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Abstract—GPUs use thousands of threads to provide high
performance and efficiency. In general, if one thread of a
kernel uses one of the resources (compute, bandwidth, data
cache) more heavily, there will be significant contention for
that resource due to the large number of identical concurrent
threads. This contention will eventually saturate the perfor-
mance of the kernel due to contention for the bottleneck
resource, while at the same time leaving other resources
underutilized. To overcome this problem, a runtime system
that can tune the hardware to match the characteristics of a
kernel can effectively mitigate the imbalance between resource
requirements of kernels and the hardware resources present
on the GPU. We propose Equalizer, a low overhead hard-
ware runtime system, that dynamically monitors the resource
requirements of a kernel and manages the amount of on-
chip concurrency, core frequency and memory frequency to
adapt the hardware to best match the needs of the running
kernel. Equalizer provides efficiency in two modes. Firstly, it
can save energy without significant performance degradation
by throttling under-utilized resources. Secondly, it can boost
bottleneck resources to reduce contention and provide higher
performance without significant energy increase. Across a
spectrum of 27 kernels, Equalizer achieves 15% savings in
energy mode and 22% speedup in performance mode.

Keywords-GPGPUs; Runtime System; Resource Utilization;
Dynamic Voltage and Frequency Scaling;

I. INTRODUCTION

Modern GPUs provide several TFLOPs of peak perfor-
mance for a few hundred dollars by having hundreds of
floating point units (FPUs) and keeping them busy with
thousands of concurrent threads. For example, NVIDIA’s
GTX580 has 512 FPUs and uses over 20,000 threads to
maintain high utilization of these FPUs via fine-grained
multi-threading. GPUs are stocked with high memory band-
width of up to 6 Gbps and 64 kB of local storage per
streaming multiprocessor (SM) to feed data to these FPUs.

At full occupancy, more than a thousand, almost identical
threads are executing on an SM. Therefore, if one thread
has a high demand for using one of the resources of the
GPU, then this imbalance in resource requirement is magni-
fied many times causing significant contention. We observe
that the majority of the GPU applications are bottlenecked
by the number of compute resources, available memory
bandwidth or limited data cache [17]. As threads wait
to access the bottleneck resource, other resources end up
being under-utilized, leading to inefficient execution. While

these hardware resources cannot be increased at runtime,
there are three important parameters that can modulate the
performance and energy consumption of these resources:
number of concurrent threads, frequency of the SM and
frequency of the memory system.

Running the maximum number of threads on an SM
causes inefficient execution by saturating the compute re-
sources in compute intensive workloads and memory band-
width for memory intensive workloads. However, its impact
on the data cache of an SM is even more critical. It
significantly reduces the usefulness of the limited-capacity
L1 data cache. For NVIDIA’s Fermi architecture, each SM
can have up to 48 kB of data cache resulting in each
thread having fewer than 30 bytes of cache on average
when running maximum threads. With such a small footprint
allotted to each thread, the advantages of data locality are
lost due to increased cache contention. Rogers et al. [26]
and Kayiran et al. [15] have shown the detrimental effect
of running large number of threads on cache hit rates in
GPUs. However, their solutions use architecture dependent
heuristics that are not as effective across architectures.

Another reason for inefficient execution is the rigidity
of the core and memory system voltage and frequency
operating points. For example, while the GDDR5 DRAM
can provide a bandwidth of up to 6 Gbps, the idle standby
current is 30% higher as compared to when it provides 3.2
Gbps [12]. As the memory system is not utilized signifi-
cantly for compute intensive kernels, there is an opportunity
to save energy if the performance of memory system is
lowered for such kernels without degrading the overall
performance. Similar opportunity is present for memory
intensive kernels, if the core frequency and voltage can
be lowered as SMs are not the bottleneck. Lee et al. [18]
analyzed the trade-off of saving energy by DVFS and core
scaling for such cases, but do not have a robust runtime
mechanism to deal with all scenarios.

If the proclivity of a workload can be known a pri-
ori, advanced programmers can set the desired number of
concurrent threads, frequency of the core and the memory
system. However, static decisions are often infeasible due to
three reasons. First, the contention for a hardware resource
may be heavily dependent on the input. For example, a small
input set might not saturate the memory bandwidth, whereas
a large input set might. Second, resource contention is



dependent on the amount of given GPU hardware resources
and an application optimized for a GPU may change its point
of contention on another GPU. Third, due to the prevalence
of general purpose computing on GPUs (GPGPU), more
irregular parallel applications are being targeted for GPUs [6,
22]. This has resulted in GPGPU kernels having distinct
phases where different resources are in demand.

As running the maximum number of threads at fixed core
and memory system frequency is not always the best solution
and they cannot be determined a priori and independently,
an intelligent runtime system is required. This system should
be able to tune three important architectural parameters:
number of threads, core frequency and memory frequency
in a coordinated fashion as these parameters are dependent.

To address the limitations of prior work and exploit
the significant opportunities provided by modulating these
three parameters, we propose Equalizer, a comprehensive
dynamic system which coordinates these three architectural
parameters. Based on the resource requirements of the kernel
at runtime, it tunes these parameters to exploit any imbalance
in resource requirements. As new GPU architectures support
different kernels on each SM, Equalizer runs on individual
SMs to make decisions tailored for each kernel. It monitors
the state of threads with four hardware counters that measure
the number of active warps, warps waiting for data from
memory, warps ready to execute arithmetic pipeline and
warps ready to issue to memory pipeline over an execution
window. At the end of a window, Equalizer performs two
actions to tune the hardware.

