
Statistical Error Bounds for Data Parallel Applications
Parker Hill Michael Laurenzano Babak Zamirai Mehrzad Samadi

Scott Mahlke Jason Mars Lingjia Tang
University of Michigan

{parkerhh, mlaurenz, zamirai, mehrzads, mahlke, profmars, lingjia}@umich.edu

Abstract
Recent approximate computing techniques can trade small amounts
of accuracy for very large performance and energy improvements.
However, these current techniques are unable to provide error
bounds or require careful derivation of error properties for the spe-
cific algorithm. For approximate computing to be more widely
adopted, increasing the set of approximations where the error can
be bounded is critical. In this paper we propose a methodology to
statistically bound the error of data parallel computations for ap-
proximate computing. We are able to produce very accurate error
bounds for the binarize benchmark while computing only a small
fraction of the output and without incorporating any application-
specific knowledge into the accuracy computation.

1. Introduction
Substantial performance and energy improvements can be achieved
by current approximate computing techniques. To increase the
adoption of these techniques, some recent work has looked at pro-
viding mechanisms to make the accuracy degradation from approx-
imation more predictable (Khudia et al. 2015; Ringenburg et al.
2015; Goiri et al. 2015; Sampson et al. 2014; Samadi et al. 2013;
Misailovic et al. 2011). These works provide a more structured ap-
proach to reasoning about accuracy, which improves the usability
of the underlying approximate computing techniques. Despite these
works, the accuracy properties of many computational models and
patterns remain unexplored.

In this work we describe a data parallel model and propose a
methodology to place statistical error bounds on approximations
applied to it. There are a wide range of applications that use this
data parallel model because it only requires that outputs can be ef-
ficiently computed independently of each other. This independence
allows us to reason about accuracy with finer granularity, since
each independent output corresponds to an independent error be-
tween the exact and approximate computation. The final error can
be computed by some aggregation of the error components. This
composition of errors into a final error provides us the ability to ap-
ply statistical tools to the error components to accurately model the
final error. With the final error likelihood function, we can produce
a statistical bound on the error.

We show how to derive the error likelihood function and sta-
tistical error bound for one error metric, miss rate, which denotes
the percentage of values that are incorrect when approximated. We
evaluate the error bound that is produced with only 1% of the total
computation and find a very close match to the analytical results.

2. Computational Model
We use a data parallel computational model which is found in many
domains, including image processing, computer vision, scientific
computing, and machine learning. This model requires the outputs
of the application to be produced independently of the others and
in any order. Based on this data parallelism, we define the terms

Input
Exact

Approximate

Output

8.9% miss rate
Final Accuracy

Error Components
(Exact ⊕ Approx.)

Binarize Comparison Accuracy

Figure 1: The accuracy computation of an approximation applied
to a data parallel application: outputs are computed for exact and
approximate algorithms, the element-wise error is computed, and
then error components are aggregated to find the final accuracy.

output components and error components. An output component is
the smallest amount of work that the application can execute based
on the granularity of its data parallelism. The error component, ei,
is the error found by comparing the output component of the exact
computation, oi, and the approximate computation, ai.

We show a data parallel image processing algorithm, binarize,
in Figure 1. In this case, each output pixel of the filter is an output
component. The error components can be found by comparing the
output of the exact and approximate version of the filter. We define
the error component metric to be a binary comparison, where it is 0
when the exact output component matches the approximate output
component and 1 otherwise, ei = |sgn(oi − ai)|. To compute
the final accuracy, the error components are aggregated. For this
example, we use the miss rate metric, which represents the percent
of incorrect output components (i.e.

∑
ei/N for N components).

3. Error Distribution
Using this computational model, the error components can be ran-
domly sampled, since the output components can be randomly sam-
pled using both the exact and approximate algorithms. These ran-
dom samples from the error component space can be used to pro-
duce an error component distribution. From the error component
distribution, we can derive a statistical model for the final error
likelihood function and apply existing statistical techniques to it.

Continuing with the binarize example, we present the deriva-
tion of the final error likelihood function for the miss rate accu-
racy metric. By the definition of the binary comparison error com-
ponent metric, ei ∈ {0, 1} . Therefore, randomly sampled error
components follow a Bernoulli distribution with success probabil-
ity parameter p, the chance of the exact output mismatching the
approximate output. Now that the error component can be statis-
tically modeled, we can build upon it to derive a model for the

1 2016/2/11

Figure 2: The error bounding process: (a) sampling error components to refine the statistical
model representing the final error and (b) the error bound defined by the CL% quantile of
the error model.

Figure 3: The number of experiments where
the error is less than the error bound, showing
high quality error bounds from the model.

final error. Since the sum of Bernoulli random variables is equiv-
alent to a binomial distribution with parameters (n, p), where n
is the number of error components being summed, we know that∑

ei ∼ Bin(n, p). We note that p is equivalent to our final accu-
racy metric, miss rate, when the entire set of error components are
summed (i.e. n = N). We can estimate p by computing a partial
sum of error components,

∑
ei/n, but this does not allow us to

reason about how precise this estimate is, so we would like to build
a statistical model for likelihood of p being a given value.

