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Abstract—This paper proposes SIEVE, Speculative Inference on the
Edge with Versatile Exportation, which dynamically distributes CNN
computation between the cloud and edge device based on the input data
and environmental conditions to maximize efficiency and performance.
A speculative CNN is created through aggressive precision reduction
techniques to run most of the inferences on the edge device, while the
original CNN is run on the cloud server. A runtime system directs each
input to either the edge or cloud and decides whether to accept speculative
inferences made on the edge or invoke recovery by replaying the inference
on the cloud. Compared to the cloud-only approach, SIEVE reduces
energy consumption by an average of 91%, 57% and 26% and increases
performance by an average of 12.3×, 2.8× and 2.0× for 3G, LTE and
WiFi connections without accuracy loss across a range of nine CNNs.

I. INTRODUCTION

Current edge devices are capable of generating huge amounts of

high-quality video and images to feed CNNs for various applica-

tions. Due to the prohibitive energy and latency of communicating

these data to cloud servers, there is a growing trend towards CNN

execution on edge devices themselves. For example, the Qualcomm

Snapdragon 835 with machine learning capabilities enables running

some trained models directly on the mobile device. However, the

size and complexity of CNNs are increasing more rapidly to improve

their accuracy and functionality than the hardware capabilities, which

results in computations with energy requirements beyond device’s

battery constraints even with hardware accelerators [1].

To address the shortcomings of cloud-only and mobile-only ap-

proaches, two categories of hybrid cloud-edge systems have evolved,

which partition the computation between cloud servers and edge

devices for maximizing performance and efficiency [2]. First, ap-

plications, such as Apple’s Siri and Amazon Alexa, consist of

specialized speech recognizers for keyword spotting on the device

and automatic speech recognition, natural language interpretation,

and various information services on the cloud. In these applications,

the computation is partitioned manually during the design process,

and servers and devices are responsible for different tasks. In the

second category, since the energy efficiency and data transfer rates

vary for different wireless technologies, edge devices dynamically

decide whether to offload and which parts of the computation need to

be offloaded to maximize the energy efficiency and performance [3].

For example, MCDNN [4] utilizes Approximate Model Scheduling to

manage multiple DNN execution requests under resource constraints.

It enables trading off classification accuracy for resource use by rea-

soning about on-device/cloud execution trade-offs. Another example

is Neurosurgeon [5], which dynamically finds the best partitioning

point at layer granularity by analyzing the CNN topology and network

connection. Then, the computation of the first set of layers is kept

on the device, and the remaining layers are offloaded to the cloud.

Our analysis of prior partitioning approaches reveals that they

over utilize the cloud because they are input data invariant. The

partitioning decision is either hardwired or dynamically changes only

in response to the environment, e.g., network connectivity. However,

CNNs are usually over provisioned and most of the inputs do not

require the entire computational power of the model to produce an

accurate final output [6]. Consequently, we hypothesize that efficiency

improvements can be achieved through data-dependent partitioning.

We take inspiration from traditional speculation-recovery tech-

niques and present SIEVE, Speculative Inference on the Edge with

Versatile Exportation, which is data-dependent and dynamically dis-

tributes CNN computation between the cloud and device to achieve

maximum efficiency and minimum latency in various environments.

SIEVE uses aggressive compression to form a small CNN that can

speculatively perform inferences for a large fraction of inputs on the

device. A runtime system sends each input to either the edge or cloud

based on user preferences, input size and environmental conditions.

In addition, the runtime system can selectively invoke the original

CNN on the cloud server to recover from misspeculation, wherein

the speculative CNN can only provide a low-confidence answer.

SIEVE has four main advantages. First, the runtime system au-

tomatically adapts how and where inferences are performed to the

environment (network conditions and battery lifetime) in order to

reduce energy consumption on inferences. Second, relying on the

original CNN for recovery enables aggressive precision reduction of

the speculative CNN, which increases the opportunities of processing

more complex CNNs efficiently on the edge device. Third, the

average latency of the system is improved in comparison to both

cloud-only and mobile-only approaches because of the elimination

of the extra round trips to the server and the excessive complexity

of CNNs for marginal accuracy improvements. Last, not sending

requests to the server for all inputs reduces the load on the server

and releases some resources to support more users on the cloud.