Firstly, it decides to increase, maintain, or decrease the
number of concurrent threads on the SM. Secondly, it also
takes a vote among different SMs to determine the overall
resource requirement of the kernel based on the above
counters. After determining the resource requirements of a
kernel, Equalizer can work in either energy efficient or high
performance modes. In the energy mode, it saves energy
by throttling under-utilized resources. As only the under-
utilized resources are throttled, its performance impact is
minimal. In the performance mode, only the bottleneck
resource is boosted to provide higher performance at modest
energy cost. Equalizer achieves a net 15% energy savings
while improving performance by 5% in the energy saving
mode and achieves 22% performance improvement in the
performance mode while consuming 6% additional energy
across a spectrum of GPGPU kernels.

This work makes the following contribution:
• We explore the opportunity for energy savings and

performance improvement that a dynamic adaptable system
can achieve over a fixed GPU architecture for a variety of
kernels that have sophisticated resource requirements.

• We provide an in-depth analysis of the time spent by
the warps on an SM. Through this analysis, we introduce
four novel hardware counters based on the execution state
of the warps. These counters represent waiting warps, ac-

tive warps, ready to execute memory warps, and ready to
execute compute warps. They expose the collective resource
utilization of the application.

• We propose a comprehensive, low overhead runtime
tuning system for GPUs that dynamically adapts the number
of threads, core frequency and memory frequency for a given
kernel in unified way to either save energy by throttling
unused resources or improve performance by reducing cache
contention and boosting the bottleneck resource.

II. OPPORTUNITIES FOR A DYNAMIC SYSTEM

In this section we describe various opportunities that a
runtime system can exploit. We study 27 kernels from the
Rodinia and Parboil benchmark suites and classify them
into four categories on a NVIDIA Fermi style (GTX 480)
architecture: 1) compute intensive which have contention
for the compute units, 2) memory intensive which stress
the memory bandwidth, 3) cache sensitive which have con-
tention for L1 data cache and 4) unsaturated which do not
saturate any of the resources but can have inclination for
one of the resources.

A. Effect of Execution Parameters

Figure 1 shows the impact of varying SM frequency,
memory frequency and number of threads on the perfor-
mance and energy efficiency of different kernels. Energy
efficiency is defined as the ratio of energy consumed by the
baseline Fermi architecture over the energy consumed by the
modified system. Higher value of energy efficiency corre-
sponds to lower energy consumption in the modified system.
The kernels and methodology used for this experiment is
described in Section V. A black star mark on each sub-figure
shows the position of the baseline. The four quadrants 1 ,
2 , 3 and 4 in the sub-figures represent deviation from

the black star. In quadrant 1 performance improves and
efficiency decreases, while in quadrant 2 performance and
efficiency decrease. In quadrant 3 performance and effi-
ciency increase, while in quadrant 4 performance decreases
and efficiency increases.

SM Frequency: Figure 1a shows the impact of increasing
the SM frequency by 15%. The compute kernels show
proportional improvement in performance and increase in
energy by moving deep into quadrant 1 . The result for
memory and cache kernels are very different. Since these
kernels are not constrained by the SM, faster computations
by increasing the SM frequency does not reduce any stalls.
Therefore, these kernels achieve insignificant speedup and
stay close to the dotted line which represents baseline
performance. Hence, increasing SM frequency is effective
only for compute kernels and should be avoided for others.

On the other hand, when the SM frequency is reduced
by 15%, the most affected kernels are compute kernels and
they move significantly into quadrant 4 losing performance
while saving energy (Figure 1b. In such kernels, the SM’s
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Figure 1: Impact of variation of SM frequency, DRAM frequency and number of concurrent threads on performance and energy efficiency.
The black star mark shows the value for the baseline GPU and is always set to 1 for both performance and energy. The properties of the
four quadrants relative to the star mark are explained in the legend at the bottom.

compute resources are the bottleneck and slowing the SM
will slow these resources, reducing performance. While there
is a significant reduction in the energy consumed, such
large drops in performance are generally unacceptable. On
the other hand, the loss in performance for memory and
cache kernels is small, while the energy efficiency improves
significantly, pushing the kernels into quadrant 4 . The
primary reason for this behavior is the large periods of
inactivity of the compute resources.

Memory Frequency: While SM frequency affects energy
and performance of compute kernels, memory frequency has
similar effects on memory kernels. Cache kernels behave
like memory kernels due to cache thrashing, which leads
to higher bandwidth consumption. Figure 1c shows the
impact of increasing the DRAM frequency by 15%. Memory
and cache kernels move deep into quadrant 1 due to the
improved performance. The decrease in energy efficiency
is lower than increasing SM frequency as the memory
contributes less significantly to the total energy. Analogous
to the impact of SM frequency on memory kernels, in-
creasing DRAM frequency does not impact compute kernels
as the memory is not fully utilized at the base frequency.
These kernels achieve no speedup and increase the energy
consumption by 5%.

Decreasing the memory frequency affects the memory and
cache kernels as shown by Figure 1d. As memory bandwidth
is the bottleneck for such kernels, this behavior is expected.
However, reducing DRAM frequency has no performance
impact on compute kernels while improving energy effi-
ciency by 5%, indicating an opportunity to decrease the
DRAM frequency and voltage for compute kernels.

Number of Thread Blocks: Increasing the DRAM fre-
quency helps cache kernels get data back faster. However,
controlling the number of threads to reduce L1 data cache

thrashing will improve performance significantly with mini-
mal energy increase. Therefore, we first analyze the optimal
number of threads that need to run on an SM. Figure 1e
shows the best performance achieved by the kernels by
varying the number of concurrent threads on an SM. The
compute and memory kernels achieve best performance
with maximum threads and overlap at (Max Threads, 1)
as saturating these resources does not hurt performance
significantly and only leads to inefficient execution. The
best performance for the cache kernels is achieved at lower
concurrency levels where there is less contention for the
cache. Therefore the big challenge for a runtime system is
to find the most efficient number of threads to run. Note
that if threads less than optimal are run, there might not be
sufficient parallelism to hide memory access latency, which
will result in lower performance.

