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Reorganizing Faulty Cache Lines
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Abstract—Aggressive technology scaling to 45nm and below introduces serious reliability challenges to the design of microprocessors.

Since a large fraction of chip area is devoted to on-chip caches, it is important to protect these SRAM structures against lifetime and

manufacture-time failures. Designers typically over-provision caches with additional resources to overcome hard-faults. However, static

allocation and binding of redundant spares results in low utilization of the extra resources and ultimately limits the number of defects

that can be tolerated. This work re-examines the design of process variation tolerant on-chip caches with a focus on providing the

flexibility and dynamic reconfigurability necessary to tolerate large numbers of defects with modest hardware overhead. Our approach,

ZerehCache, virtually reorganizes the cache data array using a permutation network to provide more degrees of freedom for spare

allocation. A graph coloring algorithm is used to configure the network and identify the proper mapping of replacement elements. We

perform an extensive design space exploration of both L1/L2 caches to identify several Pareto optimal ZerehCaches. Given this optimal

design points, we employ ZerehCache to extend the effective lifetime of the on-chip caches and prevent early lifetime failures. Finally,

yield analysis studies, performed on a population of 1000 chips at the 45nm technology node demonstrated that an L1 design with 16%

and an L2 designs with 8% area overheads achieve yields of 99% and 96%, respectively.

Index Terms—Process variation, Wearout, Fault-tolerant cache memories, Manufacturing yield
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1 INTRODUCTION

As circuit density grows, each transistor gets smaller, hotter,

and more fragile. This leads to an overall higher susceptibility

of chips to permanent faults [10], [36]. These failures can

impact the performance guarantees offered by a semiconductor

chip, manufacturing yield, and limit their useful lifetime.

Efficiency of CMOS technology is questionable in the face

of such challenges. Current projections indicate that future

microprocessors will be composed of billions of transistors,

many of which will be unusable at manufacture time, and

many more which will degrade in performance (or even fail)

over the expected lifetime of the processor [10]. To address

these reliability concerns, designers must equip their designs

to tolerate and operate properly in the presence of faults.

On-chip memory arrays in high performance processors are

critical for chip reliability as more than 70% of the transistors

can be devoted to caches. Therefore, on-chip caches need to

be equipped with cost-effective mechanisms to tolerate in-

field silicon defects. In this work, we propose a fault-tolerant

cache architecture to tackle wearout (over time) and also

process variation induced failures (fabrication time). This will

extend the effective lifetime of the on-chip caches and prevent

early lifetime failures. Assuming no manufacturing defects,

Figure 1 depicts the fraction of non-functional SRAM bit-

cells for a 2MB L2 cache over time. This plot was generated

for a range of mean time to failure (MTTF) values from 50

to 200 years. Here, it is notable that even for an MTTF

of 200 years, a considerable number of failures need to be
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Fig. 1. Fraction of non-functional SRAM bit-cells for a

2MB L2 cache over time. Here, the mean time to failure of
each SRAM bit-cell is varied from 50 to 200 years.

addressed in early lifetime. Moreover, a comparison of our

scheme with conventional wearout tolerance methods and also

the experimental methodology, for generating this plot, will be

discussed in section 5.

Apart from in-field wearout challenges, technological trends

into the nanometer regime have lead to an increasing vulner-

ability of manufactured parts to process variation. A host of

factors such as sub-wavelength lithography, line edge rough-

ness, and random dopant fluctuation result in a wide distri-

bution of transistor characteristics which directly translates

into lower parametric yield [8]. This significant divergence of

process parameters from their nominal specification limits the

achievable frequency and also significantly hurts the leakage

power of modern high performance processors [38]. SRAM
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structures are particularly vulnerable to process variation due

to their minimum-geometry transistors, sensitive differential

circuit, and area efficient semi-custom layout. Using Berkeley

Predictive Technology Model, the yield of an unprotected

cache in a 45nm technology node can be as low as 33%,

highlighting the need for appropriate protection schemes [3],

[4]. Under process variation, a single SRAM cell can fail

because of the following reasons that are sorted based on

the frequency of occurrence [3]: 1. Access Time Failure: It

occurs when the differential read voltage between bit-lines

is not enough for the sense amplifier to extract the correct

stored value. 2. Write Stability Failure: This case arises when

the cell contents cannot be replaced with a new value. This

happens due to stronger pull-up of the storage node with input

0 compared to the access transistor. 3. Read Stability Failure:

If the voltage of a storage node with a stored 0 value during

the read operation is higher than the trip-point of an inverter

that has an output value of 1, the read value from the SRAM

cell flips. 4. Hold Failure: If the supply voltage drops below

a minimum level while an SRAM cell is not being accessed,

the SRAM cell can lose its stored value.

To illustrate the reliability implications on on-chip caches,

Figure 2 presents the probabilities of having at least one faulty

SRAM cell considering different granularities of storage. This

trend is shown for a wide range of single cell failure prob-

abilities (PF ). Assuming a uniform failure distribution, for a

given PF and a granularity (e.g., byte-level), we performed

a Monte Carlo simulation to evaluate in what percentage of

simulations, there is at least a single faulty bit-cell. As the

failure probability increases in these graphs, the granularity of

fault manifestation decreases in size. For instance, as can be

seen, the L2 cache configuration demonstrates a modest num-

ber of block-level failures at PF ∼ 10−5. Thus, a block-level

redundancy solution would be satisfactory for fault tolerance

in this case. However, at PF ∼ 10−3, the L2 cache is certain to

contain at least one faulty cell in each cache word-line with a

very high chance of fault in each cache block. This makes the

use of word-line/block level redundancy impractical. Hence,

with the increasing failure probability, a smaller granularity

of redundancy will be necessary to guarantee robustness. The

same trends hold for L1 cache, but it is favorably shifted

towards the right due to the smaller block and word-line sizes

of the L1 cache in comparison to the L2 cache. The primary

challenge in this scenario is to design a cache architecture

that can maintain and optimally utilize the smaller levels of

redundancy for defect tolerance. At a 45nm technology node,

an SRAM cell is expected to have a 30mV standard deviation

in the threshold voltage (Vth) resulting in a PF as high as

10−3 [4]. Thus, there is a real need to devise solutions for

these reliability challenges.

To this end, we introduce the ZerehCache (ZC, Zereh in

Farsi means body armor), a high-failure rate tolerant solution

for both L1 and L2 on-chip caches. ZC is an adaptive, dy-

namically reconfigurable solution for tackling the high defect

rates of future technologies. In order to break the static

binding between the spare elements and the original data,

ZC virtually swaps the cache word-lines to find the best

possible spare allocation. It also provides a wide range of

Fig. 2. Probability of having at least one faulty SRAM cell
at different granularities while varying the failure probabil-

ity of each SRAM cell (PF ). This plot was generated for

a 2-bank 2MB L2 cache with 128B block size and 256b
word size.

cache design options based on the primary design concerns

such as delay, power, and area overhead. In this work, the ZC

architecture is leveraged to tolerate process variation in 45nm

technology. ZC takes advantage of its intelligent interlaced

usage of redundancies in multiple ways to substantially cut

the overheads of protecting on-chip caches. To our knowledge,

ZC has the capability of achieving the highest degree of the

fault tolerance, among the previously proposed approaches,

for a given area budget. Current microprocessors have al-

ready been equipped with row-redundancy and other coarse-

grained redundancy schemes to protect the caches against

hard-faults [32]. ZC can be used as an alternative for these

conventional mechanisms while introducing a considerably

lower overhead (Section 7). We believe our scheme provides

a solid foundation for cache designers to take advantage of

the higher clock frequency and transistor density in deeper

technology nodes while preserving the correct functionality

and timing constraints of their design with less overhead.

