
Mascar: Speeding up GPU Warps by Reducing
Memory Pitstops

Ankit Sethia, D. Anoushe Jamshidi and Scott Mahlke
Advanced Computer Architecture Laboratory

University of Michigan, Ann Arbor, MI
{asethia, ajamshid, mahlke}@umich.edu

Abstract—With the prevalence of GPUs as throughput engines
for data parallel workloads, the landscape of GPU computing is
changing significantly. Non-graphics workloads with high mem-
ory intensity and irregular access patterns are frequently targeted
for acceleration on GPUs. While GPUs provide large numbers
of compute resources, the resources needed for memory intensive
workloads are more scarce. Therefore, managing access to these
limited memory resources is a challenge for GPUs. We propose a
novel Memory Aware Scheduling and Cache Access Re-execution
(Mascar) system on GPUs tailored for better performance for
memory intensive workloads. This scheme detects memory satu-
ration and prioritizes memory requests among warps to enable
better overlapping of compute and memory accesses. Further-
more, it enables limited re-execution of memory instructions to
eliminate structural hazards in the memory subsystem and take
advantage of cache locality in cases where requests cannot be
sent to the memory due to memory saturation. Our results show
that Mascar provides a 34% speedup over the baseline round-
robin scheduler and 10% speedup over the state of the art warp
schedulers for memory intensive workloads. Mascar also achieves
an average of 12% savings in energy for such workloads.

I. INTRODUCTION

With the popularization of high level programming models
such as CUDA [24] and OpenCL [17], there has been a prolif-
eration of general purpose computing on GPUs to exploit their
computational power. While OpenCL and CUDA enable easy
portability to GPUs, significant programmer effort is necessary
to optimize the programs and achieve near peak performance
of the GPU [29], [31]. This effort is increased when data
parallel workloads that are memory intensive are targeted for
acceleration on GPUs due to their parallel processing paradigm
and are still far from achieving the potential performance
offered by a GPU.

Modern GPUs utilize a high degree of multi threading in
order to overlap memory accesses with computation. Using
the Single Instruction Multiple Thread (SIMT) model, GPUs
group many threads that perform the same operations on
different data into warps, and a warp scheduler swaps warps
that are waiting for memory accesses for those that are ready
for computation. One of the greatest challenges that prevents
achieving peak performance on these architectures is the lack
of sufficient computations. When a memory intensive workload
needs to gather more data from DRAM for its computations,
the resources for managing outstanding memory requests (at
the L1, L2, and memory subsystem) become saturated. Due to
this saturation, a new memory request can only be sent when
older memory requests complete. At this point, subsequent
accesses to the memory can no longer be pipelined, resulting

in serialized accesses. In such a scenario, the computation
portion of any of the parallel warps cannot begin, as all the
memory requests needed to initiate the computation have been
serialized. Furthermore, the amount of computation to hide the
latency of the unpipelined memory requests is much larger. For
such memory constrained workloads, a GPU’s compute units
are forced to wait for the serialized memory requests to be
filled, and the workloads cannot achieve high throughput.

Another of memory intensive applications saturating mem-
ory subsystem resources is the reduction in data reuse op-
portunities for the L1 cache. Due to the saturated memory
pipeline, including the Load Store Unit (LSU), warps whose
data are present in L1 cannot issue memory instructions. This
delay in utilizing the already present data may result in the
eviction of the reusable data by other warp’s data being brought
in to the cache. This leads to increased cache thrashing,
forcing more DRAM requests to be issued, thus worsening the
serialization of memory accesses. While ideal GPU workloads
tend to have very regular, streaming memory access patterns,
recent research has examined GPU applications that benefit
from cache locality [27], [19] and have more non-streaming
accesses. If this data locality is not exploited, cache thrashing
will occur, causing performance degradation.

In this work, we establish that the warp scheduler present in
a GPU’s Streaming Multiprocessor (SM) plays a pivotal role in
achieving high performance for memory intensive workloads,
specifically by prioritizing memory requests from one warp
over those of others. While recent work by Jog et al. [15]
has shown that scheduling to improve cache and memory
locality leads to better performance, we stipulate that the role
of scheduling is not limited to workloads which have such
locality. We show that scheduling is also critical in improving
the performance of many memory intensive workloads that do
not exhibit data locality.

We propose Memory Aware Scheduling and Cache Ac-
cess Re-execution (Mascar) to better overlap computation
and memory accesses for memory intensive workloads. The
intuition behind Mascar is that when the memory subsystem
is saturated, all the memory requests of one warp should
be prioritized rather than sending a fraction of the required
requests from all warps. As the memory subsystem saturates,
memory requests are no longer pipelined and sending more
requests from different warps will delay any single warp
from beginning computation. Hence, prioritizing all requests
from one warp allows this warp’s data to be available for
computation sooner, and this computation can now overlap
with the memory accesses of another warp.

While Mascar’s new scheduling scheme enables better
overlapping of memory accesses with computation, memory
subsystem saturation can also prevent reuse of data in the L1
cache. To ameliorate this, we propose to move requests stalled
in LSU due to memory back pressure to a re-execution queue
where they will be considered for issuing to the cache at a
later time. With such a mechanism, the LSU is free to process
another warp whose requested addresses may hit in the cache.
Re-execution can both improve cache hit rates by exploiting
such hits under misses, allowing the warp to now execute
computation, as well as reduce back pressure by preventing
this warp from accessing DRAM twice for the same data.

This paper makes the following contributions:

• We analyze the interplay between workload require-
ments, performance, and scheduling policies. Our results show
that the choice of scheduling policy is critical for memory
intensive workloads, but has lesser impact on the performance
of compute intensive workloads.

• We propose a novel scheduling scheme that allows better
overlapping of computation and memory accesses in memory
intensive workloads. This scheme limits warps that can simul-
taneously access memory with low hardware overhead.

• We also propose a memory instruction re-execution
scheme. It is coupled with the LSU to allow other warps to
take advantage of any locality in the data cache, when the LSU
is stalled due to memory saturation.

• An evaluation of Mascar on a model of the NVIDIA
Fermi architecture achieves 34% performance improvement
over baseline GPU for workloads sensitive to scheduling while
reducing average energy consumption by 12%.

II. BACKGROUND AND MOTIVATION

A. Background

Modern GPUs are comprised of numerous streaming mul-
tiprocessors (SMs), each of which execute in parallel. Figure 1
illustrates a high-level view of the hardware considered in this
work. The details inside the SM, which include the execution
units, register file, etc., have been abstracted as we focus on
the memory subsystem of the GPU. Each SM has a private L1
cache, which uses miss status holding registers (MSHRs) to
permit a limited number of outstanding requests, as shown in
the figure. All SMs can communicate with a unified L2 cache
using the interconnect. If the request misses in the L2 cache, it
will go off-chip using a DRAM channel as shown in Figure 1.
Like the L1 cache, each L2 partition can also handle a fixed
number of outstanding memory requests through its MSHRs.

Memory intensive workloads will generate a very large
number of memory requests. This typically results in the
MSHRs in the L2 filling up much faster than when compute
intensive workloads are run. The L2 is then forced to stop
accepting requests and sends negative acknowledgements to
new requests coming through the interconnect. As the L2
rejects any new requests, the buffers in the interconnect and
between the L2 and L1 caches will begin to fill up. When
these buffers are full, the interconnect will cease to accept new
requests from a SM’s L1. Any new request coming from the
SM is allocated a new MSHR at L1, but no new request can be

L1

I

C

N

T

SM 0 LSU

SM 1

SM N

L1 L2 0

. . .
. . .

L1 L2 M

.

. .
L2 1

DRAM 0

DRAM 1

DRAM M

.