The algorithm to decide the number of concurrent threads
should ensure that the number of threads are not reduced
significantly for compute and memory kernels as perfor-
mance might suffer due to the lack of work. Figure 1f shows
the improvement in energy efficiency, if the best performing
number of concurrent threads are selected statically. There
is significant improvement in performance and energy ef-
ficiency as kernels go high into quadrant 3 . Therefore,
choosing the best number of threads to run concurrently is
suitable for saving energy as well as improving performance.
For compute and memory kernels, running maximum threads
leads to best performance and energy efficiency

Actions for Dynamic System: The action of increasing,
maintaining, or decreasing the three parameters depend on
the objective of the user. If the objective is to save energy, the
SM and memory frequency should be reduced for memory
and compute kernels respectively. If the objective is to
improve performance, the SM and memory frequency should



Table I: Actions on different parameters for various objectives
Kernel Objective SM DRAM Number

Frequency Frequency of threads
Compute Energy Maintain Decrease Maximum
Intensive Performance Increase Maintain Maximum
Memory Energy Decrease Decrease Maximum
Intensive Performance Maintain Increase Maximum
Cache Energy Decrease Maintain Optimal
Sensitive Performance Maintain Increase Optimal
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(a) Distribution of total execution time across various invocations for dif-
ferent, statically fixed number of thread blocks for the bfs-2 kernel. No
single configuration performs best for all invocations. Each color is a different
invocation of the kernel.
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Figure 2: Variation of kernel requirements across and within kernel
instances.

be increased for compute and memory kernels respectively.
Running the optimal number of threads blocks for cache
sensitive cases is beneficial in both the objectives. These
conditions and actions are summarized in Table I.

B. Kernel Variations

Kernels not only show diverse static characteristics in
the resources they consume, but their requirements also
vary across and within invocations. Figure 2a shows the
distribution of execution time across various invocations of
the bfs-2 kernel for three statically fixed number of thread
blocks. All values are normalized to the total time taken
for the kernel with maximum concurrent thread blocks (3).
The performance of having 3 thread blocks is better than
having 1 block until invocation number 7 (vertical stripes).
But from invocation number 8 to 10 (horizontal stripes),
having 1 block is better. After invocation 10, having 3 thread
blocks is better again. An optimal solution would never pick
the same number of blocks across all invocations. A 16%
improvement in performance is possible by simply picking
the ideal number of thread blocks for every invocation as
shown by the bottom bar.

An example of variation in resource requirements within
a kernel invocation is shown in Figure 2b for the mri-g-
1 benchmark. Over most of the execution time, there are
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more warps waiting for data to come back from memory
than warps ready to issue to memory. However, for two
intervals, there are significantly more warps ready to issue to
memory, putting pressure on the memory pipeline. During
these intervals, a boost to the memory system will relieve
the pressure and significantly improve the performance.

Overall, there are significant opportunities for a system
that can control the number of threads, SM frequency
and memory frequency at runtime. These opportunities are
present not only across different kernels, but also across a
kernel’s invocations and within a kernel’s invocation. In the
following section, we describe how Equalizer exploits these
opportunities to save energy or improve performance.

III. EQUALIZER

The goal of Equalizer is to adjust three parameters: num-
ber of thread blocks, SM frequency and memory frequency,
to match the requirements of the executing kernels. To detect
a kernel’s requirement, Equalizer looks at the state of the
already present active warps on an SM and gauges which
resources are under contention. The state of active warps
is determined by a collection of four values: 1) number of
active warps, 2) number of warps waiting for a dependent
memory instruction, 3) number of warps ready to issue to
memory pipeline, and 4) number of warps ready to issue to
arithmetic pipeline. Large values for the last two counters
indicate that the corresponding pipelines are under pressure.
At runtime, Equalizer periodically checks for contention of
resources using the state of the warps. It makes a decision
to increase, maintain or decrease the three parameters at
the end of each execution window (epoch). If Equalizer
decides to change any parameter, the new value differs from
the previous value by one step. The details of the decision
process are explained in Section III-B.

Figure 3 shows the interaction of Equalizer with the
other components of a GPU. It receives the four counters
mentioned above, from the warp scheduler in an SM and
makes a local decision. If the decision is to increase number
of threads, the Global Work Distribution Distribution Engine
(GWDE) which manages thread block distribution across
SMs, issues a new thread block for execution to the SM.
If Equalizer decides to reduce the number of concurrent
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Figure 4: State of the warps for different categories of kernels. The names on top of the chart show the various categories.

threads, it uses the CTA Pausing technique used in [15]
(Section IV-B). Based on the objective of Equalizer, each
SM submits a Voltage/Frequency (VF) preference to the
Frequency Manager every epoch. The frequency manager
shown in Figure 3 receives these requests and makes a global
decision for the new VF level for the SM and memory based
on a majority function.

A. State of Warps

When a kernel executes on an SM, warps of the kernel
can be in different states. We classify the warps depending
on their state of execution in a given cycle:

• Waiting- Warps waiting for an instruction to commit
so that further dependent instructions can be issued to the
pipeline are in this category. The majority of warps are
waiting for a value to be returned from memory. The number
of warps needed to hide memory latency is not only a
function of the number of memory accesses made by the
warps, but also of the amount of compute present per warp.
An SM should run more than Waiting number of warps
concurrently to effectively hide memory access latency.

• Issued- Warps that issue an instruction to the execution
pipeline are accounted here. It indicates the IPC of the SM
and a high number of warps in this state indicate good
performance.