The primary contributions of this paper are: 1) A flexible,

dynamically reconfigurable architecture that can be leveraged

to protect regular SRAM structures against high defect density

nanometer technology nodes; 2) Minimizing the amount of

redundancy required for protecting the cache by modeling the

collision pattern in the main/spare cache with a well studied

graph coloring problem and taking advantage of the existing

rich approximation methods; 3) A design space exploration in

45nm to show the actual process of fixing the architecture

parameters; and 4) Evaluating the proposed method under

wearout and process variation conditions.

The rest of the paper proceeds as follows. Section 2 dis-

cusses related work. In Section 3, we present the architectural

details and configuration of ZC. A design space exploration

is performed in Section 4 to fix the architectural parameters

of our L1 and L2 caches. Given these L1 and L2 ZCs,

first, in Section 5, we evaluate the potential benefits of ZC

when addressing in-field wearout failures. Furthermore, in

Section 6, we evaluate the yield enhancement that can be



3

achieved using these L1 and L2 ZCs. Section 7 compares ZC

against several conventional and recently proposed schemes,

and finally Section 8 concludes the paper.

2 RELATED WORK

A significant amount of literature targets the on-chip cache re-

liability concerns (e.g., transient faults, manufacturing defects,

process variation, wearout, and near/sub-threshold operation)

and the proposed solutions can be divided into three major

categories:

Circuit-Level and VLSI Solutions: Dynamic volt-

age/frequency scaling can be employed to improve the cache

reliability. For this purpose, we need to identify the most

vulnerable SRAM cell in each line and scale the access

time/voltage to a level that guarantees proper operation for all

the cells in that word-line. There are two major drawbacks

of this scheme, 1) a mechanism is needed to dynamically

determine the weakest cell in each row, and 2) the working

conditions of the cache must be adjusted to the weakest

cell, resulting in a considerable performance penalty (access

latency). A 3T1D DRAM cell can be substituted for the

conventional 6T SRAM cell to improve the reliability [25].

However, the 3TD1 cell cannot retain the value for a long

period and each word-line must be refreshed periodically.

Moreover, since on-chip DRAM is not normally used in

current technologies, it adds to the process/manufacturing

complexity and effort. Another alternative is to size up the

SRAM cells or use a different structure for them (e.g., 8T,

10T, or ST) [23]. Unfortunately, these methods incur a large

area overhead (Section 7) and they are mostly employed for

power reduction by allowing the near/sub-threshold operation.

Coding Solutions: Simple error detection codes (EDC)

and parity can be applied for the detection of the faults in

caches [32]. Single error correction double error detection

(SECDED) is a widely used technique for protecting the mem-

ory structures [14]. However, in a high-failure rate situation,

these solutions are not practical because of the strict bound

on the number of tolerable faults in each protected data chunk

(Section 7). A 2D error correction coding scheme is presented

in [19] that uses two sets of EDCs on the rows and columns

of the data array. As the results show, this scheme is also

not appropriate for high-failure rate situations, like the one

addressed in this work. Further, the overhead of updating all

the column codes for each cache write is high. Multiple bit

error correcting codes (ECCs) like Hamming codes are capable

of tolerating high failure rates, but are inefficient in terms

of the coding delay, area, and power overheads for on-chip

caches [19]. In summary, the coding solutions are best applied

to memory structures under low failure-rate scenarios or where

transient faults are the main concern.

Architectural Solutions: Dual modular redundancy

schemes are used in many designs for providing memory

structure reliability, but they are highly inefficient in terms

of the overhead [5], [34]. A popular architectural solution

is to use redundant rows and/or columns [24]. As seen in

Figure 2, the probability of having at least one failure in

a row is close to 1.0 for PF > 10−3. This implies that

Fig. 3. Two simple scenarios in which the line swapping
can preserve the correct functionality of the cache by

resolving the occurred collision. A black box shows a

faulty chunk of data.

most word-lines can be expected to be faulty from the start,

resulting in a poor utilization of the provisioned redundancy.

Moreover, since the redundant row replacement is based

on a decoder modification and using hard-wired fuses, it is

generally not applicable for more than 10 extra rows [16]. A

similar set of methods are based on the cache block/row/way

disabling that are also suitable for the low-failure rate

situations [30]. Wilkerson et. al. have suggested several layers

of shifters for merging multiple defective word-lines to form

a single functional word-line [42]. To achieve operation in

the presence of faults, their Word-Disable method sacrifices

half of the cache area and their Bit-Fix method adds three

cycles of latency to the cache access time. Both of which

result in considerable performance drop-off. There are other

works that use a re-mapping table to map a faulty block onto

another one [17]. These methods impose a high pressure on

the L1-L2 communication bus by increasing the L1 miss

rate substantially. Furthermore, these are properly applicable

only to the direct-mapped caches [3]. Architectural schemes

presented in [31], [21] try to reduce the effective cache

capacity and use the adjacent cache blocks to repair faults in

one another.

3 ZEREHCACHE

In this section, the ZC architecture is first described that

adaptively reconfigures itself to absorb failing SRAM cells.

Next, an effective graph-coloring algorithm to configure the

underlying architecture is presented.

3.1 ZC Architecture

The key idea behind the ZC architecture is to use redundant

units in multiple ways to increase their potential utilization.

ZC partitions the complete cache array into sets of equally

sized logical groups, where each logical group is allocated

one spare cache word-line. Here onwards, we use the term line
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when referring to a word-line. The logical groups are formed

by carefully shuffling together physical cache lines in order

to optimize the utilization of a single spare cache line. Each

cache/spare line is divided up to equally sized data chunks to

allow smaller granularities of spare substitution. For instance,

the fourth data chunk of the second spare line can be used to

substitute the fourth data chunk of the third/fourth cache line in

the case of failure. Flexibility for this line shuffling is provided

by adding a network into the cache that allows swapping

of cache lines to eliminate conflicting failures. Conflicting

failures occur when two lines that share a spare line have

a failure in the same chunk, or when a cache line and its

corresponding spare have failures in the same chunk. While

there may be sufficient redundancy, conflicting failures arise

and render the cache non-operational.

