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Abstract—Modern graphics processing units (GPUs) combine
large amounts of parallel hardware with fast context switching
among thousands of active threads to achieve high performance.
However, such designs do not translate well to mobile envi-
ronments where power constraints often limit the amount of
hardware. In this work, we investigate the use of prefetching
as a means to increase the energy efficiency of GPUs. Classically,
CPU prefetching results in higher performance but worse energy
efficiency due to unnecessary data being brought on chip. Our
approach, called APOGEE, uses an adaptive mechanism to
dynamically detect and adapt to the memory access patterns
found in both graphics and scientific applications that are run
on modern GPUs to achieve prefetching efficiencies of over
90%. Rather than examining threads in isolation, APOGEE uses
adjacent threads to more efficiently identify address patterns and
dynamically adapt the timeliness of prefetching. The net effect
of APOGEE is that fewer thread contexts are necessary to hide
memory latency and thus sustain performance. This reduction in
thread contexts and related hardware translates to simplification
of hardware and leads to a reduction in power. For Graphics and
GPGPU applications, APOGEE enables an 8X reduction in multi-
threading hardware, while providing a performance benefit of
19%. This translates to a 52% increase in performance per watt
over systems with high multi-threading and 33% over existing
GPU prefetching techniques.

Keywords—GPU, Energy Efficiency, Prefetching, Throughput
Processing

I. INTRODUCTION

The demand for rendering increasingly real world scenes
is leading to a surge in computational capability of GPUs.
The combination of programmability and high computational
power have made GPUs the processor of choice even for
throughput oriented scientific applications. High throughput
is achieved in GPUs by having hundreds of processing units
for floating point computations. To keep all these processing
units busy, GPUs use high degrees of multi-threading to hide
latency of global memory accesses and long latency floating
point instructions. For example,the NVIDIA GTX 580 has
512 processing units and can use over 20,000 threads to
maintain high utilization of the compute resources [19]. The
basic approach that GPUs use is to divide the given work into
several chunks of small, independent tasks and use fine-grained
multi-threading to hide any stall in the pipeline. They can hide
several hundreds of cycles of latency if they are provided with
enough work.

The support for such levels of multi-threading and fast con-
text switching requires deployment of considerable hardware

resources such as large register files. For example, the GTX-
580 has 2 MB of on-chip register file. In addition to the register
files, more resources are required to orchestrate the fine-
grained multi-threading and maintain thread state including
divergence stacks and warp schedulers. An unwanted cost of
this design style is high power consumption. While providing
teraflops of compute, modern graphics cards can consume
100W or more of power. As modern systems are becoming
power limited [12], such a trajectory of power consumption is
a difficult challenge to meet on future desktop devices.

Furthermore, the increasing trend of using scientific style
compute, visually rich applications and games on mobile
GPUs, will continue to push the performance needs of GPUs
in mobile domain as well. Straight-forward down scaling of
desktop GPUs for mobile systems often results in insufficient
performance as the power budget for mobile systems is a
small fraction of desktop systems. Thus, improvements in the
inherent energy efficiency are required so that performance can
be scaled faster than energy consumption in both the domains.

To attack the energy efficiency problem of GPUs, we
propose APOGEE (Adaptive Prefetching On GPUs for Energy
Efficiency), that leverages prefetching to overlap computation
with off-chip memory accesses. Successful prefetching reduces
the exposed memory latency and thereby reduces the degree of
multi-threading hardware support necessary to sustain utiliza-
tion of the datapath and thus provide high performance. As the
degree of multi-threading support is reduced, power efficiency
is increased as datapath elements can be correspondingly
reduced in size (e.g, register file, divergence stacks, etc.).

Prefetching is not a novel concept, it has been around
for years and is used in commercial CPUs. Conventional
wisdom suggests that prefetching is more power hungry due
to unnecessary off-chip accesses and cache pollution. We
postulate that this wisdom is untrue for GPUs. On the contrary,
prefetching improves the energy efficiency of GPUs for two
reasons. First, the reductions in memory latency provided by
prefetching can directly lead to reductions in hardware size
and complexity that is not true for CPUs. Second, prefetching
efficiency for the GPU can be increased well beyond those
seen on the CPU because the address patterns for graphics
and scientific applications commonly run on GPUs are highly
regular.

In order to reduce the degree of necessary multi-threading
in an energy efficient way, APOGEE has to address three chal-
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Fig. 1: Increase in speedup and increase in power as number
of warps are increased

lenges. Firstly, it should be able to predict the address patterns
of GPU applications - both graphics and scientific. Prefetching
for scientific applications on CPUs is a well studied area,
where stride prefetching is known to be effective [3], [5], [7].
In the GPU domain, such a technique for scientific applications
will not be efficient for thousands of threads as explained in
Section II-B. On the other hand, for graphics applications,
strided patterns are not the only common access patterns [15].
Secondly, it should be able to prefetch in a timely fashion, such
that the data arrives neither too early nor too late to the core.
For energy-efficiency, timeliness of prefetching is an important
factor, as it reduces the need for storing correct but untimely
prefetched data. Thirdly, the prefetcher should not over burden
the bandwidth to memory, as aggressive prefetching can cause
actual read requests to be delayed.

APOGEE exploits the fact that threads should not be
considered in isolation for identifying data access patterns
for prefetching. Instead, adjacent threads have similar data
access patterns and this synergy can be used to quickly and
accurately determine the access patterns for all the executing
threads. APOGEE exploits this characteristic by using address
streams of a few threads to predict the addresses of all the
threads leading to a low hardware overhead design as well
as a reduced number of prefetch requests to accomplish the
necessary prefetching. The key insight that APOGEE uses
to maintain the timeliness of prefetching is by dynamically
controlling the distance of prefetching on a per warp basis. The
same technique can also be used to control the aggressiveness
of prefetching.

