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ABSTRACT
Uniformly distributing parallel workloads amongst threads is an
effective strategy for programmers to increase application perfor-
mance. However, in any parallel segment, execution time is de-
termined by the longest running thread. Even for embarrassingly
parallel programs in the form of SPMD (single program multiple
data), the threads are not perfectly balanced due to control flow
divergence, non-deterministic memory latencies, and synchroniza-
tion operations. Such an imbalance can be significantly exacer-
bated by performance asymmetry among cores, which is likely to
exist in future generations of chip multiprocessors (CMPs) either
for energy efficiency or due to process variation.

We propose Dynamic Core Boosting (DCB), a software-hardware
cooperative system that mitigates the workload imbalance prob-
lem in performance asymmetric CMPs. Relying on dynamic volt-
age and frequency scaling to accelerate individual cores at a fine
granularity, DCB attempts to balance the workloads by detecting
and boosting critical threads. DCB coordinates its compiler and
runtime to enable asymmetric CMPs to achieve near-optimal uti-
lization of core boosting. The compiler instruments the program
with instructions to give progress hints and the runtime monitors
their execution, enabling DCB to intelligently accelerate selected
threads within a total core boosting budget for better performance.
On a simulated eight core system of varying frequency, our exper-
iments using PARSEC benchmarks show that DCB improves the
overall performance by an average of 33%, outperforming a reac-
tive boosting scheme by an average of 10%.
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1. INTRODUCTION
Due to power dissipation limits and design complexity, the mi-

croprocessor industry has become less successful in improving the
performance of monolithic processors, even with continued tech-
nology scaling. As a result, chip multiprocessors (CMPs) have
grown into a standard for all ranges of computing from cellular
phones to high-performance servers. Since CMPs require suffi-
cient thread level parallelism (TLP) to benefit from the increased
computing power, most performance-aware programmers face in-
creasing pressure to parallelize their programs.

One lesson that programmers have learned from the long history
of high performance computing is that increasing resource utiliza-
tion results in better performance. As the multi-threaded program-
ming model abstracts away the individual characteristics of each
core, uniformly distributing workloads into threads has been con-
sidered an effective strategy to increase the utilization of CMPs.

Despite the best efforts of programmers to evenly divide work-
loads, it is very difficult, if not impossible, to perfectly balance
workloads. Even for single program multiple data (SPMD) multi-
threaded workloads with embarrassing parallelism, there exists im-
plicit software heterogeneity among threads due to control flow
divergence, non-deterministic memory latencies, and synchroniza-
tion operations. Such software heterogeneity sometimes inhibits
the parallel programs from effectively utilizing a larger number of
cores.

The performance asymmetry of cores can notably exacerbate
workload imbalance, and it is highly probable that we will have
asymmetry in the future generations of CMPs for several reasons.
First, heterogeneous multicore systems have been introduced by
many researchers for better performance [3, 18] or saving power [17].
Heterogeneous multicores are also an effective way to trade die
area to higher energy efficiency [22], and some commercial prod-
ucts [13] have already started implementing such designs.

Increasing core-to-core process variation also creates performance
asymmetry in CMPs [29]. Process variation is the phenomenon
where the process parameters of transistors, such as effective gate
length and threshold voltage, diverge from their nominal value af-
fecting the maximum operable frequency. The amount of within-
die process variation is growing, as integrated-circuit technology
keeps scaling down the size of individual transistors. With the
rapidly developing emphasis on power and energy efficiency, lower
supply voltages are preferred by chip designers and this makes the
variation problem worse. Future microprocessors are likely to be
heterogeneous across the working frequency of individual cores,
since making all cores run at the frequency of the slowest core loses
too much performance in the presence of large process variation.

One possibility for dealing with performance asymmetry in
CMPs is to place the burden of workload balancing on program-



Figure 1: Slowdown caused by performance asymmetry.

mers or compilers. However, parallel programming itself is already
difficult enough for programmers. Even if we assume that it was
possible for compilers to exploit the heterogeneity for workload
balancing, the portability issue would prohibit them from gener-
ating the customized code for more than one specialized setting
of heterogeneity. Furthermore, often the performance asymmetry
caused by process variation cannot be determined at compile time
because it may vary from one chip to another even for the same
model processor.

In this paper, we propose Dynamic Core Boosting (DCB), a
software-hardware cooperative system that mitigates the workload
imbalance problem in performance asymmetric CMPs. DCB relies
on the hardware capability of accelerating individual cores through
dynamic voltage and frequency scaling (DVFS) at a fine granularity
to balance the workload across the asymmetric cores by boosting
critical threads. With the limited resource to boost a subset of cores,
DCB orchestrates its compiler, runtime subsystem, and processor
cores for near-optimal assignment of the boosting budget. First, a
target program is analyzed and instrumented by the compiler to in-
clude the instructions that provide progress hints. At runtime, the
execution of the program is monitored by the DCB runtime subsys-
tem. Finally, DCB selectively boosts the critical threads by using
the information gathered by the instrumented code and the DCB
runtime subsystem.

This paper makes the following contributions:

• A theoretical background for the optimal assignment of core
boosting.
• A cooperative system to balance workloads in asymmetric

CMPs consisting of a compiler, runtime subsystem, and ar-
chitecture.
• A novel mechanism to evaluate such systems with perfor-

mance asymmetry and/or core boosting capability.

2. MOTIVATION AND BACKGROUND
While we can expect the performance asymmetry in CMPs to

magnify the workload imbalance in multi-threaded programs, the
exact effects on performance are not obvious. In this section, we
present our motivation by showing the preliminary results on how
much the asymmetry can affect the performance of multi-threaded
benchmarks. Then, we provide the background of the hardware
mechanism to accelerate individual cores.