. .
LSU

LSU

L2 MSHRs L1 MSHRs

Fig. 1: A diagram of the GPU memory hierarchy, with N
SMs and M memory partitions. Each SM has a Load-Store
Unit (LSU) that issues memory requests. The L1 & L2 caches
support a limited number of outstanding misses using MSHRs.

sent to the L2 due to the earlier congestion in the interconnect.
The cascading effect of the rejection of memory requests
will reach the SM once all of its L1’s MSHRs have been
reserved. At that point an SM can no longer issue new memory
instructions from any ready warp. This results in serialization
of all new memory requests as they can only be sent if an
earlier request is completed in the memory subsystem, which
will free up one of the MSHRs and begin to relieve the back
pressure throughout the rest of the subsystem’s resources.

If the LSU begins to stall due to memory back pressure,
no warp can access the L1 cache until an MSHR is available.
Other warps that need the SM’s compute units can still
continue execution. If all the memory requests of a warp
return before other warps finish executing computational code,
then this now ready to execute warp can help to hide the
latency of other warps whose memory requests have not
yet returned. However, due to the serialization of memory
accesses, the amount of computation required to mask the
remaining memory latency is significantly higher than the
amount required when the memory requests are pipelined.

B. Motivation

To identify data parallel application kernels that suffer
due to the memory subsystem back pressure issues described
in Section II-A, we classify kernels from the Rodinia [5]
and Parboil [33] benchmark suites as compute or memory
intensive. For each of these kernels, Figure 2 shows the fraction
of the theoretical peak IPC achieved (left bar) and the fraction
of cycles for which the SM’s LSU is forced to stall (right bar)
due to memory subsystem saturation1.

Of the 30 kernels in the two benchmark suites, 15 are in the
compute intensive category whereas 15 are considered memory
intensive. The kernels are arranged in decreasing order of
their fraction of peak IPC achieved within their category.
While 13 out of 15 kernels in the compute intensive category
achieve more than 50% of the peak IPC for compute intensive
kernels, only one out of the 15 kernels in the memory intensive
category achieves 50% of the peak IPC. In fact, eight kernels
achieve less than 20% of the peak performance in this category,
whereas no kernel in the compute intensive category suffers
from such low performance.

Figure 2 illustrates the strong correlation between the
performance achieved and the memory demands of the GPU

1The methodology for this work is detailed in Section IV-A.

0

0.2

0.4

0.6

0.8

1
F

ra
c

ti
o

n

fraction of peak IPC fraction of cycles LSU stalled

Compute

Intensive

Memory

Intensive

Fig. 2: Fraction of peak IPC achieved and the fraction of cycles for which the LSU stalled due to memory subsystem saturation.

workloads. When examining the impact of memory subsystem
back pressure on these applications, we observed that compute
intensive kernels rarely stall the LSU. This results in the
timely processing of memory requests required to initiate their
computation. On the other hand, the memory intensive kernels
show a significant rise in the number of LSU stall cycles due to
growing back pressure in the memory subsystem. This stalling
hampers the GPUs ability to overlap memory accesses with
computation. The percent of LSU stall cycles seen in Figure 2
for the memory intensive workloads is indicative that that these
workloads struggle to achieve peak throughput primarily due
to saturation of the memory subsystem.

C. Impact of Scheduling on Saturation

Warp scheduling can have a significant impact on how
many memory accesses can be overlapped with computation.
Figure 3 shows execution timelines for an example workload
with three warps run on three architectures. For the sake of
simplicity, in this example we assume that each arithmetic
instruction takes one cycle, load instruction takes five cycles
and that there are three warps that can execute in parallel. In
this miniature system, only one warp can issue an arithmetic or
memory operation per cycle. The example workload is shown
on the left in the figure. In this workload, the first compute
operation occurs on line 3 and it cannot begin until both of the
loads finish execution. The top timeline illustrates theoretical
GPU hardware that has infinite bandwidth and MSHRs, and
uses a round-robin warp scheduler. The second timeline shows
the execution for a system with support for two outstanding
memory requests and also uses round-robin scheduling. The
final timeline demonstrates how Mascar’s scheduling works
with hardware that supports two outstanding requests.

Infinite resources: When the system has infinite resources
with round-robin scheduling, the load for r1 is launched for
each of the three warps over three consecutive cycles. At t = 4,
the load unit is ready for the next load instruction, so the load
for r2 gets issued for all three warps in a similar fashion.
After five cycles, the load for r1 for W0 returns, and because
there were enough MSHRs and the memory requests were
fully pipelined, the loads for r1 for W1 and W2 complete in
the next two cycles. At t = 9, the load for r2 returns and
the computation can finally begin for W0 in the next cycle.
This computation is completed by t = 13. As only one warp’s
instruction can be executed per cycle, the computation for all
three warps takes 12 cycles for the workload’s four add instruc-
tions due to round-robin scheduling. This theoretical system

finishes execution in 21 cycles for this synthetic workload.

Round-robin with two outstanding requests: The per-
formance of this system is hindered due to it only supporting
a limited number of outstanding memory requests. The first
two cycles behave similar to the infinite resource case, but in
the third cycle, the memory request cannot reserve an MSHR
and thus has to wait to be sent to memory until one of the
first two requests returns. As the first request comes back at
t = 6, W2’s load for r1 must be issued at t = 7. At t = 8,
W0’s load for r2 is issued, delaying computation until this load
completes at t = 14. This computation can hide the memory
access of W1 and W2’s loads of r2. These loads of r2 return
one after another at t = 18 and t = 19. The computation
for both of the warps takes 10 cycles to complete as only
one warp can execute per cycle in round-robin fashion. The
overlap of memory accesses with computation is shown by
the bands for memory and compute, respectively. It can be
seen that the compute operations are ineffective in hiding any
memory accesses until t = 13 as none of the data required by
any warp is available. The execution of this workload finishes
at t = 26, five cycles later than the theoretical system with
infinite MSHRs.

Mascar with two outstanding requests: Whenever Mas-
car detects memory subsystem saturation, rather than selecting
instructions from warps in a round-robin fashion, it prioritizes
memory requests of a single warp. In the illustrated example,
the workload has been running for some time such that
saturation occurs at t = 1. Mascar detects this situation and
prioritizes memory requests made by W0 to be issued at t = 1
and t = 2. No other memory requests can be sent as the
system can only handle two outstanding requests at a time.
When the data returns for the first load at t = 6, W1 is
given priority to issue its memory requests for load of r1
in the next cycle. At t = 7, W0’s memory request for the
load for r2 returns and the warp is now ready for execution.
W0’s computation can begin simultaneously with W1’s next
memory request at t = 8. This computation from cycles 8 to
11 completely overlaps with memory accesses, which was not
possible when using the round-robin scheduler in either of the
previously mentioned architectures. Similarly, the computation
for W1 begins at t = 14 and overlaps with memory accesses
until it completes at t = 17. The program finishes execution
at t = 23, and due to the increased overlap of computation
with memory access, the workload running on Mascar finishes
earlier than the traditional scheduler.

Instructions

1: load r1 a1

2: load r2 a2

3: add r3 r2 r1

4: sub r4 r3 5

5: sll r5 r4 1

6: add r6 r5 r3

Latency: Load – 5 cycles, ALU op – 1 cycle

- Issue load r1
- Complete load r1

 - Issue load r2

 - Complete load r2

- ALU op

- Memory units busy

- Compute units busy

W0,1,2 - Warps 0, 1 and 2

Legend

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Infinite

Resources

Round-robin

Scheduling

MASCAR

Memory
Compute

Memory
Compute

Memory
Compute Time in cycles (t)

W0

W1

W2

W0

W1

W2

W0

W1
W2

Fig. 3: Execution timeline for three systems. The top illustrates an infinite bandwidth and MSHR system. The middle shows the
baseline system with round-robin scheduling. The timeline on the bottom depicts Mascar’s scheduling.

0

0.4

0.8

1.2

1.6

2

S
p

e
e

d
u

p

Large MSHRs + Queues Full Associativity Freq +20% All

Fig. 4: Performance impact on memory intensive kernels when
increasing the number of MSHRs and memory subsystem
queues, fully associative L1 and L2 caches, increasing the
DRAM frequency by 20%, and a combination of all three.