In order to solve the challenges mentioned above, this paper
makes the following contributions:

• We propose a low overhead prefetcher which adapts to
the address patterns found in both graphics and scien-
tific applications. By utilizing an intra-warp collabora-
tion approach, the prefetcher learns faster and by shar-
ing this information amongst warps, the area/power
overhead of the prefetcher is lower than traditional
prefetchers.

• We show that APOGEE can dynamically adjusts the
distance of prefetching depending on the kernel for a
GPU architecture. This provides timely and controlled
prefetching for variable memory latency.

• We show that the required degree of multi-threading
can be significantly reduced and thus energy efficiency
is increased without any loss in performance for both
Graphics and GPGPU (scientific) applications.
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Fig. 2: Increase in number of register file access rate and
degradation in per register accesses. This shows that with
SIMT more hardware is required, but the utilization of the
hardware reduces significantly.

II. TECHNIQUES TO HIDE LARGE MEMORY LATENCY

This section discusses the shortcomings of the two major
prevalent techniques used for hiding/reducing memory access
latency: i) High-degree of multi-threading as in Single In-
struction Multiple threads (SIMT) execution model and ii)
Traditional prefetching.

A. High degree of multi-threading

GPU Performance and Power. Figure 1 illustrates the
change in speedup and power consumed with increasing the
number of warps from two to 32 on a GPU like architecture.
The methodology for obtaining these results is explained in
Section IV. The baseline is a system with 1 warp implying no
multi-threading. As the number of maximum concurrent warps
is increased, performance increases because computation by
concurrent warps hides the latency of access to memory.
With 32 warps, around 85% of the total cycles are reduced
as compared to the baseline. Adding more than 4 warps
reduces a smaller fraction of cycles as many of the stalls are
already hidden, leading to diminishing returns. The right bar in
Figure 1 shows the increase in power as the number of warps
are increased. Even though 16 and 32 warps provide around
one-third of the speedup, the corresponding increase in power
is half of the total increase in power. This increase in power
is due to the large number of resources added to support the
high degree of multi-threading.

GPU Underutilization. Figure 2 shows the variation in
normalized access rate of the register file on the primary
vertical axis and normalized per register accesses of the register
file in the secondary vertical axis of an SM (Streaming Multi-
processor in NVIDIA terminology) as the number of maximum
active warps per SM are increased. All values are normalized
to the case when the SM has one warp. As more warps are
added, the access rate of the register file also increases as
the number of accesses is same but the total time is reduced.
However, as more warps are added to the SM, the size of the
register file is also increased. The size of the register file with
32 maximum warps is 32 times the baseline case of 1 warp.
While the access rate of the register file increases to 7.69 times
for 32 warps, the overall number of access per register access
is down to 0.24 times of the 1 warp case. With the decreased
number of accesses per register, several thousand registers are
underutilized and leaking power.

Similary, when a warp is added to the system, register files,
branch divergence book-keeping support, warp schedulers,
scoreboarding, etc. need extra capacity. While the strategy
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Fig. 3: Examples to demonstrate the ineffectiveness of common
CPU prefetching techniques on GPU (a) stride prefetching and
(b) next-line prefetching. These techniques do not work well
due to the unordered execution of warps.

of high multi-threading keeps the compute units busy, the
additional hardware mentioned above has lower utilization
and hence increased power consumption. This demonstrates
that the design of GPUs with heavy multi-threading has
underutilized hardware which can lead to a significant increase
in power consumption due to leakage.

B. Traditional CPU Prefetching
Prefetching has been studied extensively for multi-

processors. However, although common prefetching techniques
work well for CPUs with limited numbers of threads, for
prefetching memory accesses of thousands of threads, those
techniques cannot predict the memory access pattern correctly.
The rest of this section shows why common CPU prefetching
techniques such as stride prefetching and next-line prefetching
do not work efficiently for GPUs.

Stride Prefetching. One of the most common CPU
prefetching techniques is stride prefetching which focuses on
array-like structures, computes the stride between accesses,
and uses that to predict the next accesses. However, this
technique is not efficient on GPUs due to interleaved memory
accesses from different warps. Figure 3(a) shows an example of
memory addresses of different warps. The difference between
addresses of two consecutive memory requests is shown in
the figure. Although there is a constant stride between two
accesses within a warp, a stride prefetcher only sees a random
pattern and as a result, it cannot compute the stride correctly.
Therefore, stride prefetching technique is not a good choice
for GPU architecture due to interleaved memory accesses.

Next-line Prefetching. Another common CPU prefetching
technique is next-line prefetching which fetches the next
sequential cache line on a cache miss. Figure 3(b) shows an
example of next line prefetching on a GPU. In this example,
cache line size is equal to 10B. There are two problems
with this scheme for GPUs. First, next-line prefetcher may
fetch an address after the actual memory access. For example,
after the fourth memory access, the prefetcher brings address
1010 to the cache. However, this address is already accessed
by the third access so prefetching does not help. Secondly,
the prefetcher might prefetch an address far ahead of actual
memory request. This may evict needed data from the cache
before it was used. For example, the second memory access
prefetches the address 20, but this address will be accessed
in the future. Overall, the two prevalent CPU prefetching
techniques will be inefficient on a GPU.
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Fig. 4: (a) Traditional SM (b) APOGEE SM with prefetching
in data cache and reduced register bank size.