• Excess ALU (Xalu )- Warps that are ready for ex-
ecution of arithmetic operations, but cannot execute due
to unavailability of resources are in this category. These
are ready to execute warps and cannot issue because the
scheduler can only issue a fixed number of instructions
per cycle. Xalu indicates the excess warps ready for
arithmetic execution.

• Excess memory (Xmem )- Warps that are ready
to send an instruction to the Load/Store pipeline but are
restricted are accounted here. These warps are restricted if
the pipeline is stalled due to back pressure from memory or
if the maximum number of instructions that can be issued
to this pipeline have been issued. Xmem warps represents
the excess warps that will increase the pressure on the
memory subsystem from the current SM.

• Others- Warps waiting on a synchronization instruc-
tion or warps that do not have their instructions in the in-
struction buffer are called Others. As there is no instruction
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Figure 5: Performance of memory intensive kernels with number
of concurrent thread blocks

present for these warps, their requirements is unknown.
In principle, one warp in Xalu or Xmem state denotes con-

tention for resources. However, Equalizer boosts or throttles
resources in discrete steps and in either cases, there should
not be lack of work due to the modulation of parameters.
Hence, there should be some level of contention present
before Equalizer performs its actions.

Figure 4 shows the distribution of three of the above
states on an SM for the 27 kernels broken down by cat-
egory, while running maximum concurrent threads. Others
category is not shown as their resource requirements cannot
be observed. The following observations are made from the
state of warps:

• Compute intensive kernels have a significantly larger
number of warps in Xalu state as compared to other kernels.

• Memory intensive and cache sensitive kernels have a
significantly larger number of warps that are in Xmem state
as compared to the other categories.

• All unsaturated kernels still have inclination for either
compute or memory resources as they have significant
fraction of warps in Xalu or Xmem state.

Unifying Actions on Memory Intensive and Cache
Sensitive Kernels: As the state of the warps for memory in-
tensive and cache sensitive kernels are similar, we unify the
process of tuning the resources for the two cases. Figure 5
shows the performance of memory intensive kernels with a
varying number of thread blocks. All kernels saturate their
performance well before reaching the maximum number of
concurrent blocks. As long as the number of blocks for a
memory intensive kernel is enough to keep the bandwidth
saturated, we do not need to run the maximum number of
blocks. In case the large number of warps in Xmem state
were due to cache thrashing, this reduction in thread blocks



Algorithm 1 Decision algorithm of Equalizer
1: . nMem, nALU are the number of warps in Xalu and Xmem state
2: . nWaiting is the number of warps in waiting state
3: . nActive is the number of active, accounted warps on an SM
4: . Wcta and numBlocks are # warps in a block and # blocks
5: . MemAction and CompAction are frequency changes
6: ————————————————————————————–
7: if nMem > Wcta then . Definitely memory intensive
8: numBlocks = numBlocks - 1
9: MemAction = true

10: else if nALU ¿ Wcta then . Definitely compute intensive
11: CompAction = true
12: else if nMem > 2 then . Likely memory intensive
13: MemAction = true
14: else if nWaiting > nActive/2 then . Close to ideal kernel
15: numBlocks = numBlocks + 1
16: if nALU > nMem then . Higher compute inclination
17: CompAction = true
18: else . Higher memory inclination
19: MemAction = true
20: end if
21: else if nActive == 0 then
22: CompAction = true . Improve load imbalance
23: end if

will reduce cache contention.
In principle, if every cycle an SM sends a request that

reaches DRAM, then as there are multiple SMs, the band-
width will be saturated leading to back pressure at the SM.
Therefore, the Load Store Unit(LSU) will get blocked and
all warps waiting to access memory will stall. So even a
single warp in Xmem state is indicative of memory back
pressure. However, when this Xmem warp eventually sends
its memory request, it might be hit in the L1 or L2 cache.
Therefore the earlier Xmem state of the warp was not
actually representing excess pressure on DRAM and so we
conservatively assume that if there are two warps in Xmem

state in steady state then the bandwidth is saturated. So
Equalizer tries to run the minimum number of blocks that
will keep the number of warps in Xmem greater than two
and keep the memory system busy and reduce L1 cache
contention with minimum number of thread blocks.

B. Equalizer Decision

To exploit the tendencies of a kernel as indicated by the
state of warps, we propose a dynamic decision algorithm for
Equalizer. Once the tendencies are confirmed, the algorithm
performs actions based on the two objectives mentioned
in Table I. Due to an imbalance in the kernel’s resource
requirements, one of the resources is saturated earlier than
others and hence, several warps end up in Xalu or Xmem

state. Therefore, whenever Equalizer detects that Xalu and
Xmem are beyond a threshold, it can declare the kernel
to be compute or memory intensive. This threshold has to
be conservatively high to ensure that the resources are not
starved for work while changing the three parameters.

If the number of warps in the Xalu or Xmem are more
than the number of warps in a thread block (Wcta ),
executing with one less thread block would not degrade the

performance on average. These additional warps were stalled
for resources and the remaining warps were sufficient to
maintain high resource utilization. Therefore, Wcta is a con-
servative threshold that guarantees contention of resources
if number of warps in Xalu or Xmem are above it.

Tendency detection: Algorithm 1 shows Equalizer deci-
sion process that implements actions mentioned in Table I. If
the number of Xalu or Xmem warps are greater than Wcta ,
the corresponding resource can be considered to have serious
contention (lines 7 and 10). If none of the two states have
large number of excess warps, Equalizer checks the number
of Xmem warps to determine bandwidth saturation (line
12). As discussed in Section III-A, having more than two
Xmem warps indicates bandwidth saturation. If these three
conditions (compute saturation, heavy memory contention
and bandwidth saturation) are not met, there is a chance
that the current combination of the three parameters are not
saturating any resources and these kernels are considered
to be unsaturated. Kernels in unsaturated category can have
compute or memory inclinations depending on large Xalu

or Xmem values (line 16-18). If a majority of the warps are
not waiting for data in such cases (line 14), these kernels
considered to be degenerate and no parameters are changed.