D. Increasing Memory Resources to Resolve Saturation

The most intuitive way to resolve memory resource satura-
tion is to provision the memory subsystem with more resources
to handle such demands. To model this, we ran memory inten-
sive kernels on a simulator modeling a NVIDIA Fermi GTX
480 GPU modified to have a) a large number of L1 and L2
MSHRs and large queues throughout the subsystem (all sized
at 10240); b) fully associative L1 and L2 caches; c) increasing
the memory frequency by 20%; and d) a combination of (a),
(b), and (c). Figure 4 shows the performance improvements
achieved over an unmodified GTX 480 when using these extra
provisions. While a combination of all these improvements
yields decent speedups for some workloads and modest results
for others (Geo-mean of 33% speedup), such a system is
extraordinarily hard to realize. This system will have high
complexity, energy consumption and is dependent on future
technology. As provisioning GPUs with additional or faster
memory resources is prohibitive, we elect to focus on better
overlapping memory accesses with computation through a new
warp scheduling scheme and minimal hardware additions.

E. Impact of Memory Saturation on Data Reuse

The stalling of the LSU during memory saturation also has
an impact on the ability of the warps to reuse data present in
the cache. As the LSU is stalled due to the back pressure from
memory subsystem, warps whose data might be present in the
data cache cannot access it. Figure 5 shows the percentage

0%

20%

40%

60%

%
 o

f
c

y
c

le
s

Required cache block is
 present, but LSU is stalled

Fig. 5: Fraction of cycles for which there is at least one warp
which has one cache block present in the cache that cannot be
accessed due to a stalled LSU.

of cycles when the core could not issue any instruction for
execution, while the data required by at least one of the warps
was present in the cache. It shows that seven of the fifteen
kernels have at least one warp’s data present in the cache for
20% of the time during saturation. These warps do not need
any memory resources as their data is already present in the
data cache if a mechanism exists to allow these warps to exploit
such hits-under-misses, there is a significant opportunity to
improve performance for these kernels through cache reuse.

III. MASCAR

To ameliorate the dual problems of slowed workload
progress and the loss of data cache locality during periods of
memory subsystem back pressure, Mascar introduces a new,
bimodal warp scheduling scheme along with a cache access
re-execution system. This section details these contributions,
and Section IV evaluates their efficacy.

To reduce the effects of back pressure on memory intensive
workloads by improving the overlap of compute and memory
operations, Mascar proposes two modes of scheduling between
warps. The first mode, called the Equal Priority (EP) mode, is
used when the memory subsystem is not saturated. In this case,
Mascar follows the SM’s traditional warp scheduling scheme
where all warps are given equal priority to access the memory
resources. However, if the memory subsystem is experiencing
heavy back pressure, the scheduler will switch to a Memory
Access Priority (MP) mode where one warp is given priority
to issue all of its memory requests before another warp can
issue any of its requests.

Prioritization

. . .

Decode

I-Buffer

Scoreboard

.

.

.

WST
Ordered

Warps

OPtype

From
RF

WRC

Stall
bit

Memory saturation flag

Mem_Q
Head

Comp_Q
Head

Issued
Warp

MASCAR

Warp Id

Fig. 6: Block diagram of the Mascar scheduler. The WRC and
WST are new hardware structures that interact with the front-
end of the SM’s pipeline.

The goal of giving one warp the exclusive ability to issue its
requests when scheduling in MP mode is to schedule warps to
better overlap computation and memory accesses. By doing so,
Mascar is able to reduce the impact of performance bottlenecks
caused by saturation of resources in the memory subsystem.
As discussed in Section II-C, round-robin scheduling permits
all warps to issue some of their memory requests, but none
can continue with their execution until all of their requests
are filled. This also holds true for state of the art schedulers,
e.g. GTO. To prevent this from occurring, Mascar’s MP mode
gives one warp priority to issue all of its requests while other
warps must wait. This makes all of the prioritized warp’s
data available for computation sooner than in conventional
scheduling approaches. As this warp can now compute on its
data, another warp can be given priority to access memory,
thus increasing the likelihood that computational resources are
used even as many other warps wait on their data.

The detection of memory subsystem saturation is accom-
plished by a signal from the SM’s L1 cache, called the memory
saturation flag. The details of the logic used to determine the
flag’s value are explained later in this section. Once this back
pressure signal is asserted, the SM switches scheduling from
EP to MP mode. If the back pressure is relieved over time,
the saturation flag will be cleared and Mascar switches the
scheduler back to EP mode, allowing for rapid and simple
toggling between Mascar’s two modes of scheduling.

To exploit data locality that might be present during periods
of memory saturation, Mascar couples a re-execution queue
with the LSU. By providing a means for warps to access the
L1 data cache while other memory resources are saturated, this
queue allows an SM to exploit hit-under-miss opportunities as
warps with accesses that might hit in the L1 can run ahead
of other stalled accesses. If the access misses in the L1 the
system’s memory resources have saturated such that the request
cannot reserve an MSHR, the request is pushed onto the re-
execution queue and its access will be retried at a later time.
This reduces the delay a warp incurs between accessing data
present in the L1 and when the warp can start computation.
Section III-C provides implementation details and an example
of Mascar’s cache access re-execution in action.

A. Scheduling in Memory Access Priority (MP) Mode

In the baseline SM, after an instruction is decoded it is put
into an instruction buffer. Once the instruction is at the head of
this buffer and its operands are ready, the scheduler will add
the instruction’s warp to a queue of ready warps according

to its scheduling policy. Mascar alters this step by gathering
these warps into separate memory-ready and compute-ready
warp queues as shown in Figure 6. This allows Mascar to give
priority to one memory-ready warp to issue to the LSU and
generate its memory requests while stalling all other warps
waiting on this resource.

Identifying the memory warp to issue: To track which
memory-ready warp should be issued to the LSU, Mascar
uses a Warp Status Table (WST) that stores two bits of
information per warp. The first bit indicates whether a warp’s
next instruction will access memory, and the second tells the
scheduler to stall issuing of the warp’s instruction.

The state of a warp’s bits in the WST are determined
by the Warp Readiness Checker (WRC). To set a WST
entry’s memory operation bit, the WRC simply examines the
instruction buffer to determine whether or not each warp’s next
instruction will access memory and sets the bit accordingly. To
set a stall bit in the WST, the WRC must first determine which
warp is given exclusive ownership and access to the LSU. This
warp is called the owner warp, and the details of managing
ownership are described in owner warp management. If a
warp’s next instruction needs to access memory but it is not
the owner warp, the WRC sets its stall bit in the WST. A
warp’s stall bit will also be set if the scoreboard indicates
that an operand needed by that warp’s memory or compute
instruction is not ready. If a new warp is granted ownership, the
stall bits are updated according to the aforementioned process.
If during execution the memory back pressure is relieved and
the scheduler switches from MP back to EP mode, all stall
bits are cleared.

Owner warp management: The owner warp continues to
issue all of its memory requests through the LSU as memory
resources become available. It does so until it reaches an
instruction which is dependent on one of the issued loads.
At this point it relinquishes its ownership. In order to identify
when an operation is dependent on a long latency load, each
scoreboard entry is augmented with one extra bit of metadata to
indicate that its output register is the result of such an instruc-
tion. The WRC, shown in Figure 6, requests this dependence
information from the scoreboard for each instruction belonging
to the owner warp, and the scoreboard finds the disjunction of
all this new metadata for this instruction’s operands. When
the WRC is informed that the owner warp’s instructions are
now waiting on its own loads, the WRC relieves this warp of
ownership and resets all other warps’ stall bits in the WST.
Now that all warps are free to issue to memory, one will
go ahead and access memory. If the memory saturation flag
remains asserted and the scheduler remains in MP mode, this
warp will become the new owner.