III. APOGEE

To hide memory access latency in an energy efficient way,
APOGEE adopts new prefetching techniques that are tailored
specifically for GPU architectures in order to improve the
prefetching efficiency. With APOGEE these prefetching tech-
niques, underutilized hardware required for multi-threading
can be scaled back which results in improved energy efficiency.

Figure 4 compares the design of a traditional SM with an
APOGEE SM. APOGEE interacts with the memory system
and looks at the memory access pattern between the threads
of a warp. If it can detect a consistent pattern in the addresses
accessed by adjacent threads, it stores various characteristics of
that load. These characteristics are the Program Counter (PC),
the address accessed by one thread, its offset with the adjacent
thread and how consistent the offset is across adjacent threads.
Once APOGEE is confident of the access pattern, it prefetches
data into the data cache as shown in Figure 4(b). The requests
are sent from the data cache to the global memory.

In GPUs, APOGEE exploits two important features: Firstly,
the SIMD nature of the pipeline forces the same load instruc-
tion to be executed by all threads in the warp. This helps in
the characterization of the access pattern of the load, as every
thread in the warp provides a sample point for the detection of
the pattern. Secondly, adjacent threads in a warp have adjacent
thread indices, so the difference between the memory addresses
accessed by these threads can provide a regular offset.

For APOGEE to utilize prefetching for reduction of hard-
ware, it should be able to predict the access pattern found
in Graphics and GPGPU applications. The major memory
access pattern found in these applications are generally a linear
function of the thread index of the thread accessing memory.
This occurs because distribution of work in a kernel is done
primarily using thread index. Since, adjacent threads differ in
thread index by 1, the offset between the addresses accessed by
adjacent threads is fixed. This constant difference is valid for
all adjacent threads in a SIMT load instruction. We call such
an access pattern as Fixed Offset Address(FOA). The prefetcher
for FOA is explained in Section III-A.

Apart from predicting the correct address accessed by a
warp in the next access, a major factor in prefetching perfor-
mance is the timeliness of the prefetch. If a prefetch is made
too late, then the next access of that load would be a miss in
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Fig. 5: Example of processing an array of elements in SIMT
model with 2 warps

the cache even though a prefetch request for the same address
has been made. On the other hand if the prefetch is made too
early, the data will be in cache while it is not needed and may
evict useful data that has more immediate reuse. APOGEE
maintains the state of prefetching and adjusts the distance of
prefetching dynamically as explained in Section III-A. A static
software/hardware prefetching solution which uses a constant
distance of prefetching for timeliness, will not be a good
solution for GPUs. The problem of timeliness of prefetching in
GPUs is exacerbated by the fact that the look-ahead distance
is not only a function of the kernel size, but also of the number
of warps and scheduling. APOGEE dynamically adapts to
individual memory accesses and adjusts how far ahead data
should be prefetched based on that instruction only, so it can
prefetch in a timely fashion.

Since APOGEE reduces hardware support for high degree
multi-threading, the latency hiding capacity of the system
through SIMT execution is reduced. Therefore, acccess pat-
terns that are not frequent, but miss in cache, can also have sig-
nificant impact on performance, unless, the prefetcher is able
to prefetch those access patterns. For graphics applications,
moderate number of accesses are made to the same address by
all threads. We call these memory accesses Thread Invariant
Access(TIA). As the addresses in TIA are same, predicting
these addresses is trivial. In prefetching for TIA accesses,
APOGEE focuses on timeliness of prefetching rather than
prediction accuracy. APOGEE uses a novel prefetching method
which finds an earlier load at which to prefetch the thread
invariant address. Details of TIA prefetching is explained in
Section III-B.

A. FOA Prefetching

Predictability. FOA accesses are generally predictable as
they are based on thread index. APOGEE exploits this pre-
dictablility of streaming accesses. Figure 5 shows an example
of accesses to various regions of an array by two warps in the
SIMT model. It also shows the accesses made by each thread
in a warp. In this example there are eight threads per warp,
with a total of 16 threads. Using a unique thread index, a thread
can access some element of the array. Programs in SIMT exe-
cution are modelled such that adjacent threads access adjacent
memory locations. So after processing the first 16 elements,
tid 0, moves to processing the 17th element and other threads
follow the same pattern. In this example, during its lifetime, a
thread with tid n processses n+ i∗ (total threads) elements,
where i is a factor which represents the current section of data
being processed. This demonstartes that the addresses accessed
by a thread are predictable for FOA accesses.

In this example, each thread accesses data elements as a
linear function of the thread index. However, the access can be
a complex function of the thread index as well. Generally, the
function is rarely complicated because if the addresses are not
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contiguous, uncoalesced memory access can lead to a heavy
performance penalty. Therefore, for performance reasons, most
programs access addresses that are usually simple functions of
the thread index. For the FOA pattern, the offset between the
memory accesses of adjacent threads in a warp is confirmed
by using all the threads in the warp. After that, it can predict
the addresses accessed in the future iterations of a warp by
using the number of active threads in the warp, the number of
active warps, and the validated offset. Doing this for all the
warps will result in the ability to prefetch all the data required
for the next iteration of all of the threads.