2.1 Low Utilization of Asymmetric CMPs
We compare two simulated eight core systems to understand the

performance impact of core asymmetry. The two systems work at

Figure 2: CPU time wasted for synchronization.

the same average core frequency, but one has all eight cores oper-
ating at the same frequency and the other has varying frequencies.
We assume a large variation in core frequencies (σ/µ = 30%, µ:
mean, σ : standard deviation) as in Miller et al. [24], and the eight
cores run at (µ−1.5σ), (µ−1.0σ), (µ−0.5σ), µ , µ , (µ +0.5σ),
(µ + 1.0σ), (µ + 1.5σ), respectively. The details of evaluation
methodology are explained in Section 5.

Figure 1 presents the slowdowns of the asymmetric system com-
pared to the symmetric one for the PARSEC 2.1 benchmark suite [5].
Most of the benchmarks are configured to have the same number
of worker threads as the number of cores, except for those with
pipeline parallelism. dedup and ferret are set to have one thread per
pipeline stage. x264 spawns the number of worker threads equal to
the number of frames and there is no trivial way to change it with
the harness of the PARSEC benchmark suite.

Even though the two systems have the same average core fre-
quency, we can see that many of the benchmarks experience sig-
nificant slowdown. Several benchmarks such as streamcluster and
swaptions suffer the slowdown close to the worst core frequency.
Some others, i.e., bodytrack, ferret, and raytrace, show almost iden-
tical performance to the homogeneous system on the other hand.
The geometric mean of the slowdown for all benchmarks is 17%.

In order to understand what causes more slowdowns for some
benchmarks than the others, we measure how much portion of CPU
time in parallel sections is wasted on each type of synchronization.
Figure 2 presents the measured portions. For each benchmark, the
left bar shows the CPU time spent running on the homogeneous
cores and the right bar represents the time on the asymmetric CMP.
As seen in the graph, the benchmarks use different types of syn-
chronizations as their main mechanism to control parallel execu-
tion, and the impact of performance asymmetry varies depending
on the dominant synchronization pattern.

The simplest method is to spawn threads to work independently
and join them at the end. blackscholes and swaptions are in this
category. Having similar structure, if the worker threads need to
progress to the next stages together, they are synchronized with
barriers. canneal, fluidanimate, and streamcluster use this type of
synchronization patterns. For these two categories, the cores stay
idle if their threads finish the tasks earlier than other cores, causing
under-utilization of cores. Consequently, they are very likely to be
affected by the asymmetry among cores.

Some benchmarks manage a pool of worker threads. When they



need to execute in parallel, the main thread distributes tasks to
the threads in the pool. After they finish the tasks, they stay idle
waiting for the next task. The worker threads are usually synchro-
nized with condition variables. If the workload distribution is deter-
mined dynamically, e.g., bodytrack and raytrace, they are less sus-
ceptible to workload imbalance due to asymmetric cores. On the
other hand, facesim is substantially affected by the asymmetry since
the workload is equally divided once and assigned to the workers.

dedup and ferret adopt a pipeline parallel model. The worker
threads run different stages of a pipeline and the data flows from
one stage to another through a FIFO queue synchronized with con-
dition variables. For this type of parallel program, the overall per-
formance of the program is determined by the slowest stage. Ac-
cordingly, the performance is very sensitive to the stage-to-core
scheduling for the asymmetric setting, but the average remains un-
changed.

Finally, we see a great possibility of improving performance for
asymmetric CMPs by balancing workloads. From the observations
made above, many of the benchmarks are directly affected by the
performance asymmetry. In addition, balancing the pipeline stages
in the programs like dedup and ferret can yield performance bene-
fits.

2.2 Core Boosting
Performance asymmetry among cores, combined with inter-

thread dependencies formed by synchronization operations, causes
a significant performance problem for multi-threaded programs as
demonstrated above. We try to solve this problem by relying on the
hardware capability of accelerating the subset of cores while stay-
ing in the power budget. Dynamic voltage and frequency scaling
(DVFS) has been widely used for energy efficiency [1, 10]. More-
over, there have been several proposals that use dual power supplies
for boosting individual cores [8, 24]. Dreslinski et al. [9] shows that
very fast boosting transition (< 10ns) can be achieved. Our system
builds on such techniques for boosting cores at a fine granularity.

While the idea of adopting fast core boosting for mitigating per-
formance bottlenecks or reducing performance heterogeneity is not
new [8, 24], the main contribution of our work lies in how to assign
core boosting for higher performance with the same power budget.
We first provide the theoretical background for the optimal assign-
ment of core boosting. In order to achieve a close to the optimum
solution, we propose a system that coordinates the compiler, run-
time, and processor cores.

One important point to notice is that our assignment techniques
are not limited to the specific core boosting technology. Although
we assume a dual Vdd-based core boosting to demonstrate the ef-
fectiveness of our techniques in this paper, our technique can be
used in conjunction with any core acceleration mechanism with
short enough transition time. Further differentiation from the pre-
vious proposals and more details of other feasible core boosting
technologies are covered in Section 7.

3. CORE BOOSTING ASSIGNMENT
Given the core boosting capability and the limited boosting bud-

get, how to assign the boosting budget is very important for overall
performance. In this section, we show our core boosting assign-
ment at an abstract level. At first, we describe the mathematical
modeling of workload imbalance and core boosting. We then for-
mulate core boosting assignment as an optimization problem and
provide a theoretical solution. Finally, we explain our core boost-
ing assignment algorithms for two commonly used parallelization
practices: data parallel programs and pipeline parallel programs.

When programmers parallelize their compute intensive programs

for better performance, they first have to decide how repeated com-
putations can be divided into threads. If the computation is con-
ducted on the multiple subsets of data and they can be potentially
performed concurrently, data parallel structure is most commonly
used. In this form of parallel programs, multiple worker threads are
spawned to run same code on different, possibly overlapping, sub-
sets of data. When some regions of code must be executed atom-
ically, mutexes are used to guard the regions. In some cases, all
worker threads should finish one phase of execution and be syn-
chronized with each other before they start the next phase. Barrier
waits are inserted between the phases for these cases.