The contributions of this paper are as following:
• We propose an intelligent hybrid cloud-edge CNN computation

partitioning technique to achieve efficiency and performance

gains. A lightweight software runtime is designed to dynamically

select between speculative inference on the edge or inference

on the server using the original CNN. It models the latency and

energy of the speculative and original CNNs, available hardware

on the edge device, data transfer latency, and speculative CNN

accuracy and its associated misspeculation recovery costs.

• We provide a misspeculation detector that dynamically deter-

mines a confidence threshold on the speculative CNN output

based on the distribution of correctable errors learned during the

training phase and the target output quality to detect potential

faulty outputs, which are sent to the original CNN for replay.

• We develop an automatic procedure to deterministically prune

the design space, and then search for the most compressed

floating-point format for weights and activations of individual

layers. Heuristics are used to combine layers to form a specula-

tive CNN with maximum compression and minimum accuracy

loss, while not requiring any fine-tuning or retraining.

• We also introduce lightweight (0.05% area overhead) hardware

compressor and decompressor units responsible for efficient

floating-point reformatting for the speculative CNN.
On a benchmark suite of nine CNNs, SIEVE on average reduces

mobile energy consumption by 91%, 57%, and 26% and improves
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Fig. 1: Overview of SIEVE. Camera provides input to the runtime

system to choose between the speculative CNN on the device and the

original CNN on the cloud. The misspeculation detector examines

speculative CNN outputs and triggers recovery for faulty ones.

latency by 12.3×, 2.8×, and 2.0× for 3G, LTE and WiFi connections

in comparison to the cloud-only approach, without any accuracy loss.

II. BACKGROUND AND MOTIVATION

We measured the energy and latency of AlexNet inference on the

NVIDIA Jetson TK1 mobile platform for mobile-only and cloud-only

approaches, considering three different network connections: 3G, LTE

and WiFi. We found that the cloud-only result is heavily dependent

on the type of the wireless network. We had two key observations.

First, the mobile-only results in lower end-to-end latency for all three

types of connections. Second, although the mobile-only consumes

less energy than transferring data via LTE or 3G, the cloud-only,

when using WiFi, is the most energy-efficient approach. Therefore,

previous work [5] proposes dynamic CNN computation partitioning

at layer granularity by analyzing the CNN topology, computation,

and communication characteristics to improve energy efficiency and

performance. However, the proposed hybrid techniques are data

invariant and do not change the partitioning decision per input when

the CNN topology and wireless network remain unchanged.

III. SIEVE

To elevate CNN computation partitioning, we take inspiration

from traditional speculation-recovery techniques and propose SIEVE

which is an intelligent hybrid deep learning cloud-edge system

for improving energy efficiency and performance in comparison to

running complex CNNs on edge devices or offloading the entire

computation to cloud. First, we introduce our system and a new

approach for dividing the labor between the server and mobile. After

that, each component of the runtime system is described.

A. System Overview

SIEVE is based on the hypothesis that inference energy on edge

devices can be substantially reduced with an introspective software

system that is both data and environmentally aware. As reported

in prior work, the availability of high speed networks have a large

impact on whether offloading to the cloud is feasible and efficient [5].

But, we also believe the characteristics of individual inputs play an

important role in how and where inference should be performed. A

simpler, lighter weight CNN is often capable of rendering accurate

inferences for a significant fraction of the inputs. Thus, an intelligent

runtime system can examine the characteristics of the data to help

partition the computation. SIEVE is designed to partition computation

between a lightweight version of the CNN that runs on the edge

device (speculative inference), and the original CNN on the cloud,

and to detect misspeculations on the edge device that must be

replayed in the cloud. By supporting data-aware partitioning, SIEVE

enables a new level of efficiency gains that are not possible with

environmental-only partitioning methods [5].

Figure 1 shows the major parts of SIEVE including a camera,

runtime system, mobile hardware and cloud server. At the beginning,
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Fig. 2: CNN selector decides based on the input, user preferences

and environmental conditions.

the camera on the mobile device provides the input to the runtime

system, which consists of a CNN selector and a misspeculation

detector. Then, the CNN selector evaluates user preferences (accuracy

requirements and privacy) and environment (network speed, available

hardware, and server load) to dynamically route each input through

either the original CNN on the cloud or the speculative CNN on

the device. The main purpose of CNN selection is to minimize the

energy and latency while meeting the accuracy requirements of the

user. After that, if the speculative CNN is selected, its outputs are sent

to the misspeculation detector unit to identify untrustworthy answers

and initiate replay on the cloud. When the original CNN is selected,

SIEVE bypasses the speculative CNN and misspeculation detector

and sends the inputs to the cloud and downloads the results as with

traditional cloud offloading.