Warp prioritization: Mascar prioritizes warps into two
groups. The first group is for warps that are ready to issue to
the arithmetic pipeline and are called compute-ready warps.
Conversely, the second group of warps are called memory-
ready warps, and are warps which are ready to be issued
to the memory pipeline. These groups are illustrated by the
unshaded and shaded regions, respectively, of the ordered
warps queue shown in Figure 6. When scheduling in MP
mode, compute-ready warps are given priority over memory-
ready warps to allow a maximum overlap of computation with
memory accesses during periods of heavy back pressure in the

memory subsystem. Within these groups, the oldest warp will
be scheduled for issue to their respective pipelines.

Once Mascar switches from EP to MP mode, warps that
do not have ownership status will no longer be able to issue
memory instructions to the LSU. However, earlier instructions
from such warps might already be present in the memory-
ready warps queue. If Mascar does not allow these warps to
issue, the owner warp’s memory instructions will not be able
to reach the head of the queue, preventing forward progress.
To address this potential bottleneck, Mascar allows these non-
owner, memory-ready warps to issue to the L1 data cache.
If a non-owner’s request hits in the L1, its data returns,
and the instruction can commit. Otherwise, the L1 will not
allow this non-owner’s request to travel to the L2, and instead
returns a negative acknowledgement. Mascar informs the L1
which warp has ownership, allowing the L1 to differentiate
between requests from owner and non-owner warps. Negative
acknowledgements may still cause the LSU to stall when non-
owner warps get stuck waiting for data to return, but Mascar
overcomes this limitation with cache access re-execution,
described in Section III-C.

Multiple schedulers: Mascar’s scheduling in MP mode
allows one warp to issue its memory accesses at a time, but
modern NVIDIA GPU architectures like Fermi and Kepler
have multiple warps schedulers per SM and are capable of
issuing multiple warps’ instructions per cycle. To ensure that
each scheduler does not issue memory accesses from different
warps when MP mode is in use, the WRC shares the owner
warp’s information with all schedulers present in an SM. Now,
the scheduler that is handling an owner warp’s instructions
will have priority to issue its memory instructions to the LSU
during periods of memory subsystem saturation, while any
scheduler is free to issue any warp’s computation instructions
to their respective functional units.

Memory subsystem saturation detection: The memory
saturation flag informs Mascar’s scheduler of memory back
pressure. This flag is controlled by logic in the SM’s L1 cache.

The L1 cache has a fixed number of MSHRs as well as
entries in the miss queue to send outstanding request across
the interconnect. If either structure is totally occupied, no
new request can be accepted by the cache that needs to send
an outstanding request. Therefore, whenever these structures
are almost full, the L1 cache signals to the LSU that the
memory subsystem is saturating. The LSU forwards this flag to
Mascar’s scheduler so that it toggles to MP mode. The cache
does not wait for these structures to completely fill as once this
occurs, the owner warp will not be able to issue any requests.
Instrumenting the L1 cache with this saturation detection is
ideal as the L1 is located within the SM. Doing the same at
the L2 requires information to travel between the L2 partitions
and the SM, likely through the interconnect, which will incur
more design complexity and delay Mascar’s scheduler from
shifting to MP mode in a timely manner.

Our benchmarks show that global memory accesses are
the dominant cause of back pressure. However, for certain
workloads, texture or constant memory accesses are major
contributors to saturation. Mascar also observes saturation
from these caches. In all kernels we observed, only one of
the three memory spaces causes saturation at a given time.

Time in

cycles

(t)

Ready

Warps

LSU W0 Waiting for MSHR

1 2 3 4 5 6 7 8 9 10

W1

W2

W2 W2

W1

Memory

Ready

Warps

LSU

(a) Baseline GPU without re-execution

MSHRs

W1 Data
Data in

Cache

1 2 3 4 5 6 7 8 9 10

W1

W1

W2

W3 W3 W2

W3

W2 W0

(b) MASCAR with re-execution

W0

W1 Data

MSHRs

W1 Data W1 Data W1 Data

W1 Data W1 Data W1 Data

W1 Data W1 Data
Time in

cycles

(t)

Data in

Cache

Re-ex Q

W3

W3

W3

W2

Request

Sent

Request miss in Cache Request hit in Cache

Miss

Hit

Waiting for a free

MSHR

Fig. 7: (a) The baseline system is ready to issue W0’s request
but is stalled in the LSU as the L1’s MSHRs are full,
preventing W1’s request from hitting in the L1. (b) Mascar’s
cache access re-execution allows W1’s request to hit in the L1
while W0 waits for an MSHR.

B. Scheduling in Equal Priority (EP) Mode

In contrast to MP mode, in EP mode, the workload is
balanced in such a way that that the memory subsystem is
not saturated. Therefore, EP mode sends out as many memory
requests as possible to utilize the under-utilized memory sub-
system by prioritizing warps from memory queue over warps
from compute queue. Within each queue, the warps are ordered
in greedy-then-oldest policy. Memory warps are prioritized
over compute warps because in EP mode the memory pipeline
is not saturated and there should be enough computation to
hide the latency of all the pipelined memory requests.

C. Cache Access Re-execution

When the memory subsystem becomes saturated with re-
quests, the L1 data cache stops accepting new requests from
the SM’s LSU. At this point, the LSU is stalled and cannot
process any new requests. When a memory request returns
from memory and an MSHR is freed, the LSU can issue a
new request to the L1. During this time, another warp whose
data may be available in this cache cannot progress with its
computation as the LSU is stalled. If this warp was able to
access the L1 and retrieve its data, it could have helped hide the
latency of other memory accesses with its own computation.

An example of this situation is illustrated in Figure 7(a)
for the theoretical device depicted in Figure 3 with round-
robin scheduling and a load instruction latency of five cycles
if the data is not present in the cache. While W0 is stalled in
the LSU as no MSHRs are available in the L1, W1 and W2

are ready to access memory but cannot be issued. During this
stall, W1’s data is actually available in the cache, but at t = 5
this data gets evicted when a previous request completes. After
W0’s request gets sent to global memory, W1 misses in the L1
and must reload its data from the L2/global memory. If there
was some mechanism in place to enable a hit under miss while
the MSHRs were occupied, W1 could have gone ahead with its

memory request to the cache, accessed the required data and
started computation, all without needing to reload its data.

When the LSU stalls, warps with memory requests that
might hit in the L1 cache are served their data much later. If
this delay is too long, there is a chance that what may have
been a hit in the L1 will become a miss as another request
might return from the L2/DRAM and evict this request’s
data. This effect is exacerbated due to the limited size of
the data cache, for which 1536 threads share up to 48KB of
L1 data cache in modern architectures. Also, a system with
more MSHRs might provides warps with more opportunities
to access the cache, however, having more MSHRs can also
exacerbate cache thrashing. Without increasing the size of an
already small L1 cache, adding support for more outstanding
requests may force some of these requests to evict data that
would have soon been reused.

To overcome these issues and take advantage of hits under
misses, we propose to add a cache access re-execution queue
alongside the LSU as shown in Figure 8. The queue enables hit
under miss without sending new requests to the L2/DRAM for
non-owner warps. Whenever a request stalls in the LSU, the
generated address and associated meta-data is removed from
the head of the LSU’s pipeline and is pushed onto the re-
execution queue, freeing the LSU to process another request.
If the newly processed request misses in the L1 cache, it is
also added to this queue. Otherwise, if the next request hits in
the cache, that warp can commit its memory access instruction
and continue execution.

Requests queued for re-execution are processed if one of
two conditions are met. First, if the LSU is not stalled and
has no new requests to process, it can pop a request from the
re-execution queue and send it to the L1. Second, if the re-
execution queue is full, the LSU is forced to stall as it cannot
push more blocking requests onto this queue. If this occurs, the
LSU only issues memory requests from its re-execution queue.
New memory instructions can only be issued to the LSU once
entries in the re-execution queue are freed and the LSU is
relieved of stalls. Address calculation need not be repeated for
queued accesses, as this was already done when the request
was first processed by the LSU.