For data parallel type of parallelism structure, software hetero-
geneity is implicit in the sense that worker threads run the same
code. It does not always mean, however, that the amounts of com-
putations are identical among the threads. Control flow divergence
is the primary reason for such mismatch of computation. For ex-
ample, if statements let different portions of code be executed de-
pending on condition values. For some programs, even different
number of loop iterations can be run depending on input data. Non-
deterministic memory latencies are another important source of im-
plicit software heterogeneity. Even though two threads are access-
ing the elements in the same array, one might hit and the other
might miss in caches. Modern microprocessors usually have mul-
tiple levels of caches and accurately predicting the latency of each
memory access is not possible. Lastly, synchronization operations
also contribute to implicit software heterogeneity. For instance,
when two threads are trying to acquire a mutex at the virtually same
time, one might proceed immediately while the other waits until the
mutex is released.

Another frequently used type of parallel structure is software
pipelines. While the repeated computations can be executed con-
currently in data parallel programs, some programs need to enforce
orders among the computations performed on the different subsets
of data. If different stages of computations can overlap preserving
the orders, pipeline parallel structure is an option. For this type
of parallel programs, multiple threads are spawned to execute the
different stages of computations. Different stages are usually con-
nected with FIFO queues and data elements flow from one stage to
another through these queues. Condition variables are often used
to synchronize the data flow.

Software heterogeneity is rather explicit in pipeline parallel pro-
grams, since different threads execute different codes. Since most
modern microprocessors shows varying latencies depending on the
types of instructions and the majority of them support out-of-order
executions, statically balancing the execution time of different code
is impossible even for homogeneous multicore processors. In addi-
tion, all sources of implicit software heterogeneity apply for pipeline
parallel programs as well.

3.1 Modeling and Problem Formulation
Figure 3 depicts the modeling of workload imbalance and core

boosting assignments with n cores. Without the loss of general-
ity, this modeling assumes one workload for each core. If there
are multiple threads running on a core, we can think of the total
workloads of the threads as one workload. The assignment of core
boosting can be changed after a certain predetermined amount of
time, called a quantum. Note that this boosting quantum is much
shorter than the traditional OS scheduling quantum. This is pos-
sible as core boosting take place with very short transition time as
mentioned in the previous section. Then, w1,w2, ...,wn denote the
number of quanta taken to run each workload without any boosting
on Core1, Core2, ..., Coren. Each core can be accelerated to a dif-
ferent extent for the boosted mode, and b1,b2, ...,bn are the amount



Figure 3: Modeling of workload imbalance and core boosting.

of acceleration. In addition, let t1, t2, ..., tn be the number of quanta
where the boosting is assigned to each core.

Let us define the boosting budget, c, as the maximum number of
cores that can be boosted at any quantum. For the best performance,
c cores should be boosted every quantum, thus, it takes

T =
1
c
× (t1 + t2 + ...+ tn) (1)

boosting quanta to finish the execution. Moreover, t1, t2, ..., tn are
bounded because a core can be boosted no more than once at any
boosting quantum.

∀1≤ k ≤ n , 0≤ tk ≤ T (2)

The most important condition for this modeling to explain core
boosting assignment is that every core must finish its workload
within T quanta. For ∀1≤ k ≤ n, Corek runs tk quanta boosted
and T − tk quanta in normal mode, and it needs to finish its work-
load within T . Therefore, every tk needs to satisfy the following
inequality.

∀1≤ k ≤ n , (T − tk)+bk× tk ≥ wk (3)

Since the number of boosted quanta for each core is an integer,
core boosting assignment for the best performance is reduced to the
integer linear programming [26] of minimizing T . Let us denote
P(w1,w2, ...,wn) as the optimization problem of finding the min-
imal T and corresponding assignments t1, t2, ...tn when the work-
loads are w1,w2, ...,w3.

3.2 Assignment for Data Parallel Programs
Although general integer linear programming is NP-hard, a so-

lution can be quickly found with a greedy algorithm for our case.
We will show that assigning the boosting budget to the cores with
the largest remaining workload yields an optimal solution. We first
prove the optimality of the greedy solution and then explain how
we apply this to data parallel programs. For the simplicity of proof,
c is assumed to be 1, but the same proof technique can be used for
a larger boosting budget. The proof consists of two theorems.

THEOREM 1. If wp satisfies max(w1,w2, ...,wn) = wp, then
there exists an optimal solution for P(w1,w2, ...,wn) where tp ≥ 1.

PROOF. Suppose there exists an optimal solution, T ′ and
t ′1, t
′
2, ..., t

′
3, where t ′p = 0. Since wp is max(w1,w2, ...,wn) and

t ′p = 0, the following can be derived from condition (3).

∀1≤ k ≤ n , T ′ ≥ wk (4)

Then, let us find q such that t ′q ≥ 1, and build another solution, T ′′

and t ′′1 , t
′′
2 , ..., t

′′
3 , by exchanging the values of t ′q and t ′p. Since we just

exchanged two values, T ′′ remains the same as T ′. From condition
(4), this solution should also meets conditions (3). Therefore, T ′′

and t ′′1 , t
′′
2 , ..., t

′′
3 is another optimal solution where t ′p ≥ 1.

THEOREM 2. Let wp satisfy max(w1,w2, ...,wn) = wp. If
T ′ and t ′1, t

′
2, ..., t

′
3 with t ′p ≥ 1 form an optimal solution for

P(w1,w2, ...,wn), and T ′′ and t ′′1 , t
′′
2 , ..., t

′′
3 form an optimal solution

for P(w1−1,w2−1, ...,wp−1−1,wp−bk,wp+1−1, ...,wn−1),
then T ′ = 1+T ′′.

PROOF. Since T ′ and t ′1, t
′
2, ..., t

′
3 satisfy condition (3), we can

show they also satisfy the following condition with a little manipu-
lation.