SIEVE produces energy savings in two ways. First, successful

speculation on the edge device enables a lighter weight CNN to

perform the inference and avoid data transfer costs. Second, direct

inference on the cloud because data transfer is actually cheaper

than edge inference and predicted misspeculation costs. Conversely,

SIEVE requires more energy during misspeculations as inferences

must occur on both the edge (speculative) and cloud (replay). Thus,

it is important to manage speculation carefully to ensure that it is

profitable. We found in our evaluation that only modest success

rates are necessary for speculation to be useful, > 60% is generally

profitable. In our results, we achieved a minimum of 80% success,

which was well above the threshold.

Offline Training: SIEVE designs and trains the speculative CNN

and configures runtime system units using the topology and param-

eters of the original CNN as well as characteristics of the mobile

hardware, cloud servers, and communication networks.

B. CNN Selection

Figure 2 shows the first major component of SIEVE runtime

system, which is the CNN selector. It tries to run most of the inputs

speculatively on the device, however, there are various factors that

have different effects on the final selection decision. It estimates and

compares the efficiency of data communication and local hardware to

find the proper computation partitioning. Moreover, it takes into ac-

count environmental conditions and regulates the number of requests

to the server. In addition, it considers user preferences by providing

knobs to enable and disable different components of SIEVE.

Input Data and Environmental Conditions: To make the correct

decision, SIEVE must estimate energy consumption and latency of

the data transfer to the cloud (Et, Lt) and execution on the mobile

device (Em, Lm). Additionally, it requires the probability of initiating

recomputation by the misspeculation detector (Pr).

SIEVE uses techniques from Huang et al. [7], [8] to estimate Et

and Lt based on the size of the data, communication technology and

bandwidth. Since the computation on the cloud GPU is much faster

than the mobile GPU, the latency of the computation on the cloud is

neglected in the estimation of Lt. In addition, it trains a regression
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Fig. 3: Confidence of wrong outputs for 4-bit compressed LeNet-5

on MNIST test set. For low confidences, density of correctable errors

is higher than uncorrectable ones.

model, same as Neurosurgeon [5], to estimate Em and Lm based

on the number and size of input and output feature maps as well as

the characteristics of each layer including layer type, stride, kernel

and group size for convolutional and pooling layers. These models

are CNN invariant. Hence they are trained once for a set of CNNs

and wireless connections, then they could be used for different CNN

applications during runtime. Pr is calculated by comparing the output

difference of the speculative CNN and original CNN on the validation

set, which is explained in more details in Section III-C.

During runtime, it compares Et (Lt) and Em+Et×Pr (Lm+Lt×
Pr) to pick between the original and speculative CNNs for minimum

energy (latency). In addition, if the difference of these two numbers

becomes larger than a defined threshold in a way that all inputs are

sent to the original CNN, it concludes that the speculative CNN is

not proper for the current wireless network speed and replaces it with

another available topology.

Furthermore, it measures the round-trip time for each request and

compares it with Lt estimation. A big difference between these

two numbers indicates a high load on the server. Consequently,

SIEVE temporarily turns off the misspeculation detector to eliminate

recovery requests and keep the computation on the device. At the

same time, it monitors the load on the server to find an opportunity

to get back to its normal operation. This mechanism sacrifices some

accuracy to maintain the constraints of time-sensitive applications

when the server response time is low.

User Preferences: In addition, CNN selector considers user pref-

erences and provides a knob for the user to switch among mission

critical, power saving, private and normal mode dynamically. The

mission critical mode disables the speculative CNN and misspecula-

tion detector and offloads every input on the cloud to maximize the

accuracy and robustness. On the other hand, the private mode keeps

the entire computation on the device and prevents any offloading to

the cloud to increase the privacy and security. And, the power saving

mode relaxes the speculative CNN and the misspeculation detector

to sacrifice a marginal amount of accuracy to obtain further energy

gains. Finally, the normal mode leaves the other units unchanged.