To illustrate this issue, Figure 3 shows two simple scenarios

where ZC can preserve the correct functionality of the underly-

ing cache while it is not possible for conventional redundancy

methods to do so. In this figure, each line contains five units

of data and every two consecutive lines in the main cache

form a logical group. Each logical group is assigned one line

in the spare cache. The first line in the main cache has a

failure in the same place as the first line of the spare cache.

Swapping the first and fifth lines in the main cache can resolve

this collision (collision1). After swapping, the second and

fifth rows will form the first logical group which utilizes the

first row of the spare cache. The second conflict situation,

collision2, is between two lines in the same logical group.

Swapping the fourth and the sixth lines is one possible way

to resolve this conflict. Swapping eliminates collisions and

increases the chance of having a functional cache for a given

area overhead budget.

A high-level architecture of a set-associative ZC is shown

in Figure 4. The cache data array is divided into equal sized

groups. Lines within each of these groups share a single spare

line in the spare cache (static multiplexing of spares). For each

access to the cache array, in a high speed design, the spare

cache and the fault map arrays are also accessed in parallel.

The result of the fault map access determines whether the

spare data chunk should be routed to the output instead of the

main cache content. In order to tolerate many defects, logical

groups are formed by carefully shuffling together cache lines

using an interconnection network. As Figure 3 demonstrates,

the functionality of the interconnection network is to swap

the lines in a manner that resolves the existing collisions.

The configuration for this network is computed once and

saved in the non-volatile network configuration storage. By

using static multiplexing and the interconnection network for

overcoming the limitations of static binding, ZC can maximize

the utilization of the spare units. The remainder of this section

provides a detailed description for each of the architectural

modules.

Spare Cache: Each row in the spare cache corresponds to

a logical group of lines in the main cache. A single row of

the spare cache is further broken up into smaller redundancy

units of fixed size. Each of these redundancy units in the spare

cache keeps the valid content of the corresponding corrupted

element in the main cache (if any exists). In order to avoid high

fan-in ORs required when using the main cache row decoder,

the spare cache and fault map arrays use a separate shared

decoder. This decoder uses the top n most significant bits from

the set segment of the memory address, where n is based on

the number of rows in the spare cache.

Interconnection Network: In order to shuffle around the

cache lines and form logical groups, we use an interconnection

network. This network is placed between row decoder of

the main cache and the cache word-lines. A unidirectional

Benes network (BN) [29] is used to provide a non-blocking

routing and full permutation mapping between the inputs and

outputs. As Figure 4 shows, a BN consists of two back-

to-back connected butterfly networks. The main reasons for

selecting a BN for this work are: 1) Full permutation and

non-blocking properties allow routing any permutation from

inputs to outputs in a conflict-free fashion. 2) Logarithmic

depth of the net can minimize the imposed delay overhead

of the interconnection network. For connecting 2n nodes

to each other, 2n − 1 stages are required. We call this a
BN with n swapping levels. 3) The BN delay/power/area

scaling characteristics are superior in comparison to most other

interconnection networks like full-crossbar or omega network.

The network consists of multiple local BNs. Each local

BN is used to connect the word-lines with the same relative

positions in different groups. For instance in Figure 4, all of

the four groups have their 2nd lines connected by a local BN.

There have to be as many interleaved local BNs as there are

lines in a single group. The set of groups connected by a

single local BN is called the swapping set, and the size of this

swapping set (2num. of swapping levels = 22 in the example

shown) is determined by the depth of the network. Given the

full permutation and non-blocking properties of the chosen

interconnection network, lines in the same relative position can

be swapped between the different logical groups. Increasing

the depth of the BN widens the scope of line swapping,

however, it also imposes higher overheads on the underlying

cache. In order to minimize these overheads and reach to a

network with higher depth, we employ an efficient circuit-level

implementation of a BN which is presented in [35]. A memory

hash-table can also be used as an alternative here. However,

since this network is in the critical path of the cache access,

we employ a BN which provides inherent flexibility, lower

delay, and lower power consumption.

Network Configuration Storage: The interconnection net-

work configuration is kept in the network configuration stor-

age. According to our evaluations in the next section, a small

fraction of the manufacturing test time can be used to solve

the configuration and mapping problems. For the network

configuration storage, we use a low-voltage on-chipNOR-flash

described in [37]. However, since this structure is extremely

small (mostly less than 400 bytes), employing other non-

volatile memories (e.g., fuse or EEPROM) has negligible

impact on our results.

Fault Map Array: The fault map array has the same

number of rows as the spare cache. For each redundancy

unit in a spare cache row, the fault map array stores the row

number in the corresponding logical group which utilizes that

redundancy. For example, if a broken data chunk in the 5th
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Fig. 4. The high-level architecture of the ZC is shown in this figure and the extra modules that are added to the baseline

cache are highlighted. Note that the slices of the base address are shown using numbers 1, 2 and 3 (Address Format).

For simplicity, the separate sense amps for the fault map and spare cache, as well as their shared decoder, are not
shown. The BIST block is comprised of a Built-in-self-test (BIST) module commonly used for fault diagnosis in the

embedded memory structures. Lastly the callout highlights the Benes network which connects the second rows of the

four consecutive logical group of rows in the main cache. For illustrative purposes, a single route from the decoder to
the word-lines is also shown.

row of an eight-rows logical group should be replaced by its

corresponding spare unit, the fault map saves 101 for that

redundancy unit. This implies, that for a very small granularity

of redundancy, the length of the word-lines in the fault map

array can be significantly longer than the main cache. The

access time of the fault map array is comparable to the L1

cache. Hence, this structure should be accessed in parallel with

the tag array access for the L1. Conversely, for the L2 cache,

the access to this structure happens after the hit resolution from

the tag side, resulting in a significant reduction in the dynamic

access energy. In contrast to the network configuration storage,

which should be filled during the manufacturing test time,

the fault map gets its contents directly from the built-in self

test (BIST) module during the first boot of the system [13].

Further, its content can be saved on the hard-disk and retrieved

during the machine boot up. This mechanism works properly

for the fault map since the BN routes have already been fixed.

And during the testing operation by BIST, the effect of line

swapping will be automatically accounted for.

Comparison Stage: This stage compares the least several

significant bits of the set segment of the address1 with the

returned content of the fault map array to determine whether

that unit of redundancy replaces the data chunk from the main

cache.

MUXing Level: At the end of the access critical path,

based on the results of the comparison stage, the MUXing

level determines for each redundant unit whether the main

cache or the spare cache data is valid and drives that onto the

cache output. Word-lines in the main/spare cache are divided

into equal units of redundancy. The size of these redundancy

1. The number of bits depends on the number of word-lines in each cache
logical group.

units specifies the MUXing granularity. Hence, although data

chunk size and the MUXing granularity refer to different

concepts in the ZC architecture, they are always equal to

each other. Moreover, since the read and write are symmetric

operations, the only modification in the implementation would

be to replace the MUXes with pass transistors.