{(T ′−1)− t ′k}+bk× tk ≥ (wk−1), i f k 6= p (5)

{(T ′−1)− (t ′k−1)}+bk× (tk−1)≥ (wk−bk), i f k = p

Thus, (T ′−1) and t ′1, ..., t
′
p−1,(t

′
p−1), t ′p+1, ..., t

′
n also form a solu-

tion for P(w1−1,w2−1, ...,wp−1−1,wp−bk,wp+1−1, ...,wn−1).
With the similar manipulation, we can show that (T ′′+1) and
t ′′1 , ..., t

′′
p−1,(t

′′
p +1), t ′′p+1, ..., t

′′
n form a solution for P(w1,w2, ...,wn)

as well. Now, if we assume T ′ > 1+T ′′, it contradicts that T ′ is an
optimal solution since (1+T ′′) is a solution. Likewise, assuming
T ′ < 1+T ′′ contradicts that T ′′ is optimal because (T ′−1) is a
solution. Therefore, T ′ = 1+T ′′.

The two proved theorems infer that boosting the core with the
largest remaining workload at every quantum gives an optimal so-
lution, hence the greedy algorithm will be optimal. Determining the
remaining workload sizes at every quantum, however, is not possi-
ble in real systems. Consequently, we need a heuristic to decide
which cores have the largest remaining workloads.

If we know the work progress ratio of each thread, we can ap-
proximately decide the thread with the least progress as the thread
with the largest workload remaining. Although this heuristic is not
always accurate, it works well when the threads are running similar
amounts of workloads, which is usually the case for data parallel
programs. As data parallel programs execute the same code for
worker threads, we can instrument it to report work progress and
assign a boosting budget to the cores with the least progress. The
details of the program analysis and progress report instrumentation
is explained in Section 4.3.

3.3 Assignment for Pipeline Parallel Programs
The heuristic used for data parallel programs does not work as

well for pipeline parallel programs. It is primarily because pipeline
parallel programs run different codes on different threads. It is dif-
ficult to measure progress consistently across threads running dif-
ferent codes. This makes it less likely that the thread with the least
reported progress has the largest remaining work.

The synchronization pattern of pipeline parallel programs also
makes it hard to apply the same technique. Multiple threads ex-
ecute different stages of pipeline, and the data flows through the
pipeline often using a FIFO queue. As it is difficult to perfectly bal-
ance workloads, some stages process data faster than the others. If
one stage is significantly faster than its predecessor, the thread run-
ning the stage often waits on its input queue. Likewise, slow stages
force their predecessors to wait. For this type of synchronization
pattern, different stages make similar progress in terms of the num-
ber of data elements processed. Even though the same number of
elements are remaining, however, faster stages have less workload
than slow stages. This invalidates the greedy solution and requires
us to use a different approach for pipeline parallel programs.



Figure 4: Dynamic Core Boosting system overview.

We adopt an epoch-based approach with the observation that the
relative speeds among threads alter much more slowly than the
boosting quanta. When we look at the ratio of time spent work-
ing and blocked at a coarser grain than a boosting quantum (100 -
1,000x), the ratio of each thread tends to stay constant for the longer
period of time. Our approach exploits the trend by assuming that
the workload size of the previous epoch closely represents the cur-
rent epoch. The details of how the workload sizes are approximated
at every epoch is described in Section 4.4

At the end of every epoch, the core boosting assignment is cal-
culated for the next epoch. Since the assignment takes place at
runtime and heavy computation can nullify the performance gain,
we need a simple solution. Instead of solving the integer linear
programming in Section 3.1, the integerality condition is ignored
assuming epoch size is large enough so that linear programming
relaxation yields a close approximation. A heuristic based on Sim-
plex algorithm [25] is used to quickly find an approximation with a
minimal amount of computation. Assuming the minimum value of
T exists on one of the extreme points, condition (2) and (3) states

∀1≤ k ≤ n , tk = 0 or tk =
wk−T
bk−1

(6)

As a heuristic, wk is then compared to max(w1
b1
, w2

b2
, ..., wn

bn
) and as-

signed to 0 if it is smaller. Finally, the rest of tks can be directly
calculated according to equation (6).

4. DYNAMIC CORE BOOSTING
This section describes how our Dynamic Core Boosting system

(DCB) coordinates the compiler, the runtime subsystem, and the
underlying core boosting architecture to obtain improved perfor-
mance by balancing workloads.

4.1 System Overview
Figure 4 represents the overview of DCB. The DCB compiler

takes a target program as an input. It first analyzes the parallelism
structure and the control flow of the program, and generates pro-
filing code. The profiling code then runs with a training input and
produces profile data. Additionally, the DCB compiler makes de-
cisions based on the static analysis results and the profile data to
instrument the program with progress monitoring code.

The generated executable runs on the DCB architecture along
with the DCB runtime subsystem. In the DCB architecture, some
cores can run in the boosted mode, which is faster than the normal
mode. At every boosting quantum, the boosting manager in the

DCB architecture decides which cores to run in the boosted mode
while maintaining the boosting budget.

The instrumented code and the DCB runtime subsystem provide
hints to the DCB architecture, with which the DCB architecture
makes the boosting assignment decisions. For data parallel pro-
grams, the instrumented code reports the progress of each thread.
At the end of every boosting quanta, the boosting manager chooses
the threads with the smallest progress for boosting. DCB works dif-
ferently for pipeline parallel programs. After every epoch, the DCB
runtime subsystem calculates the desired boosting ratio among the
threads to the DCB architecture, which stores the values for the
next epoch. The boosting manager then probabilistically selects the
cores to boost according to the boosting probability distribution.

4.2 DCB Architecture
While each core runs either in normal mode or boosted mode,

it also takes hints and makes boosting assignments differently in
two interface modes, namely progress mode and lottery mode, as
briefly mentioned previously. The operating system takes this in-
terface mode information with a flag for clone system calls when
the threads are spawned. It stores the information and requests the
DCB architecture to set the core in the proper mode every time a
context switch occurs. In addition, the thread ID and the thread
group ID are utilized by the DCB architecture when a thread is
scheduled in.