C. Misspeculation Detection

The second major component of the SIEVE runtime system is the

misspeculation detector. Since the speculative CNN is a simplified

version of the original CNN and trades off some accuracy for better

efficiency, it is necessary to detect and recover errors to bridge this

accuracy gap to achieve the same accuracy as the baseline.

For classification tasks, CNNs convert an input instance (x) to

an output vector of K elements (K is the number of classes).

Using a softmax ( e
zj

∑
K
k=1

ezk
) activation function after the output layer

provides the estimated probability of that the correct output is j for

j = 1, ...,K (Pj = P (y = j|x)). Consequently, max
16j6K

Pj represents

the confidence level of the CNN in the final output.
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Fig. 4: Confidence of 4-bit compressed LeNet-5 on MNIST test set.

The confidence threshold for indicating correctable errors results in

limited number of recomputations.

Figure 3 illustrates the confidence of wrong outputs for LeNet-5

CNN, compressed to 4 bits per weights and activations, on MNIST

test set for handwritten digit recognition. The circles represent

correctable errors, which are wrong on the compressed CNN but

correct on the original CNN. And, the crosses indicate uncorrectable

errors, which are wrong on both CNNs. If we pick a threshold equal

to 0.3, shown by the dashed line, the density of correctable errors is

much higher than the uncorrectable ones under that threshold.

On the other hand, Figure 4 shows the confidence of the same CNN

on the entire test set, and all 10000 images of the dataset are sorted

from low to high confidence. As shown, only 5.2% of the images

result in outputs with less than 0.3 confidence. Hence, it is possible to

recover most of the correctable errors by initiating the recomputation

on the server for a small portion of inputs. In addition, the remaining

correctable errors, which could not be recovered by this mechanism,

will be compensated by inputs that are classified correctly by the

compressed CNN but misclassified by the original one.

SIEVE determines the confidence distributions of the speculative

CNN for correct, and correctable and uncorrectable wrong outputs

on the validation set during training. During runtime, the misspec-

ulation detector defines a confidence threshold by examining those

distributions and considering the output target quality to minimize

the number of recomputations. Then, it compares the confidence of

the speculative CNN with that threshold for each inference to detect

and recover possible errors and meet the output target quality.

IV. SPECULATIVE CNN DESIGN

An important component of SIEVE is deriving a lightweight

speculative CNN from the original CNN and making sure it performs

faster and more efficiently than the mobile-only and cloud-only

approaches. There are various well-studied methods for reducing

the computation and memory accesses of CNNs for small or no

accuracy reductions, such as pruning [1], compression [9], fixed-

point computation [10] and precision reduction [11]. Although all

these techniques could be employed to design the speculative CNN,

we prefer to minimize in-depth hardware modifications, rigorous

CNN modifications and fine-tuning. Hence, our system combines

compression and custom floating-point representation techniques to

design and implement an efficient speculative CNN on the mobile.

To keep hardware modifications at the minimum level of complexity

while gaining considerable improvements, SIEVE takes advantage

of custom floating-point formats for compressing weights and acti-

vations stored in the memory, but performs the computation in full

precision.

There are three advantages for this approach. First, since the

numbers will be reformatted to full precision before the functional

unit, it is not necessary to use the same format for all numbers in the

memory. Hence, weights and activations of different layers could be

compressed differently based on their required precision as explained
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Fig. 5: Distribution of activations and weights in AlexNet. Each layer

requires its specific optimized representation.

in prior work [12]. Second, the compression and decompression

are basically reformatting between two different floating-point rep-

resentations. Therefore, the hardware compressor and decompressor

become very cheap and easy to implement. Third, since the compu-

tation is precise, each layer could be compressed very aggressively to

minimize the memory accesses. In this section, first the opportunities

for compressing CNNs are investigated. Then, we explain how SIEVE

prunes the design space and derives the speculative CNN from the

original CNN. Lastly, we describe the hardware design.