Equalizer actions: After determining the tendency of
the kernel, Equalizer tunes the hardware parameters to
achieve the desired energy/performance goals. For compute
intensive kernels, Equalizer requests CompAction from
the frequency manager (line 11). Equalizer deals with the
memory intensive workloads as explained in Section III-A.
Whenever Equalizer finds that the number of Xmem warps
are greater than Wcta , it reduces the number of blocks
by one (line 8) using the techniques in Section IV-B.
Reducing the number of concurrent blocks does not hamper
the memory kernels and it can help reduce cache contention.
However, if the number of Xmem warps are greater than two,
but less than Wcta , Equalizer does not decrease the number
of blocks (line 12-13) because reducing number of thread
blocks might under-subscribe the memory bandwidth as
explained in Section III-A. In both of these cases, Equalizer
requests MemAction from the frequency manager. For
unsaturated and non-degenerate kernels, Equalizer requests
CompAction or MemAction depending on their compute
or memory inclination (line 16-18).

CompAction and MemAction in Algorithm 1 refer to
the action that should be taken with respect to SM and
memory frequency when compute kernels and memory ker-
nels are detected, respectively. As per Table I, for compute
kernels, if the objective of Equalizer is to save energy, then
it requests the frequency manager in Figure 3 to reduce
memory VF. If the objective is to improve performance then
Equalizer requests increase in the SM’s VF. The opposite
actions are taken for memory kernels as per Table I.

Equalizer also provides a unique opportunity for im-
balanced kernel invocations. If the kernel has a few long
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Figure 6: Equalizer Overview. Equalizer is attached with the in-
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running thread blocks that do not distribute evenly across
the SMs, then certain SMs might finish early and other SMs
will finish late due to load imbalance. To neutralize this,
Equalizer tries to finish the work early (line 21) or reduce
memory energy. The assumption is that since majority of
the SMs are idle and leaking energy, finishing the work
early will compensate for the increase in energy due to
reduction in leakage energy. In energy saving mode, having
lower bandwidth will likely be sufficient for sustaining
performance as the majority of the SMs are idle.

IV. EQUALIZER HARDWARE DESIGN

In the baseline Fermi GPU, there are two entries for every
warp in the instruction buffer. During every cycle, the warp
scheduler selects a warp for execution. In this process, the
warp instruction’s operands are checked in the scoreboard
for readiness. If a warp instruction is ready for execution,
it is sent to the issue stage. Equalizer monitors the state of
the instructions in the instruction buffer to determine about
the state of warps. Figure 6 shows the details of Equalizer
on an SM. Every 128 cycles, Equalizer checks the head
instructions of every warp in the buffer and collects the
status of each warp. This process is continued throughout
the epoch window at which point a decision is made.

A. Counter Implementation

Whenever a thread block is paused, the entries in the
instruction buffer for the warps of that thread block are not
considered for scheduling. In Figure 6, the dark grey entries
in the instruction buffer are not considered for scheduling.
The status of only unpaused warps are taken into account
in the decision by Equalizer. If a warp is unpaused and it
does not have a valid entry in the instruction buffer, it is
considered as unaccounted. The four counters needed for
Equalizer in Section III are implemented as follows:

• Active warps: This counter is implemented by counting
the number of warps that are not paused or unaccounted.

• Waiting warps: The head instructions of every warp that
cannot be executed because the scoreboard has not made the
operands available are considered for this counter.

• Xalu : All the head instructions waiting to issue to the
arithmetic pipeline that have operands available from the
scoreboard are accounted here.

• Xmem : All the warps instructions that are ready to
access memory but cannot be issue because the LD/ST queue
cannot accept an instruction in this cycle are in this category.

B. Thread Block Allocation Mechanism

After the collection of counter values, at the end of an
epoch window, Equalizer uses the algorithm explained in
Section III-B and decides to increase, maintain or decrease
thread blocks (numBlocks ). Equalizer does not change num-
Blocks on the basis of one window. If the decision of three
consecutive epoch window results in different decision than
the current numBlocks , then Equalizer changes numBlocks
. This is done to remove spurious temporal changes in the
state of the warps by the decision itself. The SM interacts
with the GWDE to request more thread blocks whenever
required as shown in Figure 3. If Equalizer decides to
increase the number of thread blocks, it will make a request
to GWDE for another thread block. In case, Equalizer
decides to reduce the number of thread blocks, it sets the
pause bit on the instruction buffer of all warps in that block
corresponding warps’ instruction buffer. After one of the
active thread blocks finishes execution, Equalizer unpauses
a thread block from the paused thread block. At this point,
Equalizer does not make a new request to the GWDE. This
automatically maintains the reduced numBlocks.

C. Frequency Management

At the end of each epoch, every SM calculates whether to
increase, maintain or decrease its SM or memory system fre-
quency based on the CompAction and MemAction values
of Algorithm 1 in conjunction with Table I. The frequency
manager shown in Figure 3, receives these requests and
makes a decision based on the majority vote amongst all
the SM requests. If the request is to change SM VF level
then the decision is sent to the on-chip or off-chip voltage
regulator. If the request is to change the memory system VF
level then, the operating points of the entire memory system
which includes the interconnect between SMs and L2, L2,
memory controller and the DRAM are changed. In this
work, three discrete steps for each voltage/frequency domain
are considered. The normal state refers to no change in
frequency, low state and high state is reduction and increase
in nominal frequency by 15% Any increase or decrease in
the frequency is implemented in a gradual fashion between
the three steps. For example, if the decision is to increase
the SM frequency in the current epoch and the current SM
frequency is in the low state then it is change to normal in
first step. If in the next epoch the same request is made then
the frequency is increased from from normal to high.