To this end, we can reason about the value of p by modeling it as
a random variable, p̃, produced from Bayesian inference based on a
set of observed error components. Bayesian inference is a statistical
technique where we can refine our knowledge about the random
variable p̃ with a set of sampled error components, (e1, ..., en). The
formal definition central to this methodology is Bayes’ theorem,
shown in Eqn. 1, where fP |E is the probability density of the
distribution of p̃ given our error component samples and fE|P is
the likelihood of observing these samples given the value of p̃. fP
and fE are the distribution densities of p̃ and the error component
samples, respectively, given no knowledge about the variable.

fP |E(p̃|e1, ..., en) =
fE|P (e1, ..., en|p̃)fP (p̃)

fE(e1, ..., en)
(1)

fP |E provides us the refined model of p with a set of error compo-
nent observations. Using the definition of the error components and
the final accuracy metric, the distribution density fP |E can be de-
rived. The final expression of this derivation is provided in Eqn. 3,
where B is the Beta function.

fP |E(p̃|e1, ..., en) =
p̃1/2+

∑
ei(1− p̃)1/2+n−

∑
ei

B(
∑

ei +
1
2
, n−

∑
ei +

1
2
)

(2)

This probability density function (PDF) is equivalent to that of
the Beta distribution with parameters (

∑
ei +

1
2
, n −

∑
ei +

1
2
).

Therefore p̃ is distributed as shown in Eqn. 3.

p̃ ∼ Beta(
∑

ei +
1

2
, n−

∑
ei +

1

2
) (3)

We show the PDF of this distribution in Figure 2(a) when the miss
rate, p, is 30%. It shows the relative likelihood of the miss rate be-
ing a specific value, given a set of error component samples. As
a larger set of error component samples are used in the statisti-
cal model, the PDF becomes more precise (the PDF becomes nar-
rower). It also tends to become more accurate (the center of the
PDF is closer to the actual value).

4. Statistical Error Bound
With a statistical model for the likelihood of the final accuracy, we
can compute a statistical boundary on the upper limit of the error.

To place a useful boundary on the error, a confidence level must
be defined. This confidence level denotes how frequently the error
boundary can be violated. If complete certainty is needed, then
only very loose statements can be made about the boundary. For
example, when 10% of the error component space is sampled and
all of these components are found to be 0, the only guarantee we can
make is that the final error is less than or equal to 90%. Although
this is the only possible guarantee, we can intuitively claim that the
final error is very close to 0% with very high confidence.

Formally, we state that the confidence level, CL, approaches
Pr(Final Error < Bound) as the number of error component sam-
ples becomes sufficiently large. For example, in situations where
Bound = 10% and CL = 99%, we expect that 99% of the time
the final error is less than 10%. The previously derived final er-
ror likelihood function can be used to provide an error bound with
this confidence level parameter. As shown in Figure 2(b), the error
bound should be placed such that CL (90% in the figure) of the
PDF has a lower final error than the the bound. This is equivalent
to the quantile of the likelihood function and is readily available for
a wide range of distributions using common statistical software.

5. Evaluation
We evaluated the quality of our error bound with the binarize
benchmark, a wide range of configurations using the tiling approx-
imation (Samadi et al. 2014), and 800 various images. We experi-
mented with four different confidence levels for verification. In all
cases, we used only 1% of the error component sample space.

The percentage of images where the error from the approxima-
tion exceeds the bound is presented in Figure 3 for each confidence
level. In each case, we can see a very close match between the con-
fidence level and the percent of images that violate the error bound.
In addition to controlling the percentage of violations, we note that
the violating cases tend to be very close to the bound, since the
distribution is very sparse beyond the bound (e.g, Figure 2(b)).

6. Conclusion
Widespread adoption of approximate computing is hindered by the
untrusted outcome of approximation in terms of accuracy. Recent
works address this problem for certain applications or approxima-
tions, but the usage of statistically sound approximation must be
widened. We provide a methodology to find statistical error bounds
for data parallel applications. Data parallel applications are found
in a spectrum of domains, including image processing, computer
vision, scientific computing, and machine learning.

2 2016/2/11

References
Í. Goiri, R. Bianchini, S. Nagarakatte, and T. D. Nguyen. Approxhadoop:

Bringing approximations to mapreduce frameworks. In Proceedings
of the Twentieth International Conference on Architectural Support
for Programming Languages and Operating Systems, pages 383–397.
ACM, 2015.

D. S. Khudia, B. Zamirai, M. Samadi, and S. Mahlke. Rumba: an online
quality management system for approximate computing. In Proceedings
of the 42nd Annual International Symposium on Computer Architecture,
pages 554–566. ACM, 2015.

S. Misailovic, D. M. Roy, and M. C. Rinard. Probabilistically accurate
program transformations. In Static Analysis, pages 316–333. Springer,
2011.

M. Ringenburg, A. Sampson, I. Ackerman, L. Ceze, and D. Grossman.
Monitoring and debugging the quality of results in approximate pro-
grams. In Proceedings of the Twentieth International Conference on
Architectural Support for Programming Languages and Operating Sys-
tems, pages 399–411. ACM, 2015.

M. Samadi, J. Lee, D. A. Jamshidi, A. Hormati, and S. Mahlke. Sage:
Self-tuning approximation for graphics engines. In Proceedings of the
46th Annual IEEE/ACM International Symposium on Microarchitecture,
pages 13–24. ACM, 2013.

M. Samadi, D. A. Jamshidi, J. Lee, and S. Mahlke. Paraprox: pattern-based
approximation for data parallel applications. In Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2014.

A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Grossman,
and L. Ceze. Expressing and verifying probabilistic assertions. In ACM
SIGPLAN Notices, volume 49, pages 112–122. ACM, 2014.

3 2016/2/11