A. Compression

Conventional processors usually use IEEE 754 32-bit base-2

floating-point variables for CNN applications. These variables consist

of three parts: one sign (s) bit, eight exponent (e) and 23 mantissa

(m) bits. In addition, the exponent uses a bias (b) equal to +127 to

represent the range from -126 to +127 by unsigned integer format

(0 and 255 are interpreted specially). The value of each number is

computed as (−1)s × 2(e−b) × (1+
∑23

i=1 m23−i × 2−i). Therefore,

this format covers the huge range from −3.4×1038 to +3.4×1038.

However, the range of numbers even in very deep NNs is much

smaller than the range provided by single-precision floating-points.

Figure 5 shows the distribution of weights and activations for the

first convolutional (Conv1) and last fully-connected (FC8) layer of

AlexNet. The comparison of these four distributions results in three

important observations. First, the 32-bit floating-point is not the most

suitable format to represent CNN numbers efficiently. Second, the

range of numbers in various layers is very different from each other.

For instance, the range of weights in Conv1 is about 7 times bigger

than FC8. Third, the weights and activations of the same layer have

very different distributions. In conclusion, it is necessary to pick the

most representative format for weights and activations of each layer

separately to maximize the compression rate.

It is very time consuming to sweep the entire design space and

find the optimum number of bits for weights and activation of

layers separately. The exponent is the part that determines the range

of changes. Hence, defining the proper bitwidth for exponents is

vital for accuracy maintenance. Figure 6 shows the histogram of

weight exponents for FC8 of AlexNet, which change from -4 to -

32. However, more than 99.5% of exponents are between -5 and -14.

Due to the natural error resiliency of CNNs [11], we can easily omit

the outliers and reduce the bitwidth ebw from 8 to 5, which covers

the range between -14 to +15. Yet there is no need to represent

numbers higher than -4. To maximize the compression, SIEVE uses

bias adjustment. Since the histogram is not symmetric around zero, a

bias equal to 2ebw−1−1 is wasteful. The optimum bias is determined

by b = 1 − min |e|. Then, there will be more room for bitwidth

reduction, ebw = ⌈log2 (max |e| − b− 2)⌉. For FC8, adjusting the

bias to 15 reduces ebw to 4 bits for a final range of -1 to -14.

To pick the best representation for each layer, SIEVE runs the

original CNN on the validation set to gather exponent histograms.

Then, for each set of numbers, it finds the best ebw, called emax,

and bias deterministically. Next, it sweeps ebw from emax to 2 bits,
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ment reduces the bitwidth from 8 to 4.

computes the bias that maximizes the coverage and stops whenever

the coverage is below 50%. For each iteration, it sweeps the mbw

from 6 to 0 bits, tests the CNN on the validation set while the other

weights and activations are using full precision, and stops whenever

the normalized accuracy is below 99.8%. Since the search space is

considerably pruned, and there is no need for retraining, the design

space exploration is fast enough to derive the speculative CNN in a

few hours on a single GPU even for huge CNNs on large datasets.

After that, our system picks the best configuration for each layer

and finalizes the speculative CNN design. Each explored CNN

has a compressed layer and is a trade-off between efficiency and

accuracy. It is important to note that even combining layers of two

100% accurate compressed CNNs will not necessarily result in a

100% accurate CNN with two layers compressed, because of the

aggregation of precision losses.

SIEVE constructs three CNNs for different environmental condi-

tions and user preferences: exact, accurate and approximate. The

exact CNN contains the most accurate layers from the explored

CNNs. The accurate CNN, contains the most compressed layers

from the explored CNNs with accuracy not less than 100%. And the

approximate CNN is same as the accurate CNN, but with threshold

of 99.9%. If there is no explored CNN to meet the threshold for a

layer, that layer will use the most accurate explored configuration.

Each CNN represents a trade-off between the number of cor-

rectable errors relative to the uncorrectable ones and the percentage

of inputs that need to be recomputed on the server. For example, the

approximate speculative CNN is suitable for the situations when the

wireless communication is efficient, so we can make the speculative

CNN as compressed as possible by increasing the recovery frequency.

The CNN selector uses latency and energy models to convert these

trade-offs to a single Pareto frontier based on the wireless commu-

nication speed. This Pareto helps the CNN selector to pick the most

efficient speculative CNN which meets the output quality target.

