping program states to an abstract domain [5]. As abstrac-

tion may not capture all the information needed to verify a

property, when a counter-example is discovered, it is unclear

whether it is genuine or spurious due to abstraction. In this

case, the abstraction can be refined to filter out spurious ex-

amples. Automated program abstraction and refinement are

difficult, and the iterative process may not converge. In prac-

tice, automated abstract model checkingmethods are limited

to small or special-purpose programs [12, 13].

In the area of static program analysis, many scalable

dataflow analysis algorithms have been developed, which

can be viewed as model checking with manually defined ab-

straction [29]. For example, Saturn [7] is a scalable anal-

ysis engine that is both sound and complete with respect

to the user-provided abstraction, written in its Calypso lan-

guage. This framework enables the programmer to manually

refine and optimize the abstraction for each specific analysis

task. Other scalable algorithms use carefully tuned heuristics

that can be viewed as predefined abstraction. For example,

ESP [6] is a path-sensitive analysis tool that scales to large

programs by merging branches that lead to the same analy-

sis state. The analysis is sound but incomplete with respect

to this abstraction. Regarding the original program, however,

manually defined abstractions are often unsound.

For example, the locking patterns in Figure 1(a) often

confuses standard dataflow analysis algorithms integrated in

tools designed for higher level applications [9, 31]. Both the

locking analysis script bundled in Saturn and the ESP al-

gorithm would identify the branch correlations easily if the



code snippet is inside one function. But as both tools use

function summaries for scalability, they can fail to infer cor-

rectly inter-procedural variations of the pattern if the func-

tion summary does not encode enough information. In this

case, the analysis result can be sound but incomplete as miss-

ing information is often modeled by free variables with arbi-

trary values. On the other hand, the locking script in Saturn

and ESP both ignore global alias, therefore the analysis re-

sult is unsound if the branching condition flag is modified

via a global pointer. Encoding sound and complete global

alias information in function summaries is nontrivial [11].

Applications of Saturn often ignore alias analysis too [33].

As of today, we are not aware of any sound and com-

plete program analysis tool that can verify the lock pairing

property in large software such as Apache and OpenLDAP.

Nevertheless, the analysis techniques in the previous pro-

gram analysis tools have partially inspired the static anal-

ysis part of our work. For instance, we employ the infeasible

path analysis similar to the ones used in [4, 6] and we also

adopt caching analysis results for computational efficiency

as RacerX [9] does.

Dynamic monitoring. Although not directly suitable for

our problem, there has been a considerable body of work on

monitoring the behavior of programs, especially in the con-

text of profiling and bug detection. The main benefit of dy-

namic techniques is that they can closely collect information

about program execution, which is difficult for static tools to

infer.

Such tools as DynamoRIO [2], Pin [20], and Valgrind [25]

provide generic instrumentation frameworks for dynamic

monitoring. Through the comprehensive API of Pin and Dy-

namoRIO, users can write their own monitoring client fitting

their purpose, and Valgrind is widely used to detect memory

bugs. In spite of the many optimizations they exploit such

as code cache, branch linking, and trace building, however,

they can impose a substantial amount of runtime overheads

depending on what kind of code should be instrumented.

There are also dynamicmonitoring techniques customized

for specific purposes. LiteRace [21] and ReEnact [27] track

concurrent programs’ memory accesses to detect data races.

AVIO [19] and AtomTracker [23] aim for atomicity viola-

tions. Our framework shares the idea of reducing runtime

overheads by customizing the type of tracking information

with these tools. As opposed to these tools, however, our

framework performs most of its analysis offline and uses

dynamic checking only for confirmation.

Use cases.As mentioned in Section 1, our framework can

benefit static bug detection tools and automated bug fix tools

by providing more accurate information about critical sec-

tions. For instance, static bug detection tools using lockset

analysis suffer false positives due to infeasible paths. Rac-

erX [9] uses many heuristics and error ranking to mitigate

the impact of such false positives. Our framework would

help them prune invalid locksets and thus reduce the false

positives. On the other hand, automated bug fix tools [15, 16]

often add synchronizations to restore atomicity or order con-

straints, and they may introduce new deadlock if the usage

of existing locks is unknown. AFix [15] sets timeout for the

new synchronizations to avoid introducing deadlocks. Our

framework can help them eliminate the timeouts and the po-

tential chances of missing bugs.

Our framework can also promote compiler optimizations

for concurrent programs. Currently compilers only optimize

code sections that do not involve any lock operations, limit-

ing the efficiency of the generated code. Joisha et al. [17]

suggest extending the scope of optimizations beyond the

synchronization-free regions by using procedural concur-

rency graph (PCG). With accurate lock/unlock pairing, they

can further refine PCGs by reflecting the concurrency limited

via mutexes. Consequently, this can provide more optimiza-

tion opportunities.

8. Conclusion

We have proposed a practical lock/unlock pairing mech-

anism that combines an inter-procedural analysis and dy-

namic checking for better modeling of critical sections in

POSIX multithreaded C/C++ programs. We have demon-

strated the effectiveness of our mechanism through experi-

ments on six benchmarks including three large and complex

server programs. Compared with depth-first traversal, our

method reduces by 11× the number of statically unpaired

locks. CFG pruning keeps problem size small so that com-

pile time is low, and dynamic checking compensates for im-

perfections in our static analysis with modest overhead (at

most 3.3%).
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