Mascar only allows one memory instruction per warp to
be pushed to the re-execution queue at a time. This is to
ensure that if a store is followed by a load instruction to the
same address, they are serviced in sequential order and thereby
maintaining the weak memory consistency semantics of GPUs.
As an instruction from a warp may generate several However,
our results show that a 32 entry re-execution queue satisfies
the memory demands of our benchmarks’ kernels. This design
incurs less overhead than adding 32 MSHRs per SM as the
complexity of a larger associative MSHR table is avoided.

The impact of coupling a re-execution queue with the LSU
is illustrated in Figure 7(b). To demonstrate a simple example,
this queue only has one entry. At t = 0, W0 gets issued to the
LSU, and because the MSHRs are full it is moved to the re-
execution queue at t = 2. Now, W1 is issued to the LSU, before
a prior request evicts its data from the cache as had occurred in
Figure 7(a). By moving W0’s request to the re-execution queue,
W1 can now go ahead and access the L1, where it experiences
a hit under W0’s miss. Having obtained its data, W1’s memory

Scheduler 1

Scheduler 2

Scheduler K

.

.

.

.

LSU
Data

Cache

Re-execution Queue

Arbiter

ACK

Fig. 8: Coupling of the re-execution queue with an LSU.
When a request from the LSU is stalled it is pushed to the
re-execution queue. The cache sends an ACK if it accepts a
request, or a NACK otherwise.

TABLE I: Simulation Parameters

Architecture Fermi (GTX 480, 15 SMs, 32 PEs/SM)
Schedulers Loose round-robin (LRR), Greedy-then-oldest (GTO)

OWL [15], CCWS [27], Mascar
L1 cache/SM 32kB, 64 Sets, 4 way, 128 B/Line, 64 MSHRs [23]
L2 cache 768kB, 8 way, 6 partitions

64 MSHRs/partition, 200 core cycles latency
DRAM 32 requests/partition, 440 core cycles latency

TABLE II: New Hardware Units per SM

Unit Entry Size # Entries Total
Warp Readiness Checker 6 bits n/a 1 byte
Warp Status Table 2 bits 48 12 bytes
Re-execution Queue 301 bits 32 1216 bytes

instruction can commit, allowing W2 to issue to the LSU. As
the re-execution queue is full and W2 misses in the L1 at t = 4,
the LSU is forced to stall. However, as W1 finished its load, the
SM is able to perform useful computation on that data while
W0 and W2 await an MSHR. Furthermore, as W1’s memory
instruction was serviced and hit earlier, better utilization of
the MSHRs is possible, allowing W3 to be issued to the LSU
earlier than in the baseline system. By exploiting hit under miss
opportunities when using a re-execution queue, warps are able
to bypass other warps that normally would block access to the
L1, permitting more reuse of data in the cache.

D. MP Mode and Re-execution

The impact of re-execution on a memory subsystem ex-
periencing back pressure is important. We have to ensure
that re-execution does not interfere with MP mode scheduling
as re-execution can send requests to the L2/global memory
for any warp, not just the owner. Mascar resolves this at
the L1 by preventing misses from non-owner warps from
accessing the next level cache. As described in Section III-A,
Mascar provides the L1 with knowledge of which warp holds
ownership when MP mode is active. If a non-owner warp’s
request is sent from the queue to the L1 and misses, the
L1 returns a negative acknowledgement and this request is
moved from the queue’s head to its tail. Otherwise, if this
request belonged to an owner warp and enough resources were
available to send the request across the interconnect to the
L2/DRAM, it would send this request to get its data. If an
owner warp’s request missed in the L1 and could not be sent
to the L2/DRAM, the request would also be moved to the re-
execution queue’s tail. This recycling of requests, as shown

TABLE III: Benchmark Descriptions

Application Type Comp/Mem Application Type Comp/Mem
backprop (BP-1) C 107 mrig-1 M 13.4
backprop (BP-2) M 19 mrig-2 M 22.4
bfs M 2.4 mrig-3 C 147
cutcp C 949 mri-q C 3479
histo-1 M 15.3 mummer M 4.9
histo-2 C 35.9 particle M 3.5
histo-3 M 14.3 pathfinder (PF) C 55.83
histogram C 91.2 sgemm C 75
kmeans-1 M 0.27 spmv M 4.2
kmeans-2 C 88 sad-1 C 2563
lavaMD C 512 sad-2 M 10.2
lbm M 10.4 srad-1 M 25
leuko-1 M 28 srad-2 M 22
leuko-2 C 173 stencil C 38
leuko-3 C 5289 tpacf C 10816

in Figure 8 ensures that the owner warp can make forward
progress when its requests are in the middle of the queue. If
a warp relinquishes ownership and the scheduler’s memory-
ready warps queue is empty, the warp of the request at the
head of the re-execution queue is given ownership and can
now send requests to the L2/DRAM.

Data Reuse Improvement: Mascar improves L1 data
cache hit rates in two ways. First, the owner warp alone can
bring new data to the L1 and thereby the data brought by
different warps is reduced significantly. Rogers et al. [27]
have shown that for cache sensitive kernels, intra-warp locality
is more important than inter-warp locality. Therefore, it is
important for warps to consume the data they request before it
gets evicted from the cache. By prioritizing one warp’s requests
over others, Mascar allows one warp to bring its data to the L1
and perform computation upon it before it is evicted by another
warp’s data. Second, re-execution also enables reuse for warps
whose data has been brought to the cache by enabling hit-
under-miss, leading to an overall improvement in hit rate.

IV. EXPERIMENTAL EVALUATION

A. Methodology

We use GPGPU-Sim [3] v3.2.2 to model the baseline
NVIDIA Fermi architecture (GTX 480) and the Mascar exten-
sions. We use the default simulator parameters for the GTX
480 architecture and the relevant parameters are shown in
Table I. All of our benchmarks, shown in Table III, come from
the Rodinia [5], [6] and Parboil [33] benchmark suites. The last
column in Table III shows the number of instructions executed
by the SM per miss in the L1 cache. Benchmarks that exhibit
a ratio of instructions executed per L1 miss of greater than
30 are considered compute intensive and are marked C in the
type column, and others are marked M for memory intensive.
GPUWattch [20] is used to estimate the power consumed by
these applications for both the baseline and Mascar.

We compare Mascar scheduling with Loose round-robin
(LRR, our baseline), Greedy-then-oldest (GTO), OWL [15]
and Cache Conscious Wavefront Scheduling (CCWS) [27].
CCWS is modeled using [26] with simulator parameters mod-
ified to match our baseline GTX 480 architecture.

B. Hardware overhead

Three hardware structures are added to the baseline SM
to implement Mascar’s modifications. Table II shows the
per SM overheads of these structures. To support scheduling
requirements for MP mode, the Warp Status Table (WST)
stores two status bits for each warp. As the Fermi architecture
supports a maximum of 48 warps per SM, the WST requires 12
bytes of storage. The Warp Readiness Checker (WRC) stores
the current owner warp’s ID in a six bit field, and uses simple,
single-bit boolean logic to determine the stall bit.

To support Mascar’s cache access re-execution, each re-
execution queue entry stores 301 bits of information. This
includes the request’s base address (64 bits), each thread’s byte
offset into this segment (224 bits — 7 bit 128B segment offset
× 32 threads), and bits to identify the warp (6 bits) this request
belongs to and its destination register (7 bits). A sensitivity
study in Section IV-C found that 32 entries were sufficient to
expose ample hit under miss opportunities, making the queue
1216 bytes in size. Comparing the queue to each SM’s 64KB
L1 data cache/shared memory using CACTI 5.3 [34], we find
that the queue’s size is just 2.2% of that of the cache and that
a queue access uses 3% of the energy of an L1 access which
is a small component of the overall energy consumption.