B. Hardware

Prior work [13] identifies that the key bottleneck for CNN exe-

cution on GPUs is the on-chip memory bandwidth. Hence, SIEVE

keeps the weights and activations of the speculative CNN com-

pressed in the entire memory hierarchy, and decompresses them

right before writing to the register file for computation. Since on-

chip memory data compression at this level requires very frequent

data reformatting, a low-overhead hardware implementation of the

compression/decompression mechanism is mandatory. Compressor

and decompressor are located before register file to keep the data in

the entire memory hierarchy compressed. The compressor (decom-

pressor) unit contains the same number of compressor (decompressor)

engines as the number of load/store units in the SM. And, each

compressor (decompressor) engine is capable of processing one

compressed (decompressed) value per cycle.

Compressor: Figure 7 shows the implementation of a compressor

engine in details. This engine is responsible for both bitwidth
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reduction and bias adjustment. The output format is dynamically

configurable to use the same engine for different layers of the

speculative CNN. In addition to the 32-bit decompressed number, it is

fed by several constant values including Min, Min/2, Max, Sign Shift,

Adjusted Bias, Exponent Mask, Exponent Shift and Mantissa Shift.

All constants are computed based on the target compression format

by a constant calculator, which is shared among all compressors.

Decompressor: Figure 8 demonstrates the hardware design of a

decompressor engine in the same way as the compressor engine.

To measure the overhead, we implemented and synthesized the

compressor and decompressor unit for an NVIDIA Tegra K1 mobile

processor using the ARM Artisan IBM SOI 45 nm library. It has an

area overhead of 0.06mm2 (0.05%), and an active power consump-

tion of 0.23W (2.06%). Moreover, the compression/decompression

takes less than one clock cycle and could be implemented as an

additional pipeline stage. Considering the low branch misprediction

rate of CNN computation, the performance overhead is negligible.

V. EVALUATION

Benchmarks: We evaluate SIEVE using a benchmark suite of nine

CNNs using three wireless connection technologies: 3G, LTE and

WiFi. A brief description of each benchmark is presented in Table I.

We use a randomly sampled subset of the training set as validation

set to configure our system (same size as the test set). Third column

contains the top-1 accuracy of the trained original CNNs obtained

from Caffe Model Zoo. Fourth column shows the input size of each

CNN, which is the amount of data to be sent to the cloud in the

case of cloud-only or recovery. And the last column is the number

of floating-point multiply-accumulate (MAC) operations required to

process a single input, which is a good indicator of complexity.

Hardware platforms: The NVIDIA Jetson TK1 embedded devel-

opment kit is used as our mobile platform. It is built around NVIDIA

Tegra K1 SoC: a quad-core ARM A15, a Kepler mobile GPU with

a single streaming multiprocessor and a 2 GB DDR3L memory. In

addition, for the server side, we use an NVIDIA TITAN X GPU.

Software framework: We use Caffe, an open-source deep learning

library, and cuDNN, NVIDIA’s GPU-accelerated library for DNNs,

to build and test SIEVE.

SIEVE could be configured to prioritize efficiency (performance)

improvements for maximum gains, while still obtains latency (energy)

savings. To demonstrate the supremacy of SIEVE, we compare it with

both cloud-only and mobile-only.

TABLE I: CNN information for different benchmarks.

Network Dataset Acc. Input Size MACs (G)

LeNet-5 MNIST 99.19% 1× 28× 28 0.002

ConvNet CIFAR10 82.12% 3× 32× 32 0.01

NIN-CIFAR10 CIFAR10 89.57% 3× 32× 32 0.2

AlexNet ImageNet 56.90%3× 227× 227 0.7

SqueezeNet 1.0 ImageNet 57.67%3× 227× 227 0.7

NIN-ImageNet ImageNet 56.34%3× 224× 224 1.1

GoogLeNet ImageNet 68.92%3× 224× 224 1.6

ResNet-18 ImageNet 66.62%3× 224× 224 1.8

VGG-16 ImageNet 68.35%3× 224× 224 15.5

A. Energy Saving

Figure 9 shows the energy consumption of SIEVE compared to

the mobile-only and the cloud-only methods for different wireless

connection speeds. In each plot, each group of bars is dedicated to

one of the nine benchmarks. In each group, the left bar represents the

result of running the original CNN on the mobile (mobile-only) and

the right bar is dedicated to the energy breakdown of SIEVE. Both

bars are normalized by the cloud-only energy consumption result.

The bottom part of right bars is related to the amount of energy

consumed for running the speculative CNN on the mobile device.