Prefetcher Implementation. APOGEE uses FOA
prefetching where access patterns between threads in a warp
for a load are used to decide the address that will be accessed
by the next access by these threads. The structure of the FOA
prefetcher is shown in Figure 6. It consists of a Prefetch
Table and other logic to check the offset between addresses
of different threads in a warp. When the warp makes a load
request, the access requests of all the threads in the warp are
visible to the prefetcher. The load address of the first active
thread is stored in the address column and the thread index
is updated. Then, with the address and thread index of the
second active thread, APOGEE computes the difference in
addresses and difference in thread indices between the two
threads. The offset is then calculated to be the ratio of the
two quantities. We also update the address column and thread
index column with the address of the second thread and its
thread index respectively.

For the next active thread, APOGEE computes the offset
and compares it with the previous offset. If they are equal,
APOGEE increases the confidence of that entry. APOGEE
does similar operation for the remaining threads in the warp. At
every step a ratio is taken between the difference in address and
difference in thread index to calculate the offset. This is done
because a thread might be inactive due to branch divergence
and no load request will be made from that thread. In such a
case, the difference of the next active thread, with the address
stored in the table will be two times the offset. So a ratio is
taken between the quantities instead. If the confidence of the
load is fewer than two less than the number of active threads
in the warp, then we conclude that the offset found is indeed
the characteristic of the load.

For a system with one warp, and N threads per warp, once
the offset has been fixed, we can prefetch the data of the next
access. By multiplying the offset with i (where i varies from 0
to N − 1) and adding to the last stored address in the prefetch
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table for that load. This address is then put in the prefetch
queue which sends the address to be prefetched to the global
memory. Prefetch requests for all addresses that are in the same
cache line are merged. With more than one warp prefetching,
we must ensure that APOGEE is not confused by the addresses
accessed by the loads of different warps. To this effect, to
calculate the data to be prefetched for a warp accessing the
cache, we further multiply the offset by an additional factor of
(n−N+1) to get the new offset. n is the number of threads in
the SM. This will ensure that only that data is prefetched which
will be used by the warp in the next access. The prefetcher
is designed to ensure that requests to the same cache-line are
coalesced.

During any access, if the offset of addresses do not match
the offset stored in the table, APOGEE resets the confidence of
that entry to 0. New offset calculations are done for the next
access. Loads that do not have a fixed offset, always have
a confidence of 0. If an entry needs to be evicted from the
prefetch table, the entry with the lowest confidence is removed.

1) Dynamic Distance Adjustment: To adjust the distance
of prefetching, every entry in the prefetch table, has a 2-bit
entry per warp to store 3 states: 00, 01 and 10. The lifetime
of a prefetch entry is shown in Figure 7. Once a load of that
entry happens, its state is set to 00. After the computation of
its future address, if a prefetch request is sent, the state is
changed to 01. Transition from state 01 to 10 occurs when the
data comes back from memory to the cache. Whenever a new
load of the same entry occurs, the state is reset to 00.

When an entry is in the 01 state, it indicates that the
prefetch request has been sent to the memory, but the data has
not come back. If the next load for that entry happens when
the entry is in the 01 state, this means the prefetched data
has not returned from memory and hence, prefetching is slow
and The distance of prefetching for that entry is incremented
and stored in the table. Future load instructions of that PC
will use the updated distance of prefetching and prefetch
farther ahead. This will reduce the slowness of prefetching.
The same mechanism will continue to increase the distance till
the distance is sufficiently ahead, such that when the next load
instruction accesses the cache, the data is already prefetched.

Sometimes it may happen that the distance of prefetching
is higher than required. In such cases, prefetched data will
have to stay in the limited cache for a longer period of time.
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Fig. 8: Breakdown of access patterns of loads that missed in
cache.

It may get evicted even before its use occurs. These cases of
early prefetching are handled by APOGEE in the following
way: When a prefetch request comes back from memory to
the cache, the status of that entry is updated to 10. Whenever
an entry is 10 and the next load instruction of that entry is a
miss in the cache, we can assume that the data prefetched was
either wrong or too early. APOGEE recomputes the address
sent for the prefetching from the entry in the table and if the
addresses match, then APOGEE is certain that the data was
missed because it was prefetched too early. In such cases the
distance of prefetching is decremented and stored back in the
table. For future iterations, the new reduced distance is used for
prefetching which will decrease the earliness of prefetching.

B. Thread Invariant Prefetching

Figure 8 shows the three major memory access patterns
found in graphics applications. FOA accesses have alread been
discussed in the earlier section. The remaining two access
patterns are described below:

Thread Invariant Addresses (TIA): Apart from streaming
data coming in to the various stages of the graphics pipeline, a
significant number of accesses are to values that are used to set
up the graphics pipeline before the innermost loop in a warp
starts. These variables specify the various kinds of rendering,
transformations, lighting, and related information. While they
are at the same address for all the threads, their values change
between invocations of the kernel.

Texture Accesses: Texturing operations are always handled
by hardware texturing units as these units are designed for per-
formance of specific texturing algorithms. Performing texture
operations on generic shader cores is fundamentally different
from what is done by the hardware texturing units and results
in unreal memory access patterns. Since texturing operations
will be handled by these hardware units, the accesses made
for texturing in Figure 8 are not considered for this work.

TIA Timeliness. APOGEE dynamically detects and adapts
to FOA and TIA access patterns at runtime. TIA accesses can
be detected when the offset detected for an FOA is found to
be zero. The data accessed by TIA accesses is 16% of the total
data as shown in Figure 8 and to reduce multi-threading, misses
to these addresses can become a performance bottleneck as per
Amdahl’s law. Therefore, APOGEE is extended to dynamically
adapt to these kinds of accesses as well. We modify the
prefetcher shown in Section III-A for TIA. For an entry in
the prefetch table in Figure 6, if the offset is found to be zero
for all the accesses in that warp, we assume that the address
will be constant. The thread index of that entry is set to all
ones to show that the access pattern of this PC is scalar.