C. Results

Performance Improvement: Figure 9 shows the speedup
achieved for memory intensive kernels when using the warp
scheduling schemes mentioned in Section IV-A with respect to
a round-robin scheduler. The chart is splits memory intensive
kernels into those that are cache sensitive and those that are
not. GTO focuses on issuing instructions from the oldest warp,
permitting this one warp to make more requests and exploit
more intra-warp data reuse. This greedy prioritization allows
GTO alone to achieve a geometric mean speedup of 4% for
memory intensive and 24% for cache sensitive kernels. How-
ever, GTO swaps warps whenever the executing warp stalls for
the results of long latency operations including floating point
operations, barrier synchronization and lack of instruction in
instruction buffer. This allows memory accesses to be issued
by more than one warp in parallel during memory saturation,
resulting in the phenomenon explained in Section II-C. The
overall speedup achieved by GTO over the baseline is 13%.

OWL [15] tries to reduce cache contention by prioritizing
sub-groups of warps to access the cache in an attempt to give
high-priority sub-groups a greater chance to reuse their data.
OWL is effective for several workloads that are sensitive to
this prioritization, such as BP-2, mrig-1, histo-3 and particle.
Overall, however, OWL is not as effective as reported for
the older GTX 280 architecture due to improvements in our
Fermi baseline. Prior work has shown that preserving inter-
warp data locality is more beneficial when improving the hit
rate of the L1 data cache [27]. The scoreboarding used in
modern architectures allows a warp to reach an instruction
reusing cached data much faster, enabling higher reuse of data
in the cache. Overall, OWL scheduling shows 4% performance
improvement over the baseline. We do not implement OWL’s
memory-side prefetching as it is orthogonal to our work and
is applicable for any scheduling scheme.

0

0.5

1

1.5

2
S

p
e

e
d

u
p

GTO OWL CCWS MAS CAR 4.8 4.24

Memory Intensive Cache Sensitive

3.0

Overall

Fig. 9: Comparison of performance for different policies on memory intensive kernels, relative to round-robin scheduling. The
two components for the last bar in each kernel represents the contribution of scheduling and cache re-execution, respectively.

For cache insensitive workloads, CCWS is equivalent to
GTO, achieving a speedup of 4%. CCWS shows a significant
speedup of 55% over the baseline for cache sensitive kernels
as it is designed specifically to improve performance of such
kernels with reuse, leading to an overall speedup of 24%.

The speedup achieved by Mascar is due to two compo-
nents: memory aware scheduling and cache access re-execution
(stacked on top of each other in Figure 9 for the last bar).
For memory intensive kernels, Mascar performs better than or
almost equal to all other scheduling schemes except for mrig-1
and mrig-2. These kernels have brief phases of high memory
intensity, and the memory back pressure in these phases is
relieved before these benchmarks can benefit from Mascar.
While CCWS provides 4% speedup for memory intensive
kernels, Mascar provides a significantly higher speedup of
17%. This is because CCWS only focuses on cache sensitive
kernels, whereas Mascar improves the overlap of compute and
memory for all kinds of memory intensive kernels.

The main reason for the high speedup of Mascar over
GTO is that GTO provides priority to the oldest warp, whereas
Mascar provides exclusivity to one warp. This inherently leads
to higher utilization in cases where there is data locality. For
example, leuko-1’s innermost iteration reads two float data
from the texture cache. The first data is constant across all
warps in a thread block for that iteration, and the second is
brought in by one warp and can be used by one other warp in
the same block. However, with GTO, all other warps will bring
their own data for the second load. This results in the eviction
of the first warp’s data before the reuse by the other warp can
occur. With Mascar, all data from one warp is brought in and
only then can another warp bring in its data. In the meantime,
the data brought in by the first warp can be reused by the
second warp. Kmeans-1 is a very cache sensitive kernel. Each
warp brings in a significant number of cache lines per load due
to uncoalesced accesses. Several of these loads are also reused
by another warp. Therefore, thread throttling schemes such as
CCWS do very well on it. Similarly, Mascar slows down the
impact of the heavy multi-threading by allowing only one warp
to issue requests at a time and its results are close to CCWS
for kmeans-1. With GTO, more cache thrashing takes place
due to inter-warp cache thrashing between 48 warps.

Cache access re-execution alone provides performance
benefits of 35% and its combination with Mascar scheduling
provides an overall speedup of 56% for cache sensitive kernels.

0

0.25

0.5

0.75

1

1.25

S
p

e
e

d
u

p

GTO OWL CCWS Mascar

Fig. 10: Performance of compute intensive kernels for four
different scheduling policies. Overall, the choice of scheduler
has little impact on these workloads.

CCWS is designed specifically for cache sensitive kernels
and provides a speedup of 55%. While Mascar’s speedup for
cache sensitive workloads is comparable to CCWS, the area
overhead of Mascar is only one-eighth of CCWS’ additional
hardware. The design complexity of CCWS involves a victim
tag array and a point-based system for warps, whereas the
design of Mascar involves a queue and tables such as WST and
WRC which do not use an associative lookup. Overall, Mascar
achieves a geometric mean speedup of 34% as compared to
13% speedup for GTO and 24% for CCWS at one-eighth the
hardware overhead.

The choice of scheduling policy has little impact on the
performance of compute intensive workloads, as seen in Fig-
ure 10. OWL, GTO and CCWS are within 1% of the base-
line’s performance, while Mascar achieves a 1.5% geometric
mean speedup. Occasionally, short phases in compute intensive
workloads suffer from memory saturation, and Mascar can
accelerate these sections. Leuko-2, lavaMD, and histogram are
examples of such workloads. Leuko-2’s initial phase exhibits
significant pressure on the memory system due to texture
accesses, which Mascar’s MP mode alleviates. LavaMD and
histogram behave similarly but with saturation due to global
memory accesses. Mascar does cause performance degradation
compared to the baseline scheduling for histo-2, stencil and
sad-1, but these slowdowns are not significant.

Microarchitectural impacts of Mascar: Mascar’s
scheduling and re-execution have a significant impact on
the fraction of cycles for which the LSU stalls, previously
discussed in Section II-B. Figure 11 shows that Mascar is
capable of reducing these stalls on average by almost half,
from 40% down to 20%. By alleviating these stalls, Mascar
more efficiently brings data to the SM and overlaps accesses

0%

20%

40%

60%

80%

100%
%

 o
f

c
y

c
le

s
 L

S
U

 s
ta

ll
e

d

Baseline Mascar

Fig. 11: Reduction of LSU stalls when using Mascar.

0

0.2

0.4

0.6

0.8

1

F
ra

c
ti

o
n

 o
f

to
ta

l
ti

m
e

EP

MP

Fig. 12: Distribution of execution time in EP and MP modes
across workloads.

with computation. Spmv, particle and kmeans-1 experience
great reductions in stalls, which correlates with their significant
speedups in Figure 9. Because compute intensive workloads
stall the LSU far less frequently than memory intensive appli-
cations, we do not include these figures.

Depending on the severity of memory intensity, Mascar’s
scheduler will be in either EP or MP modes for different
durations of time as shown in Figure 12. There is a direct
correlation between the number of cycles a workload is in
MP mode to the number of cycles the LSU is stalled for the
baseline scheduler used in Figure 2. Leuko-1, srad-1, mrig-1,
mrig-2 and lbm are workloads that spend some time in both
modes and exhibit phased behavior with intermixed periods
of compute and memory intensity. As previously described,
mrig-1 and mrig-2 spend most of their time in EP mode and
their MP mode phases are so short that the benefits of Mascar
are muted for these benchmarks. Severely memory intensive
workloads, including kmeans-1, bfs, particle, and mummer,
operate in MP mode for 85%–90% of their execution.

The impact of the re-execution queue is illustrated by the
improvements in L1 hit rates shown in Figure 13. We only
show results for the seven cache sensitive workloads and com-
pare them with CCWS. While CCWS achieved better hit rates
than Mascar for three kernels as it reduces the number of warps
that can access the data cache to preserve locality, Mascar’s
hit rate improvements are better than CCWS for three other
kernels. Because the number of requests going to DRAM are
significantly reduced, the exposed memory latency is reduced
such that it better overlaps with computation. The resulting
exposed latency can be effectively hidden by both CCWS and
Mascar, resulting in less than 1% difference in performance
between the two. However, CCWS’s victim tag array incurs
more hardware overhead and design complexity than Mascar,
which has a that can induce a higher energy overhead while
not improving the performance of cache insensitive kernels.