In order to guarantee the proper operation of the on-chip

caches, we assume all the main SRAM structures in the ZC

architecture (i.e., main cache, spare cache, tag array, and fault

map) would be affected by the process variation. In our design,

the main and spare caches are the major contributors to the

ZC area and potential failures in these structures are directly

handled by our scheme. In order to protect the fault map

and tag array, we employ a process variation tolerant 8T

SRAM cell which is more area efficient than simple transistor

sizing [12], [11], [40]. However, it should be noted that the

8T cell comes with around 36% area overhead and is not cost

effective for protecting the entire cache (Section 7).

3.2 Hard-Fault Detection

In this work, we use ZC to tackle process variation as well

as wearout induced failures. Here, we separately discuss the

mechanisms required to detect these two type of hard-faults.

First, we focus on the detection process that is needed to

detect process variation induced failures. Since these hard-

faults are present at manufacturing time, the standard manu-

facturing testing process can be employed. In order to test

on-chip caches, normally, a combination of automatic test

pattern generation (ATPG) and the BIST-based testing is used

to generate the test vectors, apply them, and produce the

compact signature from the test results. Different versions of

the MARCH test, introduced by the research community and
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industry, are the most common type of test patterns for testing

memory structures and are widely used for testing SRAM

structures against stuck-at and bridging faults.

However, wearout induced failures manifest during the

lifetime of the system and needs special treatment. Two type

of approaches have been proposed for this purpose. The

conventional approach is periodic testing in which the system

periodically suspends its normal operation and allows the

BIST module to test the on-chip caches. In order to guarantee

the correct operation of the system, the architectural or mi-

croarchitectural state of the system needs to be checkpointed

right after each testing interval. Moreover, to reduce the fault

detection latency and this checkpointing cost, mostly in terms

of main memory or cache usage, this type of testing needs

to be done frequently. The other alternative is the continuous

testing which is the subject of many current research works.

In this type of testing, as soon as a faulty cell gets used,

the detection mechanism informs the system of the location

of the failure. Continuous testing can have many forms. One

of the simplest is error detection codes which are widely

used in memory structures. Another well-known proposal is

the redundant execution that needs to continuously check the

consistency among multiple copies of the same data. Another

means for continuous detection is through sensors that can

estimate the amount of device level wearout.

3.3 ZC Configuration

Proper configuration of the ZC is crucial for achieving higher

utilization of the spare elements. The first step toward this

is to determine the input/output mapping for the BNs. In

other words, logically group together the cache lines that

share a single spare line. We model this as a graph coloring

problem that can be solved during the manufacturing test time.

The solution to the coloring problem provides the required

BN configuration information which is saved in the network

configuration storage. On the first boot up of the machine,

the BIST module takes advantage of the already configured

BNs to find the faulty SRAM cells. The fault map array is

then populated by the BIST module based on the location of

the faulty cells in the main/spare caches. In order to achieve

an effective line swapping capability in ZC architecture, two

major algorithmic problems need to be addressed here: 1)

Effective group formation, 2) Benes network configuration.

3.3.1 Effective Group Formation

The problem of determining the logical groups that share a

single spare line in the ZC architecture is modeled as a graph

coloring problem. Figure 5 is an example that illustrates the

process of mapping the defects in the main/spare cache to a

graph. In the cache arrays of Figure 5, each black box stands

for a faulty cell. An 8-line cache is divided into 4 logical

groups and a spare line is assigned to each logical group. For

example, lines 1 and 2 in the main cache form a logical group

that utilizes line ‘a’ in the spare cache. Two local BNs are

required to do the proper shuffling. The first (second) lines

from different logical groups can swap their positions using

the corresponding local BN (e.g., lines 1, 3, 5, and 7 can swap

their positions).

The graph on the right hand side of the figure is constructed

based on the defect pattern in the main/spare caches. Each

node in this graph represents a line in the main/spare cache.

Whereas, the edges represent a conflict between a pair of

lines, i.e., the two nodes connected by an edge represent

lines that cannot be in the same logical group. A graph

coloring algorithm can now be applied to this graph to find

a solution such that neighboring nodes are not assigned the

same color. Thus, after coloring, nodes with the same color

are guaranteed to have no edges between them implying that

the corresponding cache lines have no conflicts between them.

Cache lines with the same color thereby form a logical group.

The graph edges that represent conflicts between the lines can

be broadly divided into two categories:
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1. Intrinsic Edges: Each of the lines in the spare cache is

dedicated to a single logical group in the main cache. This

implies that spare lines cannot be in the same logical group.

As a result, 4 nodes (a, b, c, d) construct a complete sub-

graph (Figure 5). Moreover, the structure of the BN forces the

lines connected to a local BN into different logical groups. For

example, lines 1, 3, 5, and 7 can not be in the same group.

Consequently, these 4 word-lines also form a complete sub-

graph.

2. Defect Edges: The defect pattern in the main/spare

cache introduces other edges in this graph. These defect edges

connect the pair of lines that have at least one conflict (for the

same data chunk). For instance, there is a defect edge between

the nodes 3 and c, because both have their second data chunks

faulty.

A graph coloring problem is solvable for a graph G and an

integer K ≥ 0, if the nodes of G can be colored with K colors
such that no edge exists between the same colored nodes. For

our problem instance, we want to show that if there are h

logical groups in the cache, and the nodes can be colored with

at most h colors, then there would be a feasible configuration

for the BNs such that the ZC works properly. But since there

is always a complete sub-graph in the problem graph with h

nodes (due to the intrinsic edges), the chromatic number is at

least h. On the other hand, our problem constraint dictates that

we can use at most h colors for the graph coloring problem.

Hence, the graph coloring problem for the ZC configuration

should have a solution with exactly h colors. A valid coloring

assignment indicates no collision between the lines within each

logical group and replacement of the defective data chunks can

be properly handled.

Graph coloring is widely recognized as NP-complete. Thus,

for solving it, we use an approximate algorithm called Incom-

plete Backtracking Sequential Coloring (IBSC) [20]. IBSC is

a heavily optimized version of the full backtracking solution.

It restricts the branching factor on each level to expedite the

process of finding the approximate chromatic number. On an

average, IBSC only increases the chromatic number of the

graph by 5.2%, which is considerably better than the theoret-

ical upper bound that we used for the analysis in Section 4.

The complexity of the IBSC algorithm is O(|V |4) and the
actual runtime is discussed in the next section. Furthermore,

this algorithm can easily be converted to the exact solution

by eliminating the branching heuristic. It is especially useful

in the case of small graphs or when more computational

power/time can be devoted to the solver.

The graph coloring solution determines the assignment of

lines to logical groups. All the lines in the main/spare cache

with the same color form a single logical group. For example,

all the lines with the orange color are bound to the orange spare

row using the corresponding local BNs. Figure 5 illustrates a

valid coloring assignment. With this coloring assignment in

place, the logical groups formation is complete for the main

cache. The next step is to solve the BN configuration problem

in order to make the cache functional.