Timely 

Prefetch 

Const. 

Ld 

(a) 

Time 

Ld 

Ld 

Ld 

PC3 

PC2 

PC1 

PC0 

Iteration 2 

Slow  

Prefetch 

Goto LAL 

Pf PC Address Slow bit 
PC3 0xfcface 0 

Scalar Prefetch Table 

Prefetch Queue 

Prefetch  

Address 

Const. 

Ld 

(b) 

Time 

Ld 

Ld 

Ld 

PC3 

PC2 

PC1 

PC0 

Iteration 3 

Slow  

Prefetch 

Goto LAL 

Const. 

Ld 

(c) 

Time 

Ld 

Ld 

Ld 

PC3 

PC2 

PC1 

PC0 

Iteration 4 

Goto LAL 

Fig. 9: PC0 always access same address. APOGEE keeps
shifting the load from which the prefetch requests should
be issued till it can prefetch early enough and stores that
information in the Prefetch Table.

The main focus of TIA prefetching is not on predicting
addresses, which are same anyways, but to issue the prefetch
request in a timely fashion to bring evicted values back into
the cache. Figure 9 shows an example to illustrate how the
TIA prefetcher works. For a load accessing a thread invariant
address (PC0) across all threads in a warp, the prefetcher tries
to find a load instruction which is executed earlier than PC0 as
shown in Figure 9(a). This earlier load is called a prefetching
load instruction and behaves like a triggering mechanism.
Whenever the prefetching load instruction accesses the cache,
it sends a prefetch request for the constant load for which it
has been designated as a prefetching load instruction.

TIA Implementation. To find the prefetching load instruc-
tion, the prefetcher keeps the PC of the load which accessed the
cache most recently. This load is known as Last Accessed Load
(LAL). For every load instruction, LAL is the most recently
executed load before the current load instruction. When we see
a miss to a load (PC0) and if the offset entry for that PC in
the prefetch table is zero, we add an entry to the table shown
in Figure 9. The LAL (PC1) is set to be the Load PC in the
entry. The address in that entry is set to be the address (AD0)
which was needed by PC0. In this way the prefetch request
for PC0 is made before PC0 is executed as PC1 is the LAL
for PC0. This table is part of the Prefetch Table and the fields
of the entry are modified on the basis of the access type. Next
time when PC1, which was the LAL for PC0, does a load
request, an entry for it is checked in the prefetching table and
the address AD0 is found. This address (AD0) is added to
the prefetch queue and sent to global memory for prefetching.
PC1 may not be sufficiently ahead of PC0 such that by the
time the prefetching completes, PC0 might have already sent
out a request to global memory as shown in Figure 9(b). In
such a case the entry in the prefetch table is marked as slow
by using the slow bit. When the next iteration is executed and
the PC of the warp is at PC1, since the entry was marked as
slow, we update the Load PC of that entry to the current LAL.
This LAL will be the Load that was executed before PC1. In
this way we prefetch 2 load instructions ahead of PC0. This is
like traversing in a linked list. We continue this till a load has
been reached which is sufficiently ahead such that prefetching
at that load’s execution results in a hit for the TIA load as
shown in Figure 9(c).

C. Other Stalls

Apart from hiding the latency to memory the high degree
of multi-threading in GPUs can hide many kinds of stalls,
such as long latency floating point operations. If we completely

remove multi-threading, then the stalls due to these operations
cannot be hidden. Hiding the access to global memory is the
majority of the work for the multi-threading. With prefetching
we can remove this work and the remaining stalls that the
multi-threading has to hide mostly include truly dependent
floating point instruction. We observe that with scoreboarding,
4 warps are sufficient to hide the latency of other stalls such
as datapath stalls.

IV. EXPERIMENTAL EVALUATION

A. Simulation Setup:

The benchmarks used for Graphics and GPGPU appli-
cations are mentioned in Table Ia. We use viewsets from
the SPEC-Viewperf version 9 benchmark suite which is a
SPEC suite to evaluate graphics performance. To evaluate
the OpenGL applications, we use Mesa3D version 7.11 as
our driver, which is OpenGL version 2.1 compliant. We
parallelized the main stages of the graphics pipeline using
the Fractal APIs [18]. The MV5 reconfigurable simulator [18]
understands these modifications in the source code and creates
as many threads as mentioned in the Mesa source code
whenever a kernel is launched. These threads are grouped into
warps and are run in a SIMT fashion. We use the round-
robin policy for scheduling of warps [2]. We modified the
simulator to maintain a scoreboard and stall for true and output
dependencies between instructions. We use five benchmarks
for analysis of GPGPU applications.

We compare APOGEE with a previous prefetch-
ing technique for GPGPU applications, Many Thread
Aware(MTA) [15]. In MTA prefetching, once the prefetcher
is trained, it prefetches data of all the warps into a prefetch
cache. Section VI explains MTA in further detail.

B. Performance and Power Evaluation:

The simulation parameters for the architecture are shown in
Table Ib. The simulator models an in-order SIMT processor,
scoreboarding, timing accurate cache and all resources such
as MSHRs and uses LRU replacement policy. As the finer
details of a GPU are not open knowledge, we calculate the
power consumed by the GPU by calculating the dynamic and
static power separately. We use the analytical power model
of Hong et al [10] to calculate the dynamic power consumed
by the various portions of the GPU. For our work, we focus
only on the power consumed by one SM with and without
our solution. We do not consider the power consumed by the
global memory. The results show that on average only 2.2%
extraneous memory requests are due to the prefetcher and, so,
the difference due to the power consumption of these extra
requests will not be significant.