The middle part is dedicated to uploading the input data to the

server and downloading the final result for two situations: when the

CNN selector predicts that the data network is more efficient than

the speculative CNN, or when the misspeculation detector triggers

the recovery phase. The top shows the energy consumption of the

decoder and encoder (reformatting).

On average, SIEVE reduces the energy consumption of the cloud-

only approach by 91%, 57% and 26% for 3G, LTE and WiFi,

respectively. In contrast, the mobile-only approach increases the

energy consumption by 24% and 213% in comparison to when

the cloud-only method uses LTE and WiFi connection, respectively.

In addition, for 3G connection, SIEVE results in 7% more energy

savings than the mobile-only.

SIEVE is capable of decreasing the energy of the cloud-only,

except when the complexity of the baseline CNN is much higher

than the input dimensions. For example, based on Table I, the

number of MACs per input size for NIN CIFAR10, ResNet-18,

GoogLeNet and VGG-16 is one and two orders of magnitude higher

than other benchmarks. Hence, the complexity of the baseline CNN

for these four benchmarks is much higher than the input dimensions.

Consequently, when network connection is efficient (WiFi), CNN

selector correctly predicts that the data transfer over the network for

these benchmarks is more efficient than executing on the device.

B. Latency Improvement

As explained in Section V-A, another approach to take advantage of

SIEVE is configuring it for latency improvements. Figure 10 shows

the latency of SIEVE versus the mobile-only approach normalized

by the end-to-end latency of the cloud-only technique in the same

format as Figure 9. Each right bar has two partitions. The bottom

part indicates the latency of executing the speculative CNN on the

device. And, the top part is dedicated to the end-to-end latency of

sending one input to the cloud, processing that on the cloud GPU

and downloading the final result for the cases that CNN selector

or misspeculation detector activates the original CNN. On average,

SIEVE improves the latency by 12.3×, 2.8× and 2.0× for 3G, LTE

and WiFi, respectively.

SIEVE managed to reduce the latency for all benchmarks in

comparison to the mobile-only approach. On average, the mobile-

only increases the latency by 31% and 143% for LTE and WiFi,

respectively. Even for 3G, SIEVE achieves 8% more latency reduc-

tion.
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Fig. 9: Energy consumption of SIEVE vs. the mobile-only approach for 3G, LTE and WiFi normalized by cloud-only results.
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Fig. 10: Latency of SIEVE vs. the mobile-only approach for 3G, LTE and WiFi normalized by cloud-only results.

C. Comparison to Prior Work

In this section, we compare energy of SIEVE with other techniques

using WiFi connection.

Neurosurgeon [5] dynamically finds the interesting partitioning

points within a CNN at layer granularity to reduce the data transfer

to cloud by pushing as much computation as possible onto the mobile

device. On average, SIEVE outperforms Neurosurgeon by 20% more

energy improvements using data-dependent dynamic partitioning.

DeftNN [13] proposes near-compute data fission to scale down the

on-chip data movement requirements by efficiently packing on-chip

memory. On average, running speculative CNNs designed by SIEVE

requires 51% less energy than the CNNs designed by DeftNN. Hence,

SIEVE is capable of utilizing more compressed and energy-efficient

CNNs by relying on the cloud for recovery.

Scalpel [14] proposes node pruning to reduce computation without

sacrificing the dense matrix format. On average, Scalpel reduces

energy by 42% on the mobile device, and SIEVE improves this

result by 25%. Consequently, SIEVE could use aggressive precision

reduction and speculative execution with cloud recovery on top of

mobile-only compression techniques, including DeepX [15], Edge

AI [16], for further savings.

VI. CONCLUSION

In this work, we introduce SIEVE, a novel hybrid cloud-edge

deep learning system. It creates a heavily compressed CNN through

aggressive precision reduction to enable speculative inferences on the

device. A dynamic partitioning technique is employed to push most

of the computation to this speculative CNN while data transfer to the

original CNN is limited to recovery on low-confidence inferences.

Compared to the cloud-only approach, SIEVE reduces the energy

consumption by an average of 91%, 57% and 26% and increases the

performance by an average of 12.3×, 2.8× and 2.0× for 3G, LTE

and WiFi connection with 100% accuracy of baseline.
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