3.3.2 Benes Network Configuration

The BN is non-blocking and also allows any permutation of

the inputs to be mapped to the outputs. In Figure 6, the left

cache structure shows the physical cache layout with a solution

for the graph coloring problem. As described, the color of

each line determines the logical group to which the line is

assigned. As a result, the position of each particular line after

the line swapping is apparent. For instance, in the Figure 6,

the last cache row has a green color which corresponds to the

first row of the spare cache. This denotes that the last cache

row should be mapped to the second row of the first logical

group. The line ordering for the virtual cache layout on the
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right hand side can be obtained from the physical layout by

employing two 3-layer deep local BNs. The BNs have to be

properly configured, by determining the select signals for the

MUXes within the BN, to achieve this re-ordering. Having

the desirable permutation between the inputs/outputs of the

BNs, we employ the recursive method described in [43] to

configure the network. Since an n-input BN is constructed

from two identical n
2
-input sub-networks, the configuration can

be computed recursively in O(n2).

4 DESIGN SPACE EXPLORATION

The process of finding suitable design points for L1/L2 ZCs

involves fixing the architectural parameters. The high level

architectural parameters used for this exploration are listed in

Table 1. In addition, there are three main parameters specific

to the ZC design: a) size of the spare cache, b) depth of the

BN, and c) the MUXing granularity for the redundant data

chunks. In this section, we sweep a wide range of values

for these parameters and study the overhead of each design

point. The number of spare cache lines was taken from the set

{2i | i ∈ {0, 1, ..., 7}}. Note that the length of the word-lines
is the same for the main and spare caches. The depth of the

BN is selected from the set {1, 3, 5, ..., 19} and the MUXing
granularity is selected from the set {2i | i ∈ {0, 1, ..., 10}} bits.
In total, considering both the L1 and L2 caches, there are 1760

points in the design space. In order to prune this design space,

a number of practical design constraints were considered.

For instance, designs with more than 128 spare lines were

not studied due to their significantly high area/power/delay

overhead. Detailed discussions of these practical constraints

and their impact on the design space follows. Finally, we pick

suitable configurations for L1/L2 ZCs.

1) Graph Coloring Solver Time: A deeper BN can provide

a wider range of cache line swapping, thereby improving ZC

defect tolerance. However, a deeper network also increases

the complexity of graph coloring and BN configuration. Out

of these two, the runtime of the graph coloring problem is

by far the dominating factor. Figure 7 depicts the relationship

between the size of the graph-coloring problem and the time

required to solve it using the IBSC algorithm (Section 3.3).

TABLE 1
The target system configuration

Parameters Value

Frequency 4 GHz

L1 Caches 64KB data and 64KB instruction, 2-way, 64B

word-lines, 2 cycles hit latency, 32B block size

L2 Cache 2 banks 2MB Unified, 16-way, 1KB word-lines

12 cycles hit latency, 128B block size

Registers 128 integer, 128 floating point

ROB (re-ordering buffer) 128 entries

LSQ (load/store queue) 64 entries

Instruction fetch buffer 32 instructions

Issue width 4

FU (functional unit) 4 int ALU, 1 int mult/div, 2 memory system ports

FPU (floating point unit) 4 FP ALU, 1 FP mult/div

Main memory 250 cycle latency, 16 bytes with 10-cycle latency

Branch predictor combined (bimodal and 2-level)

BHT (branch history table) 4096 entries

RAS (return address stack) 32 entries

BTB (branch target buffer) 512 entries, 8-way associative
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Fig. 7. The run-time of the IBSC graph coloring solver
in ms for different edge densities and number of nodes

in the graph. In this figure, p is the edge density which is

defined as the probability of having an edge between an
arbitrary pair of nodes in a random graph G(n,p).

We ran the solver on a single core Pentium-4 processor with

1GB of memory capacity and 2GHz clock rate. The Y-axis in

this plot is logarithmic. It demonstrates the fast growth in the

runtime of the solver with the increase in the problem size.

The total manufacturing test time for a high-end processor

(considering the functional, structural, wafer, and packaging

tests) is around a few minutes [39]. Using this as a reference,

we limit the graph solver time to use a maximum of 10 seconds

for all four on-chip cache structures (L1-D, L1-I and two banks

of L2). For the case when the cache has 1 spare word-line for
every k word-lines and the depth of the BN is 2b − 1, the
total number of nodes in the graph coloring problem would

be (k + 1)2b. According to Figure 7 and based on our solver

time budget, ZCs can use BNs that are up to 9 levels deep

and can connect 32 logical groups together. For instance, if

each logical group consists of eight word-lines, there would

be 32 × (8 + 1) = 288 nodes in the graph coloring problem.

There is a less than 4% chance that the solver does not

find a feasible coloring assignment due to limitations on the

time budget or the inherent complexity of the collision pattern

(Section 6). Using a deeper BN, longer time budget for the

solver, finer granularity of MUXing, or a larger spare cache

can further reduce this small chance. Nevertheless, if such a

situation does arise, we can either resize the cache or simply

reject it. Block/way disabling techniques [30] can also be

applied at the position of the faulty cell to preserve correct

functionality. Note that the scenarios where ZCs need to resort

to such methods are very rare.

2) Probability of Operation : The probability of operation

(Pop) is a definitive metric for a reliable system. We calculate

the probability that a specific ZC architecture can properly

operate for a given PF and use the results to further prune our

design space. The graph, which was generated in Section 3.3,

represents an instance of a defective cache. For the sake of

this study, defective caches are modeled as random graphs

G(n,p) since SRAM cell defects occur as random events. These

random defects are due to the major contribution of the random

dopant fluctuation to the process variation [4]. Here, n is the
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Fig. 8. Pop of L2 ZC for different PF while fixing two parameters and allowing the third one to vary.

number of nodes and p is the probability of having an edge

between an arbitrary pair of nodes.

The next step is to estimate the graph coloring solution

for these graphs. Calculating the average upper bound of the

chromatic number for a random graph is a challenging problem

in graph theory [7]. We use two different proposed upper

bounds to evaluate the Pop of ZCs for a given number of

failures. The same set of input conditions are required for both

of these upper bounds, which were derived by Achlioptas [1],

[2] and Bollobas [9]. The proposed upper bound by Bollobas

(B) works better for smaller values of p and the Achlipotas

bound (A) is mostly applicable for the larger values of p. Thus,

we used the weighted average of these two bounds based on

the p value (e.g., pA + (1 − p)B). Approximation algorithms
used to derive these upper bounds, have a significantly poorer

approximation factor compared to the IBSC algorithm used in

Section 3.3 [26], [41]. The edge probability factor p is defined

as the ratio of the expected number of edges in the graph to the

number of edges in Kn (a complete graph with n nodes). The

expected number of edges in a randomly constructed graph can

be calculated by accounting for the intrinsic and fault edges.

In other words, Eedges = EIntrinsic + EFault where:

EIntrinsic = m

(

u

2

)

+

(

u

2

)

and

EFault = m × u2 ×
[

1 − (1 − α1α2)
t
]

+

[(

u × m

2

)

− m

(

u

2

)]

×
[

1 − (1 − α2

2)
t
]

Here, m is the number of word-lines in each logical group,

u is the number of logical groups in a swapping set, b is

the MUXing granularity, t is the number of redundancy units

in each word-line, n is number of swapping sets, p1 is PF

for the main cache, and p2 is PF for the spare cache. Here,

αi = 1 − (1 − pi)
b shows the probability of having at least

one failure in b bits.