Table II: Benchmark Description
Application Id Type Kernel num

WctaFraction Blocks

backprop(bp) 1 Unsaturated 0.57 6 8
2 Cache 0.43 6 8

bfs 1 Cache 0.95 3 16

cfd 1 Memory 0.85 3 16
2 Memory 0.15 3 6

cutcp 1 Compute 1.00 8 6

histo
1 Cache 0.30 3 16
2 Compute 0.53 3 24
3 Memory 0.17 3 16

kmeans(kmn) 1 Cache 0.24 6 8
lavaMD 1 Compute 1.00 4 4
lbm 1 Memory 1.00 7 4

leukocyte(leuko) 1 Memory 0.64 6 6
2 Compute 0.36 8 6

mri-g
1 Unsaturated 0.68 8 2
2 Unsaturated 0.07 3 8
3 Compute 0.13 6 8

mri-q 1 Compute 1.00 5 8
mummer(mmer) 1 Cache 1.00 6 8

particle(prtcl) 1 Cache 0.45 3 16
2 Compute 0.55 3 16

pathfinder 1 Compute 1.00 6 8
sad 1 Unsaturated 0.85 8 2
sgemm 1 Compute 1.00 6 4
sc 1 Unsaturated 1.00 3 16
spmv 1 Compute 1.00 8 6
stencile(stncl) 1 Unsaturated 1.00 5 4

Table III: Simulation Parameters
Architecture Fermi (15 SMs, 32 PE/SM)
Max Thread Blocks:Warps 8:48
Data Cache 64 Sets, 4 Way, 128 B/Line
SM V/F Modulation ±15%, on-chip regulator
Memory V/F Modulation ±15%

V. EXPERIMENTAL EVALUATION

A. Methodology

Table II describes the various applications, their kernels
and characteristics. These kernels are from the Rodinia
suite [7] and parboil [28] suite. We use the kmeans bench-
mark used by Rogers et al. [26] that uses large input. We
use GPGPU-Sim [3] v3.2.2, a cycle level GPU simulator
and model the Fermi Architecture. The configurations for
GTX480 are used. The important configuration parameters
of the GPU are shown in Table III.

1) Energy Modelling: We use GPUWattch [19] as our
baseline power simulator. We enhance it to enable dynamic
voltage and frequency scaling on the SM and the mem-
ory. GPUWattch creates a processor model and uses static
DRAM coefficients for every DRAM active, precharge and
access command. We create five different processor models
(normal, SM high, SM low, memory high and memory
low) for the five models that are simulated. At runtime,
the simulation statistics are passed on to the appropriate
processor. The current Kepler GPUs can boost the SM
frequency by 15%[21] and we chose 15% as the change in
GPU VF level. We assume linear change in voltage for any
change in the frequency [24]. Furthermore, we integrate the

SM and leakage calculation into GPUWattch for the different
processors. We assume the baseline GPU to have a leakage
of 41.9W as found by [19]. Leng et. al have shown that the
voltage guardbands on GPUs are more than 20% [20] and
therefore we reduce both voltage and frequency by 15%.

On the GPU, the SM works on a specific voltage fre-
quency domain and the network on chip, L2 cache, memory
controller and DRAM operate on separate domains. When
we change the memory system VF level, we also change
the network, L2 and the memory controller’s operating
point. For all these, GPUWattch uses the integrated McPAT
model [27]. For DRAM modelling, we use the various
operating points of the Hynix GDDR5 [12]. The major factor
that causes the difference in power consumption of DRAM is
the active standby power (when the DRAM is inactive due to
lack of requests). We use the different values of Idd2n along
with the operating voltage, which is responsible for active
standby power [5]. Commercial Kepler GPUs allow memory
voltage/frequency to change by significant amount but we
restrict the changes conservatively to 15%[21]. However, due
to lack of public knowledge for this process of the GPUs,
we do not compare with these methods.

For the results discussed in Section V-B, we assume an
on-chip voltage regulator module (VRM). This module can
change the VF level of the SMs in 512 SM cycles. We do
not assume a per SM VRM, as the cost may be prohibitive.
This might lead to some inefficiency if multiple kernels with
different resource requirements are running simultaneously.
In such cases, per SM VRMs should be used.

2) Equalizer Power Consumption: Equalizer has two
stages in hardware. The first stage collects statistics and the
second stage makes a decision. We show that the overall
power consumption of Equalizer is insignificant as compared
to SM power consumption. For the first part, Equalizer
introduces 5 new counters. The active, waiting, Xalu and
Xmem counters can have maximum values of 48 (total
number of warps) per sample. After sensitivity study, we
found that for a 4096 cycle epoch window, the average
behavior of the kernel starts to match the macro level
behavior and is not spurious. As a sample is taken every 128
cycles for the epoch window, there will be 32 samples in an
epoch and hence the maximum value of these counters can
be 1536 (48 times 32). So, an 11 bit counter is sufficient
for one counter. A cycle counter which will run for 4096
cycles and reset is also needed for Equalizer. Overall, 4
11-bit counters, and 1 12-bit counter are needed for the
statistics collection process. We expect this area overhead
to be insignificant as compared to the overall area of 1 SM,
which includes 32 FPUs, 32768 registers, 4 SFUs, etc.

The Equalizer decision process is active only once in an
epoch window of 4096 cycles. The cycle counter explained
above will signal the Equalizer decision process to begin, but
as the process happens infrequently, we assume the decision
calculation to consume insignificant amount of energy.
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top graph when the performance is above 0.95.