The progress mode is mainly for data parallel programs. Each
thread reports its progress to the DCB architecture. After every
boosting quantum, the boosting manager chooses c threads with
the least progress in the same thread group to be boosted, where
c is the boosting budget assigned to the thread group. The DCB
architecture provides two non-privileged instructions so that the
instrumented code can report its progress without the intervention
of the operating system. PROGRESS_STEP_FORWARD
increases the progress counter of the core by one, and
SET_PROGRESS_TO(value) sets the progress counter to value.

The lottery mode works in a slightly different way. Each thread
does not directly interact with the DCB architecture. Instead, the
DCB runtime subsystem sets the desired boosting ratio among
threads after every epoch. The boosting manager probabilistically
choose c cores based on the ratio distribution in a similar manner to
how the Lottery Scheduler [30] allocates resources. Pipeline par-
allel programs use the lottery mode to implement the assignment
algorithm explained in Section 3.3.

All per thread information needed for the boosting assignment is
stored in thread boosting table, which is managed by the operating
system in the same way as page tables. The operating system and
the DCB architecture can both access and modify the values in the
thread boosting table. Moreover, the DCB architecture includes a
cache for the thread boosting table as TLB for the page tables.

4.3 DCB Compiler
The main goal of the DCB compiler is to instrument the target

program with the progress reporting instructions so that the boost-
ing assignment algorithm described in Section 3.2 yields near op-
timal performance. In order to do so, the DCB compiler works in
three steps: static analysis, profiling, and instrumentation.

At first, the DCB compiler statically analyzes the parallelism
structure and the control flow of the target program. For the par-
allelism structure it investigates the starting and ending points of
parallel execution in the main thread and the highest level func-
tions executed in parallel. For the majority of programs, they are
thread spawning function calls, thread joining function calls, and
functions passed over to the thread spawning function calls, respec-



01 : pthread_barrier_wait(barrier);
02(*): SET_PROGRESS_TO(0);
03(*): period = calc_period_L007(start,end);
04 : for( i = start ; i <= end ; ++i ) {
05 : ...
06 : compute1(...);
07 : if(side_exit) {
08(*): SET_PROGRESS_TO(MAX_L007);
09 : break;
10 : }
11(*): if(((end - i) % period) == 0)
12(*): PROGRESS_STEP_FORWARD;
13 : }
14 : compute2(...);
15(*): PROGRESS_STEP_FORWARD;
16(*): period = calc_period_L008(max);
17 : for( i = 0 ; i < max ; ++i ) {
18 : compute3(...);
19(*): if(((max - 1 - i)% period) == 0)
20(*): PROGRESS_STEP_FORWARD;
21 : }
22 : pthread_barrier_wait(barrier);

Figure 5: Example of progress reporting instrumentation.

tively. For some programs the DCB compiler cannot accurately
gather the information. For example, the DCB compiler might be
unable to disambiguate the function pointers passed over to the
thread spawning calls. Moreover, non-standardized task starting
and ending functions are used when the program manages a thread
pool and send tasks to the pool for parallel execution. In those
cases, the DCB compiler relies on the programmers’ annotation
specifying the information.

Once the parallelism structure is determined, the DCB compiler
analyzes the control flow of the code regions that can run in par-
allel. At the highest level, these sections are the functions passed
over to the thread spawning calls and the region of the main threads
between the starting and ending points of parallel execution. There
could be function calls in these regions, and the DCB compiler fol-
lows the call graph to analyzes the callees in turn. It stops follow-
ing the call graph if there is a call through an ambiguous function
pointer or a cycle in the call graph. The barrier synchronization
points are also included in the control flow information.

The DCB compiler generates the profiling code and runs it with
a training input. It focuses on the loops in the parallel regions,
using the control flow information gathered in the static analysis
phase. The profiling code records the time spent in each loop and
the iteration counts. Path profiling is also performed to discover the
most frequent paths.

The last step exploits the profile data along with the static anal-
ysis results to instrument the code with the progress reporting in-
structions. In order to achieve the goal of the DCB compiler, all
threads need to report progress at the points where they share the
same progress ratio, regardless of what control path they take. One
necessary condition is that all threads should go through the same
number of progress reporting steps. It is straightforward for the
counted loops with constant iterations. However, this is not always
the case and other types of loops make this condition difficult to
meet. In other words, naively incrementing a progress counter af-
ter every iteration does not work because the total iteration counts
might vary across the threads even for the same loops depending
on the input.

For the counted loops with input dependent iteration counts, the
DCB compiler inserts the code to calculate the number of iterations
needed to be executed for the next progress reporting right before
entering the loop. This number is then used as a progress reporting
period inside the loop. The DCB compiler also instruments loop

side exits to set the progress counter to the final progress value of
the loop. The DCB compiler does not instrument uncounted loops.
If an uncounted loop in a parallel region takes too much time, it
might hurt the workload balancing capability of DCB. However,
it is a very rare case and the programmers can insert the progress
reporting code by themselves or turn the loop into a counted loop.
For instance, consider an uncounted loop traversing a linked list. It
is very difficult for a compiler to decide the number of iterations
before entering the loop. However, the programmer can possibly
transform it to a counted loop by adding an element count variable
in the list header.

Another requirement for the instrumented code is that the fre-
quency of progress reporting should be adequate. If the reporting
granularity is too coarse, the boosting manager cannot get enough
information to decide the most lagging thread. It should not be too
fine because the progress reporting instructions can incur excessive
overheads for this case. The DCB compiler tries to insert progress
reporting instructions so that the execution times between them are
roughly constant. It estimates the execution time with the instruc-
tion counts for straight-lined code regions. In the case of loops, it
uses the profile data to calculate the approximate execution time
per iteration.

Figure 5 shows a simple example of how the instrumented code
would look like in source level. The lines marked with an asterisk
presents the code inserted by the DCB compiler. calc_period_L007()
in line 3 and calc_period_L008() in line 16 are the inline functions
generated by the DCB compiler. They calculate the number of loop
iterations needed to be executed for the next progress reporting.
Constant values cannot be used in the same place because of pro-
grams that have different number of iterations across the threads,
since the total progress counts should be equal for all threads. The
generated inline functions calculate the progress reporting period
so that all threads go through the same number of progress report-
ing steps. Another point to notice is the line 8. For the threads
that exits the loop before it finishes the total iterations, the DCB
compiler sets the progress counter to the maximum progress of the
loop.