For computation of leakage power one third of the SM
total power is considered to be leakage power, based on
prior studies [14], [9], [21]. We classify the leakage power
of an SM into core and cache power. Leakage power of
the cache is measured using CACTI [20]. The remaining
leakage power is distributed amongst the various modules of
the SM ”core” on the basis of area. Areas of different modules
are measured from EDA design tools and published figures.
Table Ic shows component-wise source for the SM area used in
the static power calculation. The most relevant leakage power



TABLE I: Experimental Parameters

Graphics
HandShaded (HS) 5.8M vertices, Maya 6.5
Wolftextured (WT) 16.2M vertices texturing
WolfWireFrame (WF) 19.6M vertices wireframe
InsectTextured (IT) 5.5M vertices
SquidTextured (ST) 2.4M vertices with texturing
EngineShaded (ES) 1.2M vertices, state changes
RoomSolid (RS) Lightscape Virtualization System

GPGPU
FFT (FFT) Fast Fourier Transform algorithm
Filter (FT) bilinear filter detects edges
Hotspot (HP) Evaluate temperature across grid
Mergesort(MS) Parallel merge sort algorithm
Shortestpath (SP) Dynamic programming algorithm

(a) Benchmark Description. (M = million)

Frequency 1 GHz
SIMD Width 8
Warp Size 32 threads
Number of Warps 1, 2, 4, 8, 16, 32
I-Cache 16kB, 4 way, 32B per line
D-Cache 64kB, 8 way, 32B per line
D-Cache Access Latency 4 cycles
Memory latency 400 cycle
Integer Instruction 1 cycle
FP Instruction 24 cycles [24]
Scoreboarding True
Prefetch Table 64 Entry, 76 bits
Prefetch Issue Latency 10 cycles
Memory Bandwidth 12 GBps/SM

(b) Simulation Parameters

Technology TSMC 65 nm
Component Source for Area GPU APOGEE
Fetch/Decode McPAT, RISC in-order model Default Default
FPU Published Numbers [8] 8 8
SFU 4 FPUs [17] 2 2
Register File Artisan RF Compiler 16k, 32-bit 2k, 32-bit
Shared Memory CACTI 64kB 64kB
Prefetcher Artisan SRAM Compiler None 64, 73-bit entries

(c) Details of Area Calculation, and component wise description for the major components
of baseline GPU and APOGEE

Prefetcher Entry
PC 10 bits
Address 28 bits
Offset 8 bits
Confidence 8 bits
Thread Idx 6 bits
Distance 6 bits
PF Type 2 bits
PF State 8 bits

(d) Prefetcher Entry Area

number for this work, that of the register file, were obtained
through the ARM Artisan Register File Compiler tool. All the
measurements are at 65 nm using TSMC technology.

The prefetcher is considered to be an SRAM structure
integrated with the cache controller. The dynamic and leakage
power of this structure is calculated from the Artisan SRAM
Compiler. The data from the global memory is brought directly
into the cache and no stream buffers are used. Table Id shows
the breakup of the prefetcher area. For all the prefetching types
there is only one table. The interpretation of the entries of the
table vary depending on the Prefetch Type bit. FOA prefetching
needs the most amount of information. TIA prefetching needs
less bits. Hence, Table Id shows the number of bits required
by one entry of FOA prefetching.

V. RESULTS

A. Performance and Power

Performance of Prefetching with Low multi-threading.
Figure 10 shows the speedup achieved by stride prefetching
per warp, MTA (MTA 4) and APOGEE 4, all with four warps
when compared to a baseline configuration of SIMT with 32
warps (shown as SIMT 32, and as always having a value
of ‘1’). In graphics benchmarks, APOGEE 4 is similar in
performance to SIMT with 32 warps. The stride prefetching
and MTA techniques are designed for use in GPGPU applica-
tions and, therefore, do not provide performance benefits for
graphics applications. APOGEE 4, however, performs better
than the baseline and the two compared techniques as it has
the ability to prefetch in a timely manner and prefetch for TIA
accesses. APOGEE 4 is at par with, or better than, massively-
multithreaded SIMT for six out of the seven benchmarks,
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Fig. 10: Comparison of overall speedup of SIMT with 32
warps, stride prefetcher per warp with 4 warps, MTA with
4 warps and APOGEE.

providing a 1.5% speedup over the baseline 32-warp design.

For GPGPU benchmarks, stride prefetching per warp and
MTA perform considerably better. However, APOGEE 4 per-
forms significantly better than these techniques in FT, MS and
SP. For FFT and HP benchmarks, it is within a few percent of
other techniques. The performance of APOGEE 4 varies from
a 4% loss to 82% better performance than the baseline. Overall
Stride prefetching and MTA with 4 warps have 19% and 10%
performance degradation as compared to baseline, respectively,
whereas, APOGEE 4 with 4 warps performs 19% better than
SIMT with 32 warps across all benchmarks.