B. Results

We show the results of Equalizer in performance mode
and energy mode for the four kernel categories in Figure 7
and 8 as compared to the baseline GPU. The top chart in
both the figure shows the performance and the bottom chart
shows the impact on energy. The bars show the data for
Equalizer, changing SM and memory frequency statically by
15%. At runtime, equalizer modulates the number of threads
and either changes SM frequency or memory frequency
depending on the kernel’s present requirements.

Performance Mode: The results for performance mode in
Figure 7 show that Equalizer makes the right decision almost
every time and matches the performance of the best of the
two static operating points for compute and memory kernels.
The performance improvement of Equalizer for compute
kernels is 13.8% and for memory kernels a 12.4% speedup is
achieved, showing proportional returns for the 15% increase
in frequency. The corresponding increase in energy for
Equalizer is shown in the bottom chart in Figure 7. For
compute and memory kernels this increase is 15% and 11%

respectively as increasing SM frequency causes more energy
consumption. The increase in overall GPU energy is not
quadratic when increasing SM frequency as a large fraction
of the total energy is due to leakage energy which does not
increase with SM VF level. Equalizer is unable to detect the
right resource requirement for leuko-1 kernel as it heavily
uses texture caches which can handle a lot more outstanding
request than regular data caches. This results in large number
of requests going to the memory subsystem and saturating it
without the back pressure being visible to LD/ST pipeline.

For cache sensitive kernels, the geometric mean of the
speedup is 54%. Apart from the 17% improvement that
these kernels receive by boosting memory frequency alone as
shown by the memory boost geometric mean, the reduction
in cache miss rate is the major reason for the speedup. The
reduction in cache miss rate improves performance as the
exposed memory latency is decreased and it also reduces
the pressure on the bandwidth thereby allowing streaming
data to return to the SM faster. The large speedup leads to
improved performance and less leakage as the kernel finishes
significantly faster and there is an overall reduction in energy
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Figure 9: Distribution of time for the various SM and memory frequency. P and E are data for performance and energy mode respectively

by 11%. In fact, Kmeans achieves a speedup of 2.84x and
up to 67% reduction in energy in the performance mode.

Among the unsaturated kernels, Equalizer can beat the
best static operating point in mri g-1, mri g-2, sad-1 and
sc kernels due to its adaptiveness. Equalizer captures the
right tendency for bp-1 and stncl. prtcl-2 in the compute
kernels has load imbalance and only one block runs for
more than 95% of the time. So, by accelerating the SM
frequency, we save significant leakage leading to less overall
energy increase even after increasing frequency. Overall,
Equalizer achieves a speedup of 22% over the baseline GPU
with 6% higher energy consumption. Always boosting SM
frequency leads to 7% speedup with 12% energy increase
and always boosting memory frequency leads to 6% speedup
with 7% increase in energy. So, Equalizer provides better
performance improvement at a lower increase in energy.

Energy Mode: The results for energy mode are shown
in Figure 8. SM Low and Mem Low denote the operating
points with 15% reduction in frequency for SM and memory
respectively. As shown in the figure, Equalizer adapts to
the type of the kernel and reduces memory frequency for
compute kernels and SM frequency for memory kernels and
as the bottlenecked resource is not throttled, the loss in per-
formance for compute and memory kernels is 0.1% and 2.5%
respectively. For cache sensitive kernels, reducing thread
blocks improves the performance by 30% due to reduced L1
data cache contention. This improvement is lower in energy
mode as compared to performance mode because instead of
increasing the memory frequency, Equalizer decides to lower
the SM frequency to save energy. Even for the unsaturated
kernels, reducing frequency by Equalizer loses performance
only in stncl. This is because it has very few warps in Xmem

or Xalu state as shown in Figure 4 and hence decreasing
frequency of any of the resources makes that resource
under perform. Overall, the geometric mean of performance
shows a 5% increase for Equalizer whereas lowering SM
voltage/frequency and memory voltage/frequency by 15%
leads to a performance loss of 9% and 7% respectively.

In the bottom chart of Figure 8, only two bars are shown.
The first bar shows the energy savings for Equalizer and
the second bar shows the same for either SM low or mem
low from the above chart, depending on which parameter
results in no more than 5% performance loss and is called
static best. The savings of Equalizer for compute kernels
is 5% as reducing memory frequency cannot provide very
high savings. However, memory kernels save 11% energy
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Figure 10: Comparison of Equalizer with DynCTA and CCWS

by lowering SM frequency. For cache sensitive kernels the
energy savings for Equalizer is 36%, which is larger than
performance mode’s energy savings. This is due to throttling
SM frequency rather than boosting memory frequency. For
unsaturated kernels the trend of their resource utilization
is effectively exploited by Equalizer with 6.4% energy
savings even though there was an overall performance loss of
1.3%. Overall Equalizer dynamically adjusts to the kernel’s
requirement and saves 15% energy without losing signif-
icant performance, while the static best voltage/frequency
operating point saves 8% energy.

Equalizer Analysis: To analyze the reasons for the gains
of Equalizer in energy and performance mode, we show the
distribution of various SM and memory frequency operating
points for all the kernels in Figure 9. Normal, high and low
modes are explained in Section IV-C. The P and E below
each kernel denotes the distribution for performance and
energy mode for a kernel respectively. For compute kernels,
the P mode mostly has SM in high frequency and in E mode
the memory is in low frequency. Similarly for cache and
memory kernels the memory is at high frequency in P mode
and SM is in low frequency in E mode. Kernels like histo-
3, mri g-1, mrig g-2, and sc in the unsaturated category
exploit the different phases and spend time in boosting both
the resources at different phases.