We performed a sensitivity study of the impact of the
size of the re-execution queue on performance of the cache

0%

20%

40%

60%

80%

100%

H
it

 R
a

te

Basleine

CCWS

Mascar

Fig. 13: Improvement in L1 data cache hit rates.

0

0.2

0.4

0.6

0.8

1

1.2

T
o

ta
l

E
n

e
rg

y
 C

o
n

s
u

m
e

d
 DRAM D-Cache OTHERS LEAKAGE

Fig. 14: Energy consumption breakdown for baseline (left bar)
and Mascar (right bar, relative to baseline).

sensitive kernels. For all kernels except kmeans-1, a 16 en-
try re-execution queue is sufficient to expose greater reuse.
Kmeans-1 has a significant number of uncoalesced accesses,
and requires more entries as each uncoalesced access breaks
down into multiple requests. Overall, the performance of the
kernels saturates with 32 entries, and hence was chosen for
our design.

Improvement in Energy Efficiency: Mascar’s speedups
from scheduling and re-execution leads to energy savings. This
can be seen in Figure 14, where each workload’s left and
right bar represent the energy consumed by the baseline versus
Mascar architectures. On average, Mascar reduces energy
consumption by 12% compared to the baseline system. To
further analyze Mascar’s energy efficiency, we break these
energy figures down into four components: DRAM, L1 data
cache, leakage and others, which includes the interconnect,
SM pipelines, and L2 cache. All components are normalized
with respect to the total energy consumed on the baseline.

DRAM energy consumption is mostly unchanged except
for kmeans-1, particle, and spmv show noticeable reductions.
By reducing the warps that can issue memory requests during
MP mode scheduling, less thrashing and higher L1 hit rates
reduce DRAM traffic. A few kernels (srad-2, mrig-2, and
lbm) experience increased DRAM energy consumption. Jog et
al. [15] discuss how consecutive thread blocks access the same
DRAM row. In the case of these kernels, Mascar sometimes re-
duces row locality by allowing all of one warp’s requests to go
to DRAM, forcing other warps to reopen previously used rows.
The data cache’s energy consumption is slightly reduced as
Mascar exploits hit-under-miss opportunities, reducing failed
access attempts. This indicates that the energy impact of
re-executing cache accesses is negligible. Other components
exhibit a 3.5% decrease in energy, primarily due to reduced
interconnect traffic in MP mode. The greatest contribution to
energy savings is due to the savings in leakage energy, which
improved by 7% on average. As workloads made quicker
progress during phases of memory saturation, they finished

earlier, thus reducing the leakage energy consumed.

V. RELATED WORK

Warp scheduling: Scheduling on GPUs has received wide
attention from many works. Jog et al. [15] propose a scheduler
which aims to reduce cache contention and exploit bank
level parallelism to improve performance. With the addition
of scoreboarding, newer GPUs have improved abilities to
overlap computation with memory accesses and alleviate cache
contention. Scoreboarding allows warps to reach loads faster,
hence taking advantage of available data locality. Narasiman
et al. [22] proposed a two-level warp scheduler (TLS) which
divides warps into fetch groups to overlap computation with
memory access by staggering warp execution so that some
warps perform computation while others execute memory
operations, modern GPU architectures, however, allow enough
warps per SM to naturally generate an equivalent or better
overlapping. Our experiments show that TLS scheduling shows
1.5% speedup over the baseline.

Improving cache locality in GPUs: Rogers et al. [27] pro-
pose a cache conscious scheduling mechanism which detects
cache locality with new hardware and moderates the warps that
access the cache to reduce thrashing. DAWS [28] improves
upon this mechanism by using a profile-based and online
detection mechanism. Jia et al. [13] use a memory request
prioritization buffer (MRPB) to reorder cache requests so that
the access order preserves more data locality. Furthermore, in
MRPB, certain requests bypass the cache and are transferred
and received by the core directly. Cache and Concurrency
Allocation (CCA) [35] also limits the number of warps that can
allocate cache lines to improve data locality while other warps
bypass the cache, ensuring sufficient bandwidth utilization.

Mascar targets general memory intensive workloads that
may not have data locality, which is not addressed by CCWS,
DAWS, MRPB or CCA. While these schemes try to avoid
stalling the LSU during back pressure, Mascar enables the LSU
to continue issuing requests to the L1 even when it is stalled
through its re-execution queue. It also improves data reuse
by only allowing one warp to bring its data, preventing other
warps from thrashing the cache. Mascar incurs less hardware
overhead than the above techniques. We compare Mascar with
OWL and CCWS in Section IV-C.

Improving resource utilization on GPUs: There have
been several works on improving GPU resource utilization.
Gebhart et al. [9] propose a unified scratchpad, register file, and
data cache to better distribute the on-chip resources depending
on the application. However, they do not provide resources to
increase the number of outstanding memory requests. Jog et
al. [14] propose a scheduling scheme that enables better data
prefetching and bank level parallelism. Rhu et al. [25] create a
locality aware memory hierarchy for GPUs. Lakshminarayana
and Kim et al. [18] evaluate scheduling techniques for DRAM
optimization and propose a scheduler which is fair to all
warps when no hardware-managed cache is present. Our work
focuses on systems with a saturated memory system in the
caches and DRAM. Ausavarungnirun et al. [2] propose a
memory controller design that batches requests to the same row
to improve row locality, hence improving DRAM performance.

Adriaens et al. [1] propose spatial multi-tasking on GPUs
to share resources for domain specific applications. Gebhart et
al. [8] propose a two-level scheduling technique to improve
register file energy efficiency. Kayiran et al. [16] reduce mem-
ory subsystem saturation by throttling the number of CTAs
that are active on an SM. Fung et al. [7] and Meng et al. [21]
optimize the organization of warps when threads diverge at a
branch. Bauer et al. [4] propose a software-managed approach
to overlap computation and memory accesses. In this scheme,
some warps bring data into shared memory for consumption
by computation warps. Hormati et al. [11] use a high-level
abstraction to launch helper threads that bring data from global
to shared memory and better overlap computation.

Re-execution: The concept of re-executing instructions
has been studied for CPUs by CFP and iCFP [32], [10]
which insert instructions into a slice buffer whenever the
CPU pipeline is blocked by a load instruction and re-execute
from a checkpoint when a miss returns. Sarangi et al. [30]
minimize this checkpointing overhead by speculatively ex-
ecuting forward slices. While these schemes benefit single
threaded workloads, having slice buffers and checkpointing
micro-architectural state for every warp can be prohibitively
expensive. Hyeran et. al propose WarpedDMR [12] to re-
execute instructions on the GPU during under-utilization of
the hardware, providing redundancy for error protection. They
focus on re-execution of instructions that run on the SM and
do not re-execute accesses to the data cache, which is done by
Mascar to improve performance.

VI. CONCLUSION

Due to the mismatch between the applications’ require-
ments and resources provided by GPUs, the memory sub-
system is saturated with outstanding requests which impairs
performance. We show that with a novel scheduling scheme
that prioritizes the memory requests of one warp rather than
issuing several requests of all the warps, better overlap of mem-
ory and computation can be achieved for memory intensive
workloads. With a re-execution queue, which enables access
to data in the cache while the cache is blocked from accessing
main memory, there is significant improvement in cache hit
rate. Mascar achieves 34% performance improvement over the
baseline scheduler. Due to the low overhead of Mascar, this
translates to an energy savings of 12%. For compute intensive
workloads, Mascar is 1.5% faster than the baseline scheduler.

ACKNOWLEDGEMENTS

This work has been was supported by ARM Ltd. and
National Science Foundation grant SHF-1217917. The authors
would like to thank John Kloosterman, Shruti Padmanabha,
other members of the CCCP research group, and the anony-
mous reviewers for their insightful suggestions and feedback.