4.4 DCB Runtime Subsystem
The most important role of the DCB runtime subsystem is to

provide the desired boosting ratio to the DCB architecture when
the threads are running in lottery mode. The DCB runtime sub-
system is idle for the most of the time and wakes up after every
epoch. It then reads the per thread values of the CPU cycles. The
DCB architecture has the dedicated hardware counters for per core
CPU cycles and the operating system manages the per thread val-
ues in the thread boosting table. The DCB runtime subsystem es-
timates the workload size of each thread by comparing the current
per thread CPU cycles with the last value. Then it calculates the
desired boosting ratio of the threads according to the assignment
algorithm described in Section 3.3.

Although the DCB runtime subsystem can be implemented as
a shared library, it is preferable for it to be part of the operating
system because it needs fast accesses to the thread boosting table.
Since the thread boosting table is protected from unprivileged ac-
cesses, the DCB runtime subsystem should go through the system
call interface if it is implemented as a shared library. This can cause
a performance problem if the epoch size is too small.

5. EVALUATION METHODOLOGY
As the system level interactions among threads are very impor-

tant, the evaluation of DCB is different from the evaluation of other
microarchitectural features. This difference makes the traditional



Figure 6: Core boosting emulation with dynamic binary trans-
lation.

evaluation approach of using cycle-accurate simulation an infeasi-
ble option for our purpose. DCB makes boosting assignment deci-
sions based on the relative orders of thread progressions, and syn-
chronization operations are critical to these orders. For instance,
let us consider a situation where two threads are competing for a
mutex. One of them is about to enter a long critical section and
the critical section of the other is short. A slight difference of ar-
rival time to the critical section can make a huge difference in the
progress of the threads after they both exit from the critical sec-
tions. Moreover, even the execution path might change depending
on the order of events [12]. Sampling [27] based simulation would
not yield meaningful results as the interactions among threads are
not considered. Trace-driven simulation that separates functional
and timing simulation might not be accurate either.

Without sampling or trace-driven mechanisms, cycle-accurate
simulators are too slow to evaluate the performance of DCB. The
entire execution of the programs from the beginning to the very end
must be measured since the interactions among threads are critical.
This makes it very difficult, if not impossible, to test DCB on cycle-
accurate simulators with realistic workloads. Therefore, we need a
different approach.

In order to evaluate DCB in a reasonable amount of time while
emphasizing on thread interactions, we use a dynamic binary trans-
lation (DBT) based emulation platform. For emulating diverse core
speed for both performance asymmetry and core boosting, our plat-
form slows down execution by adding extra instructions to each ba-
sic block. Figure 6 shows the conceptual diagram of this scheme.
The iteration counts of the inserted nop loop decides how much the
execution is slowed down. Since we need to vary the speed from
thread to thread, Thread Local Storage (TLS) is used to store the
index variable tls_idx. The transition between two different core
speeds can be emulated by simply overwriting the value of this vari-
able. The counts array is loaded to the memory before executing
the program.

The key point for the accuracy of this evaluation scheme is that
the amount of slowdown must be inversely proportional to the mod-
eled core speed. We achieve this by judiciously deciding the iter-
ation counts for every basic block and for every slowdown value.
Our mechanism to decide the iteration counts is inspired by Ey-
erman et al. [11] which states that disruptive miss events such as
cache misses and branch mispredictions result in characterizable
performance behavior. The basic idea is that we can accurately dic-
tate the iteration counts according to the required slowdown amount
if we can measure the per basic block number of these disruptive
events.

We choose the number of instructions, the last level cache misses,
and the data TLB misses, since they showed the largest correlations
with the CPU time of the programs in our measurement. Using

Figure 7: Errors in the simulated execution time of the perfor-
mance asymmetry evaluation platform.

hardware performance counters, we measure these values for vari-
ous time periods during repeated execution of the benchmarks. We
then model the relationship between the CPU time and those vari-
ables with linear regression based on the measurement.

The hardware performance counters are also used for sampling
the program counter values when the miss events occur. We collect
the program counter samples to map the number of the miss events
to each basic block. Assuming the sampling preserves the prob-
abilistic distribution of the miss events, the numbers for the miss
events per basic block can be calculated by projecting the sample
distribution to the total number of miss events for the entire exe-
cution. Finally, the number of iterations per basic block and slow-
down value are calculated according to the linear regression model
along with the miss event numbers.

Except for the fact that each thread is slowed down, the exe-
cution on the evaluation platform is almost identical to running on
native hardware. Since the threads actively interact with each other,
the simulation errors caused by ignoring thread interactions can be
minimized.

6. EXPERIMENTAL RESULTS
We first ascertain the validity of the evaluation platform by veri-

fying the errors in the simulated execution time. Then, we use it to
evaluate the performance improvement of DCB. We have built the
evaluation platform on DynamoRIO [6], an open source dynamic
binary translation system. The DCB compiler is implemented as an
optimization pass for the LLVM compiler infrastructure [19], and
we have implemented the DCB runtime subsystem as a shared li-
brary. All experiments are performed on a system with four 8-core
Intel Xeon 2.26GHz processors with 24MB L3 cache, and the sys-
tem has 32GB of main memory. We use the Pthreads implementa-
tion of PARSEC 2.1 benchmark suite [5], with simlarge workloads.
freqmine is left out because it does not have a parallel version of
Pthreads implementation. Although vips has Pthreads implemen-
tation, it is not used either since it works with GNOME Threads
interface at the source code level. The current implementation of
the DCB compiler needs source level interfacing with Pthreads for
its static analysis. Each experiment represented is the average of
the trials repeated at least ten times.