Figure 8 shows the Pop of an L2 ZC with 128 spare word-

lines, MUXing granularity of 8 bits, and 5 levels of swapping.

In each of the sub-figures, two of the parameters are fixed and

the third one gets the values from the original sweeping set.

Notice that in Figure 8(a), adding the first few levels of line

swapping significantly increases the robustness of the cache,

but beyond 3 levels, adding more levels has a diminishing

return. Since the weighted average of the two bounds is not

an integer number, we employed a semi-sigmoid function,

which is a sigmoid function fitted to the shifted step function

(Number of Logical Groups + 0.5), for mapping the calculated

chromatic number to Pop. Using this semi-sigmoid function,

if the calculated chromatic number is smaller than the number

of available logical groups in the swapping set, the graph is

colorable with a probability close to one and if the derived

chromatic number is one unit larger than the number of logical

groups, the probability would be close to 0. As shown in [3],

PF in 45nm can be as high as 10−3. Based on this fact, we pick

the design points from our design space that have Pop > 90%
for PF = 10−3.

3) Area and Power Overheads: Based on the limiting

factors that we have proposed, the size of the design space

shrinks from the 1760 starting points down to 103 points.

The next factor for eliminating the points is a one-by-one

comparison. Given a design point (L1, M1, D1) with L1

spare word-lines, MUXing granularity of M1, and a D1 deep

BN and another design point (L2, M2, D2), we can exclude
the first point from the design space if it is inferior in all

dimensions:

L1 ≥ L2 , M1 ≤ M2 , D1 ≥ D2

This is equivalent to removing dominated points in the Pareto

space with dimensions L1, M1, D1. This step reduces the

design space to 11 points for L1 and 8 points for L2.

To evaluate our designs, we used CACTI 6.0 [28] for evalu-

ating the area, leakage power, and the dynamic energy for the

SRAM structures. Furthermore, we created structural Verilog

models for the non-SRAM structures which are introduced by

ZC (e.g., MUXing level and BNs). Synopsys Design Compiler

was employed to evaluate the area and delay of these structures

while Synopsys Power Compiler was used for evaluating the

dynamic and static power. All designs are evaluated in 45nm.

Figure 9 shows the area, leakage power, and dynamic energy

overhead of the selected points in the design space. For

instance, L1-32-8-3 stands for an L1 design point with 32

redundant rows, MUXing granularity of 8 bits, and BNs of

depth 3. It is notable that increasing the size of the spare cache

does not always lead to an increase in the area of the L2 ZC

because the fault map size is reduced. However, due to the

longer L2 word-line, a finer MUXing resolution is required

which results in a relatively larger fault map array for L2
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Fig. 9. Area, power, and energy overhead of the potential L1/L2 ZCs which are stated in percentage.

compared to L1. The dynamic energy overhead for the L1

ZC was mostly higher compared to the L2 ZC. There are

two reason behind this: 1) The L1 cache accesses the fault

map/spare cache in parallel to the main cache and 2) The L1

cache reads the entire set for every access whereas the L2

cache is able to read just the right cache block because the

tag and data are accessed sequentially.

4) Cache Access Latency: The increase in the BN depth

also has a direct impact on the cache access time. Since

on-chip caches are essential for the performance of modern

processors, we assume no slack is available on the access

time of the caches. Therefore, any minor modification in the

base caches results in at least one extra cycle access penalty.

Nonetheless, in the case that considerable slack is available,

a design with narrow BN can be leveraged for avoiding any

additional cycle latency. In our design, the MUXing level and

BN are on the critical path of cache accesses. Based on the

timing analysis of our design, in Figure 9, design points with

BN depth less than or equal to 7 need one extra cycle latency

for the cache access while others (i.e., BN depth = 9) require 2

extra cycles. In Section 7, we evaluate the performance drop-

off due to the additional access latency of the L1/L2 ZCs.

Considering the design points in Figure 9, we select L1-32-

16-5 as the L1 ZC which imposes 16% area, 9% static power,

and 19% dynamic energy overhead over the baseline L1 cache.

For the L2 ZC, L2-64-4-7 is selected which imposes 8% area,

9% static power, and 16% dynamic energy overhead compared

to the baseline L2 cache. These two selected configurations

represent a good trade-off between all the design objectives.

However, based on a particular optimization criteria, another

design point might work better. For instance, if static power

is the main concern, the optimal design point for L1 switches

to L1-32-8-3.

5 WEAROUT TOLERANCE

In the last section, we fixed the architectural parameters of

our L1 and L2 ZCs. Here, we evaluate the potential benefits

of our proposed cache architecture when addressing wearout-

induced failures. Wearout, in contrast to process variation, is a

gradual process. Supposing that the lifetime of a cache can be

extended to 10 years and it will experience twenty thousand

cell failures during this period, the mean time between failure

(MTBF) would be 43.8 hours – worst case scenario. Given

the fact that the required time for solving the graph coloring

and BN configuration problems is only several seconds, our

method can be easily applied to reconfigure the cache after

detection of each failure. As another notable point, on-chip

flash could also be replaced with latches in this case since the

configuration problems would not need to be solved during

the manufacturing test time. Nonetheless, even if on-chip

flash was deployed, the write-cycle limitations of a flash cell

(∼100K) is still higher than the maximum number of required
reconfigurations. As a result, it allows us to reconfigure the

BN more than 16000 times – that is the average upper-bound

for the number of tolerable faults based on the L1/L2 ZCs

selected in Section 4. We measured the area/power overhead

of replacing on-chip flash with latches. Although negligible for

L2 cache, the area overhead of the BN configuration storage

for L1 is still noticeable and increases the overhead of our

selected L1 ZC from 16% to 18%. Moreover, in this scenario,

the configuration information could be stored in the hard-

disk after it is obtained. When a system is powered up this

information is retrieved from the hard-disk and moved to the

network configuration storage.

Upon the detection of a new fault, since that is the only

outstanding faulty cell, block/way [30] disabling techniques

can be applied based on the position of the faulty cell to pre-
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Fig. 10. Results of Monte Carlo lifetime simulation which show the probability of operation for L1/L2 caches protected

by different mechanisms. In addition, the shaded region shows the expected number of failures over the life-time.

serve correct functionality of the underlying cache. Removing

this faulty cell from the functional space of the cache enables

ZC to use the rest of the available cache space to solve the

configuration problems. A simple cache disabling mechanism

is to only use the half part of the cache which does not

contain the faulty cell and disable the other half. After ZC

reconfiguration is performed, the whole cache space would be

functional.