Comparison with MTA 32. The performance of MTA
with 32 warps(MTA 32) and APOGEE 4 with four warps
is shown in Figure 11. The baseline configuration is SIMT
with 32 warps. On average the performance of MTA varies
from 1% degradataion in performance to 79% improvement
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Fig. 11: Comparison of overall speedup of SIMT with 32
warps, MTA with 32 warps and APOGEE.
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Fig. 12: Comparison of Performance/Watt of high-degree of
multi-threading and multi-threading with prefetching

over baseline with an average speedup of 16% over SIMT
with 32 warps. Overall, MTA 4 warps provides only 90% of
the performance of SIMT 32 and MTA 32 provides a 16%
performance improvement. To achieve the 26% performance
difference between MTA 4 and MTA 32, MTA requires an
eight fold increase in the number of concurrent warps from 4
to 32 whereasAPOGEE 4 is 3% faster than MTA 32 across
all the benchmarks. MTA 32 can hide the latency of accesses
that it cannot prefetch for, with the 32 warps that it has at its
disposal. But with the TIA prefetcher and timely prefetching,
APOGEE 4 can prefetch the data and does not need the
additional warps.

Efficiency. Figure 12 shows the power consumption on the
y-axis and performance on the x-axis for SIMT, MTA and
APOGEE as the number of warps are varied. The baseline
for power and performance is a configuration with one warp
and no prefetching. As more warps are added to SIMT, the
performance increases as long latency stalls are hidden by
multi-threading. Initially with 2, 4, and 8 warps, some stalls are
hidden by the additional multi-threading and the performance
gain is almost linear. Due to the addition of multi-threading
hardware, the power also increases. However, the change in
power for the corresponding change in performance is much
higher for SIMT when it goes from 16 warps to 32 warps.
For the maximum performance in SIMT, the power overhead
is 31.5% over baseline. MTA provides higher performance
compared to SIMT for 2, 4 and 8 warps. At 8 warps it
provides 52% speedup over SIMT at similar levels of power
consumption. But to get the maximum performance of MTA
which is 18% more than its performance with 8 warps, it needs
32 warps which consumes 28% higher power as compared to
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Fig. 13: Accuracy of the overall prefetching technique.

8 warps. The addition of 24 warps provide diminishing returns
over the first 8 warps.

APOGEE 4 provides performance benefits with 4 warps,
even over 32-warp SIMT and MTA, while having the power
consumption of 4-warp SIMT and MTA. Due to the high
performance of the dynamic prefetching techniques, the
performance-per-watt of APOGEE 4 in the best-performance
case is 51% higher than that of SIMT and 33% higher than
that of MTA. The performance-per-watt efficiency is much
higher for APOGEE 4 as fewer warps and a relatively small
prefetch table provide 19% speedup and having 8 times less
multi-threading hardware provides significant power benefits.
In this work, moving from 32 warps to 4 warps results in the
removal of 14K 32-bit registers. As shown in Figure 2, these
hardware structures are underutilized and leak a significant
amount of power. The overall improvement in power-efficiency
by prefetching, therefore, is due to both performance increases
and reduced power consumption.

B. Analysis of Performance:

This section analyzes the reasons for the difference in
performance of APOGEE as compared to MTA and SIMT.
We do not analyze the same for stride prefetching on a per
warp basis due its poor performance as shown in Figure 10.

Accuracy. The two major criterion for successful prefetch-
ing are correctly predicting addresses and their timely prefetch-
ing. Figure 13 shows the accuracy of the overall prefetching
technique for all the benchmarks. On average, 93.5% of the
addresses that were predicted by the prefetcher were correct
and accessed by the core in the future. The high correctness
of the prefetcher is due to the regular access patterns of the
programs. Sometimes, due to certain conditional execution of
instructions leading to a change in memory access patterns, the
prefetcher may reset itself for a particular entry. This leads to
low correctness in RS and MS benchmark. The overall access
time to global memory for all loads for APOGEE is reduced
to 43 cycles from 400 cycles which does not need high degree
of multi-threading.

Miss Rate. We show the effectiveness of prefetching by
looking at the variation in the data cache miss rate. A reduction
in the data cache miss rate indicates that there are fewer
requests that have to be brought in from L2 and memory.
While prefetching can help in reducing the dcache miss rate,
if the prefetching predicts wrong addresses or brings in data
that evicts useful data, the overall miss rate will increase.
So, it is a good metric to determine the effectiveness of
prefetching. Figure 14 shows the reduction in dcache miss
rate when compared to 32 warp SIMT with no prefetching.
MTA 4 is able to reduce the dcache miss rate only for 4
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Fig. 15: Variation in stall cycles of the SMs, normalized to
SIMT with 32 warps.

out of the 7 graphics benchmarks. It does better for GPGPU
benchmarks except for FT where it actually increases the miss
rate. MTA 32 and APOGEE perform considerably better than
SIMT with 32 warps. They are able to reduce the baseline
dcache miss rate by close to 80% in 8 benchmarks. Due to the
effectiveness in prefetching, access to the main memory needs
to be hidden only for the remaining 20% of the times. A low
reduction in miss-rate actually transfers to low performance
for ES and MS for both MTA and APOGEE as shown in
Figure 11.

Reduction in Stalls. The reduction in stall cycles of the
pipeline of the core is shown in Figure 15. The y-axis shows
the reduction in stall time normalized to SIMT with 32 warps.
Due to the reduction in the dcache miss rate in MTA 32
and APOGEE, there is a significant reduction in stalls. For
MTA 4, since the low reduction in dcache rate, the number
of stall cycles of the shader pipeline increases significantly
due to the lack of multi-threading. MTA 32’s reduction in
cycles is achieved through prefetching as well as high degree of
multi-threading. In APOGEE there is only a fraction of multi-
threading present and, yet, due to the high degree of correct
prefetching, as shown in Figure 13, and higher reduction in
dcache miss rate, as shown in Figure 14, it is able to eliminate
more stalls.