6.1 Accuracy of Evaluation Platform
We verify the accuracy of our evaluation platform by comparing

the execution times with slowdown. Figure 7 shows the errors in
the simulated execution time of the platform, dropping the sign for



Figure 8: Normalized execution time of Heterogeneous, Reac-
tive, and DCB.

negative values. For the experiments, we calculated the expected
values from the simulated runs with 5x slowdown and compared
them to the simulated runs with 10x slowdown. On average, our
evaluation platform shows 4.8% of errors with the maximum of
10.8%. While our evaluation platform tries to closely match orig-
inal execution using the inferred linear regression model and the
per basic block hardware counter statistics, the main source of er-
ror is the difference between the original instructions and the extra
instructions instrumented. Despite the fact that it does not perform
the detailed microarchitectural simulation, however, it is quite ac-
curate. More importantly, it enables us to run the programs on re-
alistic inputs without sampling while correctly maintaining inter-
dependencies arising due to synchronizations.

6.2 DCB Performance Improvement
Using the DBT-based performance asymmetry evaluation plat-

form, we evaluate the performance improvement of the DCB sys-
tem. The underlying asymmetric CMP is assumed to be identical
to the one used in Section 2.1. The standard deviation (σ ) of the
core frequencies is 30% of the average (µ), and the eight cores run
at the frequencies of (µ − 1.5σ), (µ − 1.0σ), (µ − 0.5σ), µ , µ ,
(µ + 0.5σ), (µ + 1.0σ), (µ + 1.5σ), respectively. As the current
generation of AMD processors [1] already have per-core DVFS ca-
pable of operating at 20 - 30% higher frequencies than the nominal
frequencies, we use the acceleration value of 1.5x assuming fast
switching (< 10ns) with dual supply voltage rails. We use c = 1
for the boosting budget, which means one core can be boosted at
any moment. We use the asymmetric CMP with no boosting, Het-
erogeneous, as a baseline. For the fairness of comparison, the fre-
quencies of Heterogeneous is set to be higher than the underlying
cores for the boosting schemes so that its average core frequency is
equal to the boosting schemes. Although we cannot directly mea-
sure power consumption due to the limitation of our evaluation plat-
form, we keep the power budgets of boosting schemes as close to
the baseline as possible in this way.

We also compare DCB to a reactive boosting scheme, Reactive,
where the priority of the threads is managed in the same way as a
state-of-the-art reactive core acceleration scheme, Booster SYNC [24].
In Reactive, a thread can be in one of the three priorities: blocked,
normal, and critical. The default priority is normal and this changes
to blocked when the thread is waiting for either a mutex, a condition
variable, or barrier. The priority is promoted to critical if the thread

Figure 9: Synchronization overheads of Heterogeneous, Reac-
tive and DCB.

acquires a mutex. Reactive always prefers the thread with higher
priority. When there are multiple threads with the same highest
priority, Reactive assigns boosting in a round robin manner.

Figure 8 shows the normalized execution time of Heterogeneous,
Reactive, and DCB. DCB achieves performance improvement over
both Heterogeneous and Reactive across all of the benchmarks.
On average, the performance gain of DCB over Heterogeneous is
32.9%, outperforming Reactive by 10.3%. As expected from the
preliminary analysis in Section 2.1, DCB is most effective for the
benchmarks having thread join or barriers as the primary synchro-
nization method, as in blackscholes and streamcluster. Interest-
ingly, both Reactive and DCB present substantial performance im-
provement even for the benchmarks with dynamic workload dis-
tribution, such as bodytrack and raytrace, mainly due to the se-
quential regions. For the sequential portions of executions, both
Reactive and DCB can concentrate the boosting budget to the only
working thread yielding better performance than Heterogeneous.

In order to better understand the workload balancing capability
of DCB without the effect of accelerating sequential region, we
also measure the CPU time wasted for synchronization operations
in the same way as in Figure 2. Figure 9 presents the CPU time
portion for synchronizations. From this graph, we can confirm that
DCB is very effective in balancing workloads and reducing the syn-
chronization overheads, for data parallel programs such as blacksc-
holes and streamcluster. We can also see that DCB can reduce the
synchronization overhead of pipeline parallel programs like ferret.
Note that this graph shows the ratio of synchronization overheads
to the total CPU time of parallel execution. Since the execution
time is significantly reduced for benchmarks like dedup and ferret,
the workload balancing effect is actually greater than it looks in the
graph.

Figure 10 illustrates how DCB outperforms the other schemes.
In this figure, X-axis presents the time scale normalized against the
finishing time of the last threads of Heterogeneous, and Y -axis is for
the number of threads that have finished their tasks. Therefore, if
the line hits the ceiling earlier, better performance was achieved. As
expected, DCB shows the best performance among all the schemes.
An interesting point to note is that DCB loses to the other schemes
until the sixth thread finishes its task. This shows that DCB assigns
the boosting budget in a way closer to the optimum. In other words,
DCB saves the boosting budget from already fast threads and assign
them to the lagging threads, reducing the workload imbalance. For



Figure 10: Arrival time of each thread for blackscholes.

this reason, the slope of the DCB line becomes steeper as it gets
to the end. For DCB, only the last three threads are finishing their
tasks approximately at the same time, and this is because the boost-
ing budget is not enough to balance all of the threads. If DCB had
more boosting budget, it would have the almost vertical fraction of
the line from an earlier point.

Another point to notice in Figure 10 is that Reactive starts al-
most identically with Heterogeneous and gains a slightly steeper
slope than Heterogeneous. The reason is that Reactive is indeed
reactive. Reactive does not discriminate threads before some of
them reach synchronization operations. So, it starts identical with
Heterogeneous fairly distributing the boosting budget to all cores.
This is also why Reactive beats DCB in the beginning. Moreover,
the Reactive line is slightly steeper than Heterogeneous because it
starts concentrating the boosting budget by not assigning it to the
idle cores.