REFERENCES

[1] J. T. Adriaens, K. Compton, N. S. Kim, and M. J. Schulte. The case
for gpgpu spatial multitasking. In Proceedings of the 2012 IEEE 18th
International Symposium on High-Performance Computer Architecture,
pages 1–12, 2012.

[2] R. Ausavarungnirun, K. K.-W. Chang, L. Subramanian, G. H. Loh, and
O. Mutlu. Staged memory scheduling: Achieving high performance
and scalability in heterogeneous systems. In Proceedings of the 39th
Annual International Symposium on Computer Architecture, pages 416–
427, 2012.

[3] A. Bakhoda, G. L. Yuan, W. W. L. Fung, H. Wong, and T. M. Aamodt.
Analyzing CUDA workloads using a detailed GPU simulator. In Proc.
of the 2009 IEEE Symposium on Performance Analysis of Systems and
Software, pages 163–174, Apr. 2009.

[4] M. Bauer, H. Cook, and B. Khailany. Cudadma: Optimizing gpu
memory bandwidth via warp specialization. In Proceedings of 2011
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, pages 1–11, 2011.

[5] S. Che, M. Boyer, J. Meng, D. Tarjan, , J. W. Sheaffer, S.-H. Lee, and
K. Skadron. Rodinia: A benchmark suite for heterogeneous computing.
In Proc. of the IEEE Symposium on Workload Characterization, pages
44–54, 2009.

[6] S. Che, J. W. Sheaffer, M. Boyer, L. G. Szafaryn, L. Wang, and
K. Skadron. A characterization of the rodinia benchmark suite with
comparison to contemporary cmp workloads. pages 1–11, 2010.

[7] W. W. L. Fung, I. Sham, G. Yuan, and T. M. Aamodt. Dynamic warp
formation and scheduling for efficient GPU control flow. In Proc. of
the 40th Annual International Symposium on Microarchitecture, pages
407–420, 2007.

[8] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron. Energy-efficient mechanisms for man-
aging thread context in throughput processors. In Proc. of the 38th
Annual International Symposium on Computer Architecture, pages 235–
246, 2011.

[9] M. Gebhart, S. W. Keckler, B. Khailany, R. Krashinsky, and W. J.
Dally. Unifying primary cache, scratch, and register file memories
in a throughput processor. Proc. of the 45th Annual International
Symposium on Microarchitecture, pages 96–106, 2012.

[10] A. Hilton, S. Nagarakatte, and A. Roth. iCFP: Tolerating all-level cache
misses in in-order processors. IEEE Micro, 30(1):12–19, 2010.

[11] A. H. Hormati, M. Samadi, M. Woh, T. Mudge, and S. Mahlke. Sponge:
portable stream programming on graphics engines. In 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems, pages 381–392, 2011.

[12] J. Hyeran and M. Annavaram. Warped-dmr: Light-weight error detec-
tion for gpgpu. In Proc. of the 45th Annual International Symposium
on Microarchitecture, pages 37–47, 2012.

[13] W. Jia, K. Shaw, and M. Martonosi. Mrpb: Memory request prioritiza-
tion for massively parallel processors. In Proc. of the 20th International
Symposium on High-Performance Computer Architecture, pages 272–
283, 2014.

[14] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer,
and C. R. Das. Orchestrated scheduling and prefetching for gpgpus. In
Proceedings of the 40th Annual International Symposium on Computer
Architecture, pages 332–343, 2013.

[15] A. Jog, O. Kayiran, C. Nachiappan, A. K. Mishra, M. T. Kandemir,
O. Mutlu, R. Iyer, and C. R. Das. Owl: cooperative thread array
aware scheduling techniques for improving gpgpu performance. 21th
International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 395–406, 2013.

[16] O. Kayiran, A. Jog, M. T. Kandemir, and C. R. Das. Neither more nor
less: Optimizing thread-level parallelism for gpgpus. In Proceedings
of the 22nd International Conference on Parallel Architectures and
Compilation Techniques, pages 157–166, 2013.

[17] KHRONOS Group. OpenCL - the open standard for parallel program-
ming of heterogeneous systems, 2010.

[18] N. B. Lakshminarayana, J. Lee, H. Kim, and J. Shin. Dram scheduling
policy for gpgpu architectures based on a potential function. Computer
Architecture Letters, 11(2):33–36, 2012.

[19] J. Lee and H. Kim. Tap: A tlp-aware cache management policy for
a cpu-gpu heterogeneous architecture. Proc. of the 18th International
Symposium on High-Performance Computer Architecture, pages 1–12,
2012.

[20] J. Leng, T. Hetherington, A. ElTantawy, S. Gilani, N. S. Kim, T. M.
Aamodt, and V. J. Reddi. Gpuwattch: enabling energy optimizations
in gpgpus. In Proc. of the 40th Annual International Symposium on
Computer Architecture, pages 487–498, 2013.

[21] J. Meng, D. Tarjan, and K. Skadron. Dynamic warp subdivision for
integrated branch and memory divergence tolerance. In Proc. of the
37th Annual International Symposium on Computer Architecture, pages
235–246, 2010.

[22] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu,
and Y. N. Patt. Improving gpu performance via large warps and two-
level warp scheduling. In Proceedings of the 44th Annual IEEE/ACM
International Symposium on Microarchitecture, pages 308–317, 2011.

[23] C. Nugteren, G. J. van den Braak, H. Corporaal, and H. Bal. A detailed
gpu cache model based on reuse distance theory. In Proc. of the 20th
International Symposium on High-Performance Computer Architecture,
pages 37–48, 2014.

[24] NVIDIA. CUDA C Programming Guide, May 2011.

[25] M. Rhu, M. Sullivan, J. Leng, and M. Erez. A locality-aware memory
hierarchy for energy-efficient gpu architectures. pages 86–98, 2013.

[26] T. G. Rogers. CCWS Simulator.
https://www.ece.ubc.ca/ tgrogers/ccws.html.

[27] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Cache-conscious wave-
front scheduling. Proc. of the 45th Annual International Symposium on
Microarchitecture, pages 72–83, 2012.

[28] T. G. Rogers, M. O’Connor, and T. M. Aamodt. Divergence-aware warp
scheduling. In Proc. of the 46th Annual International Symposium on
Microarchitecture, pages 99–110, 2013.

[29] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk, and
W. mei W. Hwu. Optimization principles and application performance
evaluation of a multithreaded GPU using CUDA. In Proc. of the
13th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 73–82, 2008.

[30] S. R. Sarangi, W. Liu, J. Torrellas, and Y. Zhou. Reslice: selective
re-execution of long-retired misspeculated instructions using forward
slicing. In Proc. of the 38th Annual International Symposium on
Microarchitecture, 2005.

[31] N. Satish, C. Kim, J. Chhugani, H. Saito, R. Krishnaiyer, M. Smelyan-
skiy, M. Girkar, and P. Dubey. Can traditional programming bridge
the ninja performance gap for parallel computing applications? In
Proceedings of the 39th Annual International Symposium on Computer
Architecture, pages 440–451, 2012.

[32] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Ghandi, and M. Upton.
Continual flow pipelines: achieving resource-efficient latency tolerance.
IEEE Micro, 24(6):62–73, 2004.

[33] J. A. Stratton, C. Rodrigrues, I.-J. Sung, N. Obeid, L. Chang, G. Liu,
and W.-M. W. Hwu. Parboil: A revised benchmark suite for scientific
and commercial throughput computing. Technical report, University of
Illinois at Urbana-Champaign, 2012.

[34] S. Thoziyoor, N. Muralimanohar, J. H. Ahn, and N. P. Jouppi. Cacti
5.1. Technical Report HPL-2008-20, Hewlett-Packard Laboratories,
Apr. 2008.

[35] Z. Zheng, Z. Wang, and M. Lipasti. Adaptive cache and concurrency
allocation on gpgpus. Computer Architecture Letters, PP(99), 2014.