Bandwidth. Data that is wrongly or untimely prefetched
will not be used by the core and unnecessarily strains the
bandwidth of the system. Figure 16 shows that on average
around 2.2% extra requests are sent to the global memory
by APOGEE. These extra requests include prefetch and reg-
ular read requests. Graphics benchmarks have low bandwidth
wastage due to prefetching as compared to the GPGPU bench-
marks. Even though the accuracy of the prefetcher is around
92%, the extraneous data overhead is 2.2%. There are times
when the data accessed by different threads overlap and, hence,
prefetcher may predict the address that is already in the cache
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Fig. 16: Extra data transferred from memory to the cache
including prefetching requests.

In such cases, no request is sent to the memory, reducing
the prefetcher overhead. Overall, due to the high accuracy
and timeliness of the prefetcher, prefetching has a very small
impact on an application’s bandwidth consumption.

VI. RELATED WORK

Prefetching on GPUs has been studied in the past. Lee
et al. [15] proposed MTA, Many Thread Aware prefetching
for GPGPU applications. This work compares MTA with
APOGEE in detail in Section V. Their solution primarily
addresses accuracy of prefetching with a complex throttle
for wasteful prefetching which involves finding data that was
prefetched and evicted before being utilized. Such counters
can be complex to implement. APOGEE focuses on timely
prefetching by adjusting the distance of prefetching using two
bits in a table. Furthermore, MTA addresses only one kind
of access pattern for graphics application. Arnau et al. [1]
shows the inefficiency of using MTA for Graphics applications.
In this work we show the effectiveness of our prefetching
for two major access pattern to overcome the deficiency of
GPGPU prefetching techniques for graphics applications. In
MTA prefetching the prediction of the next warp’s data is
based on the currently trained prefetcher. Once the training
is complete, the data for all the warps is prefetched and stored
in the prefetch cache. This approach is not very cordial for
energy efficiency as show in Figure 12.

Arnau et al. [1] show the ineffectiveness of standard
prefetching techniques for graphics applications and use a
decoupled access/execute mechanism for graphics processing.
Apart from dynamically adapting to the access patterns found
in these applications, APOGEE also maintains the timeliness
of prefetching. So, our technique is more effective than the
prefetching techniques compared in [1]. They change the
graphics core architecture substantially, whereas our work has
less invasive changes to the core itself. We change the cache-
controller and provide efficiency through prefetching. While
their technique is effective for complex access pattern, their
system is analyzed with 100 cycle memory access latency, we
show that our technique is effective for 400 cycle latency for
a graphics memory access. Prefetching for texture caches was
studied by Igehy et al. [11]. They take advantage of distinct
memory access pattern of mip-mapping. In APOGEE only
operations done at the shader core are considered and texturing
is considered to be handled by separate hardware structures.

Energy efficiency on GPUs has been addressed from vari-
ous directions. Gebhart et al. [9] provide a register file cache to
access a smaller structure rather than the big register files. They
have a two-level scheduler to select from a small set of active



threads to reduce the amount of register caching required. Lin
et al. [16] propose software prefetching for GPU Programs to
optimize power. Their work adds prefetch instructions and vary
voltage to address high power consumption. Dasika et al. [4]
create a fused FPU design to reduce the number of register file
accesses in a SIMT-like architecture. Yu et al. [13] increase the
efficiency of the register files for GPU with a SRAM-DRAM
memory design. Zhao et al. [25] propose an energy efficient
mechanism to reduce the memory power consumption for
GPUs via a reconfigurable in-package wide interface graphics
memory on a silicon interposer. Tarjan et al. [23] proposed
”diverge on miss” and Meng et al. [18] proposed Dynamic
Warp Subdivision where performance improves due to the
advantage of prefetching effects by early execution of some
threads in a warp. All these approaches are orthogonal to the
approach used by APOGEE for energy efficiency.

Adaptive prefetching has been studied for CPU architec-
tures. Srinath et al. [22] use a feedback mechanism to adjust
the prefetch accuracy, timeliness and cache pollution. Ebrahimi
et al. [6] coordinate multiple prefetcher for a multicore ar-
chitecture to address prefetcher caused inter-core interference.
APOGEE focuses on adapting to different access patterns for
throughput oriented applications in GPUs.

VII. CONCLUSION

GPUs use multi-threading to hide memory access latency.
The associated cost of thread contexts and register state leads
to an increase in power consumption and a reduction in
performance-per-watt efficiency. In this work, we demonstrate
that dynamically adaptive prefetching technique is a more
power-efficient mechanism to reduce memory access latency
in GPUs with comparable performance. Even though con-
ventional wisdom suggests that prefetching is more energy
hungry, when used in the context of GPUs to reduce the
high-degree of multi-threading and related hardware, it can
be used to reduce the overall power consumption.Through
analysis of the memory access patterns of GPU applications,
we found that fixed-offset address access and thread invariant
access can be prefetched for GPU applications. We demon-
strate that a dynamically adaptive prefetcher can correctly
predict these addresses in 93.5% of the cases. Furthermore,
adaptive prefetching with dynamic distance adjustment and
multi-threading of 4 warps per SM, reduce the requests that
go to memory by 80%. Overall, APOGEE prefetching with 4
warps of multi-threading can provide a performance increase
of 19% over a GPU which has 32 warps per SM leading to a
52% increase in performance per watt, with 8 times reduction
in multi-threading support.
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