7. RELATED WORK
In this section, we first survey previous work that suggests per-

formance asymmetry in CMPs. Since DCB is not limited to one
type of core boosting mechanism as mentioned before, we then re-
view per-core performance adaptation technologies that could pos-
sibly be used for core boosting. Finally, we study the previous pro-
posals for assessing thread criticality and differentiate DCB from
them.

7.1 Performance Asymmetry in CMPs
There have been numerous prior works that motivate inherent

performance asymmetry in CMP designs. Several of them [3, 18]
are proposed for better performance, and some others [17] show
asymmetry is beneficial to reduce power consumption. Asymmet-
ric CMPs have been demonstrated to be effective for alleviating
serial bottlenecks [14, 28, 16]. In consequence, some commercial
products [13] have started adopting the trend.

Increasing within-die process variation in near-future technolo-
gies also demands performance asymmetry even in homogeneous
CMP designs. Because of process variation, Teodorescu et al. [29]
claims that it is no longer accurate to think of large CMPs as ho-
mogeneous systems. Furthermore, low voltage chips aggravate the
impact of process variation, and maintaining homogeneity by op-
erating at the frequency of the slowest core severely lowers perfor-
mance [23].

7.2 Dynamic Adaptation of Core Performance
Dynamic voltage and frequency scaling (DVFS) is a widely used

technique for dynamic per-core performance adaptation [15, 10]
and some AMD commercial processors support per-core DVFS [1].
However, off-chip regulator-based DVFS incurs intolerable scaling
overheads (tens of microseconds) for our purpose. On the other
hand, DVFS using on-chip regulators has much shorter transition
time but suffers from low efficiency of the regulators.

Miller et al. [24] and Dreslinski [8] recently proposed the use of
dual-voltage rails for fast adaptation of per-core performance. In
addition, Dreslinski et al. [9] confirmed that very short transition
time (< 10ns) is achievable with a new circuit technique. We as-
sume this technique to demonstrate the effectiveness of the DCB
system.

Another feasible option for the underlying mechanism of core
boosting is adapting hardware resources of cores. Composite
Cores [22] integrates two different types of computing engines and
achieves high performance and energy efficiency. It also shows
that fine-grained (quantum length of 1000 instructions) dynamic
per-core performance adaptation is possible.

While Composite Cores adapts in-core hardware resources, Il-
lusionist [2] uses another core to boost cores. Illusionist consists
of many lightweight cores and a small number of aggressive cores,
and aggressive cores are used to accelerate the execution of the
lightweight cores by providing execution hints, running ahead of
them.

7.3 Thread Criticality Assessment
Thread Criticality Predictor (TCP) [4] identifies thread criticality

based on memory hierarchy statistics using hardware counters. It
increases energy efficiency by scaling down the frequency of non-
critical threads or improve performance by task stealing from criti-
cal threads. Although TCP shows high accuracy (average of 93%),
it is not suitable for our purpose of balancing workloads for asym-
metric CMPs. For example, consider two perfectly identical (in-
cluding cache misses) threads running on two cores with different
frequencies. In the middle of the workloads, TCP would assess the
criticality of faster thread higher than the slower thread because the
faster thread would have more misses to the point.

Prior work has suggested using barrier synchronizations for thread
criticality prediction for saving energy either by transitioning into
low power modes after reaching a barrier or by scaling down the
voltage and frequency of non-critical threads. Liu et al. [21] and
Thrifty Barrier [20] differ from our work as they try to predict the
arrival time to the next barrier based on history while DCB only
needs to decide lagging threads for data parallel programs. Meet-
ing Points [7] is similar to our work considering that it employs
instrumenting programs with special instructions for monitoring
progress. However, it only works for regular parallel loops with
identical iteration counts across all threads, as opposed to DCB
which can handle not only the loops with varying iteration counts
but also the threads with different code.

Accelerating Critical Sections (ACS) [28] and Bottleneck Iden-
tification and Scheduling (BIS) [16] also use special instructions
for detecting bottlenecks. Especially, BIS measures the number of
cycles spent by threads waiting for each bottleneck and accelerates
the bottlenecks responsible for the highest thread waiting cycles.
The primary difference of ACS and BIS from our work is that they
work in coarser granularity since they rely on thread migration to
accelerate bottlenecks.

The most closely related work to DCB is Booster [24], where it
also tries to balance multi-threaded workloads using core boosting.
They propose two boosting algorithms: Booster VAR and Booster



SYNC. Booster VAR balances the CPU cycles spent by each thread
and Booster SYNC improves it by taking priority hints from syn-
chronizations. The most important difference between Booster and
DCB is that Booster is reactive. Even Booster SYNC does not
discriminate threads until they reach synchronization operations.
Therefore, it cannot address implicit software heterogeneity caused
by control flow divergence and non-deterministic memory laten-
cies. Similarly, it is not well-suited for pipeline parallel programs.
Even though different stages are heavily biased, Booster gives up
the chance of balancing them until some of them get blocked for
synchronizations. Conversely, DCB is proactive handling software
heterogeneity very well. Finally, it is not trivial to extend Booster
for other types of asymmetric CMPs or core boosting mechanisms,
since it uses the core frequency values for balancing cycles. Mean-
while, DCB is applicable to them without any modification for data
parallel programs and it only needs relative acceleration ratio for
pipeline parallel programs.

8. CONCLUSION
This paper investigated the elimination of workload imbalances

in performance asymmetric CMPs by relying on the hardware ca-
pability to accelerate individual cores at a fine granularity. We
proposed Dynamic Core Boosting (DCB), a software-hardware co-
operative system that balances the workloads by boosting critical
threads. DCB coordinates its compiler, runtime, and processor
cores, for near-optimal assignment of core boosting. The DCB
compiler instruments target programs with instructions to give
progress hints. The DCB runtime subsystem monitors their exe-
cution, enabling intelligent assignment of the boosting budget for
better performance. On a simulated eight core system of varying
frequency, our experiments using PARSEC benchmarks showed
that DCB improves the overall performance by an average of 33%,
outperforming a reactive boosting scheme by an average of 10%.
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