A Monte Carlo engine is employed to study the Pop for

ZCs over their life-time. In each iteration of the Monte Carlo

simulation, time to failure (TTF) for each SRAM cell in vari-

ous array structures is calculated using a Weibull distribution

with a nominal mean of 100 years – as the expected lifetime

of an individual cell [36]. Hundreds of such iterations are

run during the entire simulation. The simulation results are

shown in Figure 10 for the L1/L2 ZCs selected in Section 4

and several other conventional protection mechanisms. In this

figure, SECDED is employed for implementing 8-bit and 64-

bit ECCs.

One advantage of ZC over the conventional protection

mechanisms is its ability to equalize the lifetimes of L1 and

L2 caches. This implies the proper relative provisioning of

the caches against hard faults. As a result, ZCs maximize the

utilization of the entire provisioned spare elements. The shaded

region in these figures depicts the cumulative distribution

function (CDF) of the combined MTTF Weibull distributions

for the main/spare caches. For instance, in Figure 10(a),

there would be ∼400 faulty cells in the L1 related SRAM
structures after 6 years. As can be seen, the selected ZC

architectures prolong the functional lifetime of the caches up

to 10 years. Furthermore, Pop has a graceful degradation for

the ECC methods compared to the sharp drop-off for ZC and

row/column redundancy. Consequently, there is a significant

chance for the ECC protected cache to break early in the life-

time. This makes them an inappropriate choice even when a

long life is not expected. Two bit correction ECC (DECTED),

on the other hand, needs 14 extra bits for each 64-bit of

data which is ∼22% overhead only for keeping the error
correction bits. In terms of the energy overhead imposed by

the encoder/decoder per access, as shown in [18], around 50%

should be expected.

6 YIELD ANALYSIS

In this section, we go through the process of manufacturing

yield calculation for a population of ZC enabled chips. A

population of 1000 chips was generated from the selected

ZC configurations for this purpose. We account for both,

inter-die (die to die (D2D)) and intra-die (within die (WID)),

components of the process variation. VARIUS [33] is lever-

aged to model systematic, D2D, and module level intra-

die variations. Each chip is considered as a composition of

8 SRAM structures: L1-Data, L1-Inst, two L2 banks, and

the corresponding spare caches. The
δV

th

Vth

is set to 12.5%

which is the projected Systematic + D2D variation for 45nm

technology [4].

Having all the high level variation models in place, a two-

step approach is used to derive the number of faulty cells

in each SRAM array for an arbitrary chip in the population:

1) We take the intra-module variation model from [4] with

δVth
= 30mV . Using this model, the nominal value of

PF across each module is derived from the data provided

in [27] based on the average shift in Vth for that module. 2)

The clustering effect, which determines the degree of defect

dispersal in the cache structures, is also modeled. Due to the

high density of SRAM structures, the clustering effect has a

significant impact on the arrangement of the defects in the

corresponding SRAM arrays. We account for it by employing

the large-area clustering negative binomial model [22] which

is based on the well-known negative binomial yield formula.

Figure 11 illustrates the distributions of the 1000 generated

chips based on the number of faulty SRAM cells in their L2

caches. For instance, as Figure 11 shows, around 40 of the

chips (∼4%) have 4185 to 5021 faulty SRAM cells in their
L2 cache. These derived distributions are consistent with the

ones in [3]. It is interesting to note that, in the case with no

protection scheme for the cache, the yield of a 2MB L2 in

45nm technology could be as low as 33%. We conducted the
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Fig. 11. Distribution of generated chips by the number
of faulty SRAM cells in their L2 caches. A population

of 1000 chips is generated by considering the large-

area clustering effect, intra-die, inter-die, systematic, and
parametric variations.

same set of experiments for our 64KB L1 cache. Likewise, the

yield of the baseline L1 cache with no protection mechanism

can be as low as 36%.

Manufacturing yield is defined as the fraction of fully

functional chips to the total number of manufactured ones.

This value can be interpreted as the probability of operation

for a particular chip after the manufacturing process (Ychip).

We define CW and Ci as events that express the proper

functionality of a manufactured chip and the existence of i

faulty cells in a chip, respectively. In the following equations,

Ntot is the total number of manufactured chips, Ni is the

number of the chips with i faulty cells, and Ncells is the total

number of SRAM cells. Based on the rules of probability:

Pr(CW ) =

Ncells
∑

i=0

Pr(CW ∩ Ci)

=

Ncells
∑

i=0

Pr(CW |Ci) × Pr(Ci)

=
1

Ntot

Ncells
∑

i=0

Pr(CW |Ci) × Ni

Since we consider an independence between the PF of L1

and L2 caches, as shown in [17], the yield of a chip can be

written as:

Y ieldchip =
∏

i∈chip modules

Y ieldi (1)

As a result, Pr(CW ) can be written for each cache
separately. Equation 1 is used to calculate the chip yield in

each case. Here, Pr(CW |Ci) is the probability of having a
functional cache given that it contains i faulty cells and, using

probability chain rule, can be written as:

Pr(T, FM, MC, SC|Ti1 , FMi2 , MCi3 , SCi4) = Pr(T |Ti1)

×Pr(FM |FMi2) × Pr(MC, SC|T, FM, MCi3 , SCi4)

where i1 + i2 + i3 + i4 = i. In this equation, T/FM/MC/SC

are the events that the tag/fault map/main cache/spare cache
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Fig. 12. Area overhead of the different protection mech-

anisms for tolerating a given PF . In this figure, Row-
Redun stands for the row redundancy protection scheme.

ECC and ECC-2 are the 1-bit and 2-bit error correction

schemes, respectively.

arrays work properly. Similar to the previous equations, Ti1

is the event of having i1 faulty cells in the tag array. For the

fault map and tag array, we assume 8T cells guarantee the

fault-free operation of these relatively small structures (i.e.,

Pr(FM |FMi2) = 1 and Pr(T |Ti1) = 1). Since events F and
T are always true, we assumed independence between these

two events in our derivation. Finally, calculation of the last

term is discussed in Section 4.

Given the population of 1000 (Ntot) generated chips, Ni

for each of the cache structures is known using the mentioned

modeling. Yields of the L1 cache and each L2 bank are

calculated through the described methodology. The derived

yield for the L1 ZC and each bank of L2 ZC are 98.8% and

98.2%, respectively. This implies 96.4% yield for the L2 ZC.

7 COMPARISON AND DISCUSSION

To demonstrate the efficiency of our design, we compare

ZC with conventional and recently proposed methods in this

section. As representatives for the ZC architecture, we pick the

L1-32-16-5 configuration as the L1 ZC (16% area overhead

and 99% yield) and L2-64-4-7 configuration as the L2 ZC (8%

area overhead and 96% yield).

7.1 Comparison with Conventional Techniques

Figure 12 demonstrates the amount of area overhead required

to protect the L1/L2 caches using different protection schemes.