We compare the performance of Equalizer with
DynCTA [15], a heuristics based technique to control the
number of thread blocks and CCWS [26], which controls the
number of warps that can access data cache in Figure 10.
We show results only for cache sensitive kernels as these
two techniques are mostly effective only for these cases.
DynCTA and CCWS get speedup up-to 22% and 38% re-
spectively. The reason why Equalizer is better than DynCTA
for cache sensitive kernels is explained later with Figure 11.
While CCWS gets better speedup than Equalizer in mmer,
Equalizer gets 16% better performance than CCWS. The
performance of CCWS is sensitive to the size of the victim
tags and the locality score cutoffs and is not as effective on
the kernels that are not highly cache sensitive.
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Equalizer adaptiveness: The impact of adaptability of
Equalizer is demonstrated for inter-instance variation and
intra instance variations in Figure 11. The stacked bars for
1, 2, 3 and the optimal number of blocks were shown in
Figure 2a. Another bar for Equalizer is added for comparison
to that figure and shown in Figure 11a. To analyze only the
impact of controlling the number of blocks we do not vary
the frequencies in this experiment. The optimal solution for
this kernel would change number of blocks after instance
7 and 10. Equalizer makes same choices but needs more
time to decrease the number of blocks as it must wait for
3 consecutive decisions to be different from the current
one to enforce a decision. Overall, the performance gain
of Equalizer is similar to the Optimal solution.

Figure 11b shows the adaptiveness of Equalizer within
an instance of the spmv kernel. We also compare the dy-
namism of Equalizer with DynCTA [15]. Initially, spmv has
low compute and high cache contention and therefore less
warps are in the waiting state. Both Equalizer and DynCTA
reduce the number of threads to relieve the pressure on the
data cache. After the initial phase, the number of warps
waiting for memory increases as shown in the figure. While
Equalizer adjusts to this nature and increases number of
threads, DynCTA’s heuristics do not detect this change and
thus do not increase threads resulting in poor performance.
Performance differences between the two for cache kernels
is due to the better adaptiveness of Equalizer as it can
accurately measure resource utilization as shown for spmv.
However, for kernels with stable behavior, performance of
Equalizer and DynCTA is closer (e.g., bp-2 and kmn).

VI. RELATED WORK

Managing number of threads for cache locality: Kayi-
ran et al. propose dynCTA [15] which distinguishes stall
cycles between idle stalls and waiting related stalls. Based
on these stalls, they decide whether to increase or decrease
thread blocks. While dynCTA uses these stall times as
heuristics to determine bandwidth consumption, Equalizer

uses micro-architectural quantities such as number of wait-
ing warps and Xmem warps. Rogers et al. [26] propose
CCWS to regulate the number of warps that can access
a cache on the basis of a locality detecting hardware in
the cache. While they introduce duplication of tags in
the cache and changes in scheduling, Equalizer relies on
relatively simpler hardware changes. We compare with the
two techniques quantitatively in Section V-B. Unlike [15,
26], we also target efficient execution for kernels that are not
cache sensitive. Jog et al. proposed OWL Scheduling [14]
which improves the scheduling between warps depending on
several architectural requirements. While their work focuses
on scheduling between different warps on an SM, Equalizer
emphasizes on selecting three architectural parameters. None
of these techniques boost memory frequency for cache sen-
sitive kernels which can boost the performance significantly.
Lee et al. [17] propose a thread level parallelism aware cache
management policy for integrated CPU-GPU architectures.

DVFS on GPU: Lee and Satisha et al. [18] have shown
the impact of DVFS on GPU SMs. They provide a thorough
analysis of the various trade-offs for core, interconnect and
number of SMs. However, they only show the benefits of
implementing DVFS on GPU without describing the detailed
process of the runtime system. They do not focus on memory
side DVFS at all. Leng et al. [19] further improves on
this by decreasing SM voltage/frequency by observing large
idle cycles on the SM similar to what has been done on
CPUs [13, 4, 16]. Equalizer provides a more comprehen-
sive and fine-grained runtime system that is specific to
GPU and looks at all warps in tandem to determine the
suitable core and memory voltage and frequency setting.
Commercial NVIDIA GPUs provide control for statically
and dynamically boosting the core and memory frequency
using the Boost and Boost 2.0 [25, 23] technology. However,
these are based on the total power budget remaining and
the temperature of the chip. Equalizer looks at key micro-
architectural counters to evaluate the exact requirements of
the kernel and automatically scale hardware resources.

DVFS on Memory: DVFS of DRAM has been studied
by Deng et al. [8, 9]. They show the significance of low
power states in DRAM for reducing background, memory
controller and active power by reducing the operational
frequency of the memory subsystem. While they focus on
servers, their inferences are valid for GPUs as well.

Energy Efficiency on GPU: Abdel-Majeed et al. [1] add
a trimodal MTCMOS switch to allow the SRAM register
file to be in on, off and drowsy and select the states at
runtime depending on register utilization. Abdel-Majeed et
al. also show energy savings on GPU by selectively power
gating unused lanes in an SM [2]. Gilani et al. [11] show
the benefits of using scalar units for computations that are
duplicated across threads. Gebhart et al. [10] propose a
register file cache to access a smaller structure rather than the
big register file. All these techniques target different aspects



of GPU under-utilization than what is targeted by Equalizer.

VII. CONCLUSION

The high degree of multi-threading on GPUs leads to con-
tention for resources like compute units, memory bandwidth
and data cache. Due to this contention, the performance of
GPU kernels will often saturate. Furthermore, this contention
for resources varies across kernels, across invocations of the
same kernel, and within an invocation of the kernel. In this
work, we present a dynamic runtime system that observes
the requirements of the kernel and tunes number of thread
blocks, SM and memory frequency in a coordinated fashion
such that hardware matches kernel’s requirements and leads
to efficient execution. By observing the state of the warps
through four new hardware performance counters, Equalizer
dynamically manages these three parameters. This matching
of resources on the GPU to the kernel at runtime leads to an
energy savings of 15% or 22% performance improvement.
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