For a given probability of failure, we started with the least pos-

sible overhead for every mechanism and gradually increased

the area overhead until the Pop reaches 90%. An infinity

symbol (∞) on the top of a bar indicates that achieving
Pop > 90% is not possible for the corresponding protection
mechanism. This figure only accounts for the amount of

redundancy required by SECDED (ECC), DECTED (ECC-2),

and row-redundancy methods while considering the complete

overheads for ZC modifications. In other words, hardware
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TABLE 2
Comparison with recently proposed cache protection schemes

L1 Cache L2 Cache
Protection Area Disabled Power Area Disabled Power Norm. IPC
scheme over. (%) (%) over. (%) over. (%) (%) over. (%) (SPEC-2K)

Wilkerson [42] 15 50 61 7 25 27 0.89

8T [12], [11], [40] 36 0 16 36 0 22 1.0

ZerehCache 16 0 15 8 0 12 0.97

overhead for encoder/decoder is not considered for ECC/ECC-

2. Similarly, the decoder augmentation is not included in the

area overhead of the row-redundancy protection method.

Row-redundancy can protect any cache with inefficient

usage of the redundant elements. Nevertheless, as it is shown

in [16], row-redundancy with more than 10 extra rows is not

efficient due to the considerable increase in the row decoder

latency. As shown in this figure, the area overhead of ZC

is significantly smaller compared to even the 2 bit error

correction scheme (ECC-2) which has a significant power

and area overhead for decoding/encoding. Going beyond 2

bit correction using ECC codes is extremely expensive in

terms of the code storage area, decoding/encoding power and

delay [19]. On the other hand, single bit correction ECC cannot

even protect the cache structures with PF > 10−4. For L2,

the difference between ZC and other protection mechanisms

is even more noticeable because of the longer word-line and

larger cache size that challenge the other protection mecha-

nisms. In terms of the energy consumption, ECC and ECC-2

impose around 25% and 50% overheads, respectively [19].

Whereas, both of the selected L1/L2 ZCs have less than 20%

energy overhead (Section 4). Hence, it should be clear that the

conventional soft-error cache protection schemes cannot deal

with the high degree of process-variation in deep nanometer

technologies.

7.2 Comparison with Recently Proposed Tech-

niques

More recent proposals target high defect density scenarios that

are challenging if not impossible for conventional schemes.

Here, we compare ZC with three of these recently proposed

cache reliability schemes that target failure rates close to ours.

For the purpose of comparison, we measure the performance

drop-off for a system (Table 1) equipped with the selected

L1/L2 ZCs in Section 4. A performance loss is expected due to

the extra cycle of latency added to both L1 and L2 ZC designs.

We used the SimpleScalar [6] out-of-order simulator along

with the SPEC-FP-2000 (171.swim, 172.mgrid, 173.applu,

177.mesa, 179.art, 183.equake, 188.ammp) and the SPEC-

INT-2000 (164.gzip, 175.vpr, 176.gcc, 181.mcf, 197.parser,

255.vortex, 256.bzip2) benchmarks. On average, a 3.2% per-

formance drop-off is observed, with maximum of 6.9% for

197.parser and minimum of 0.1% for 176.gcc.

Agarwal [4] proposed a fault-tolerant direct-mapped L1

cache that uses cache block remapping. This method maps

faulty blocks to the neighboring functional blocks in the same

word-line, which forces the L1 to access L2 for getting the

values of these blocks. This method is only applicable to

direct-mapped caches and cannot be efficiently applied to L2.

As shown in Figure 1, around 64% of the L2 cache blocks are

faulty and the value of these blocks must be retrieved from

the main memory. For our system configuration (Table 1), this

results in an effective access time of 164 cycles for L2 which

hurts the performance drastically. Nevertheless, considering

only L1, they achieved 94% yield compared to 99% yield

for our scheme.

Wilkerson et. al [42] proposed two cache protection

schemes that use several layers of shifting to merge multiple

defective lines into a single functional line. Their method

was originally designed to reduce the operational voltage by

tolerating unwanted SRAM failures. Alternatively, in order to

improve the stability of an SRAM cell, Chang et. al [11]

proposed an 8T SRAM cell, which has been studied and

compared with the other alternatives in a more detailed manner

by Chen [12] and Verma [40]. These works show that 8T is

more effective than simple transistor up-sizing for improving

the stability of a bit-cell. An 8T cell is more robust against

read upset failures compared to a conventional 6T cell due to

the isolation of the read and write paths [12].

Table 2 summarizes the comparison with these two schemes.

As can be seen, Wilkerson’s method has a notably higher

performance drop-off than ZC. This behavior is due to two

reasons: three additional cycles of latency for L2 accesses

(compared to 1 cycle for ZC); and, the L1 and L2 capacities

are reduced by 50% and 25%, respectively. Wilkerson did not

report power overheads, thus we do our best to provide an

estimate in Table 2. We ignore overhead due to ECC correction

of repair patterns and the shifting layers along with their

corresponding decoders. Wilkerson’s method has a significant

power overhead because of parallel access to both banks, and

there is a high leakage power for the ST cells used for the

tag array. Lastly, the area overhead of Wilkerson’s method is

modest, with ZC slightly higher. It should be noted that the

area of L2 is around 41 times larger than L1. Consequently,

area overhead of a protection scheme for the chip is mostly

determined by the area overhead for the L2 cache. The 8T

cell provides superior performance to either scheme, but at a

cost of significant area overhead. The power overhead of the

8T L2 cache is also notably higher than the ZC design.

7.3 Significance

As we mentioned earlier, large on-chip caches are the major

bottlenecks for enhancing process variation tolerance. Since

the end of the free ride from clock scaling has already arrived,

semiconductor companies need to use extremely conservative

guard-bands for supply voltage and clock frequency to avoid
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significant manufacturing yield loss. This has a major impact

on the power consumption and operational frequency of mod-

ern microprocessors. In order to mitigate these effects, current

microprocessors have already been equipped with coarse-

grained redundancy schemes to protect the caches to the first

order. An article by Hampson [15], reported that about 40%

yield loss was observed when all forms of redundancy were

removed from an Intel die. This was primarily due to the

absence of redundancy from on-chip caches. In summary, ZC

can be leveraged to allow full functionality while imposing

overheads competitive with the best known alternatives.

8 CONCLUSION

Nanoscale CMOS technologies bring demanding reliability

challenges to designers due to high degrees of process varia-

tion. In particular, SRAM structures are highly vulnerable to

parametric alteration, thus the design of large on-chip caches

that are both reliable and efficient is an important problem. In

this work, we present ZerehCache, a flexible and dynamically

reconfigurable cache architecture that efficiently protects on-

chip caches in high failure rate situations. Our solution takes

advantage of static multiplexing of the rows along with the

added capability of dynamic word-line swapping to maximize

the utilization of spare elements. Cache fault patterns are

mapped to a graph coloring problem to configure the ZC

architecture. We explored a large design space and came up

with two suitable architecture configurations for L1/L2 ZCs

such that they minimize the area and power overheads while

achieving a desired level of robustness. An L1 ZC with 16%

and an L2 ZC with 8% area overhead achieve yields of 99%

and 96%, respectively. Finally, we compared our scheme with

several conventional and state-of-the-art methods to illustrate

its efficiency and effectiveness.
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