
Parade: A Versatile Parallel Architecture for
Accelerating Pulse Train Clustering

Amin Ansari, Dan Zhang, and Scott Mahlke
Computer Science and Engineering Department, University of Michigan – Ann Arbor

{ansary, danz, mahlke}@umich.edu

Abstract — In this paper, we present Parade, a novel and flexible
parallel architecture for the deinterleaving of combined pulse-
trains. This is a commonly performed task in various areas of
signal processing applications, such as satellite communication.
Most of these applications require the identification of the main
characteristics of pulse-trains such as frequency. Previously
suggested techniques for solving the clustering problem are
restricted with several limiting assumptions. In contrast, Parade,
based off a parallelized and improved version of the sequential
search algorithm, solves the deinterleaving problem significantly
faster and in a more general case by considering all conditions
such as jitter, dropped pulses, arbitrary start and end points. Our
scheme employs several parameters, such as the number of
deinterleaving modules and the number of memory elements, in
order to achieve a desirable combination of accuracy, speed,
memory usage and area. Using an 8-way parallel architecture,
Parade improves the PRI accuracy by 27% compared to the non-
parallel baseline architecture. Our design, when synthesized on
90nm technology node, performs 940x faster compared to a
software-based histogram technique.

I. INTRODUCTION
Pulse-train deinterleaving deals with the separation of

multiple interleaved repetitive sequences into their
components. Although most famous for being a vital
component in electronic support measures (ESM) processing,
pulse-train deinterleaving also has applications in other
domains. For example, satellite clusters need to deinterleave
the pulses that it receives from different terrestrial emitters
[17]. Also, when several nodes enter an asynchronous ad-hoc
network and try to communicate with one point, we will
encounter a similar problem [18]. In addition, one of the most
important applications of pulse-train deinterleavers is for
finding the physical location of the different sources according
to the interleaved pattern of the received time of arrivals
(TOAs) [1]. This latter has a wide range of applications in
various wireless communications and sensor networks.

Figure 1 shows the outline of an ESM system utilizing a
pulse-train deinterleaver, which consists of an antenna for
receiving the pulses and other corresponding processing
elements [12]. Here, the feature extractor determines the main
characteristics of the incoming pulses such as degree of arrival
(DOA), TOA, and pulse width (PW). In the next step, a subset
of this information is used by the deinterleaver to cluster the
combined pulse-trains. A few algorithms have been recently
proposed in order to efficiently split these combined pulse-
trains into distinct pulse sequences. The histogram method [2]
is one of those approaches, in which a histogram of TOA
differences with different orders are cumulatively formed and
then evaluated to determine the pulse-trains pulse repetition
interval (PRI). The sequence search algorithm [19] is a well-
recognized method for decomposing the pulse-trains. In this
approach, all of the possible PRIs are found based on the
samples. Then, each postulated PRI is matched against the
samples to determine whether or not it is a valid PRI. Another
proposed algorithm is an extension of the Kalman filter

approach to deinterleaving, using a modified version of the
signal model [3][16]. Matrix-based methods have recently
been proposed for PRI identification to utilize the inherent
parallelism of such methods [4]. Other techniques for solving
this problem are the Hough transform method [5], Monte-Carlo
method [6], AI knowledge-based agent design method [9],
Software-based improved histogram [11], Neural Network
[10][13][14][15], Multiple Masks operation, Hidden Markov
Model [7] and improved Fast Fourier Transform techniques
[8].

Out of these techniques, sequence search has several notable
advantages: 1) It is able to extract the most information
regarding to each pulse-train (e.g. TOAs of pulses and phase of
a pulse-train) 2) As it will be discussed later, sequence search
scheme can be efficiently parallelized. 3) It can also account
for the arbitrary start and end points of the pulse-trains. In
contrast, most other techniques are only able to find the PRI of
each pulse-train without accounting for the mentioned non-
idealities. However, the conventional sequence search does not
perform well in high-noise applications due to the large
number of dropped pulses and high jitter value. In addition,
sequence search can be extremely slow when it accounts for
high jitter values and arbitrary start and end points [19].

A. Contributions
As mentioned before, conventional sequence search faces

with several issues when operating in a non-ideal environment.
Consequently, in this work, we firstly modify the original
algorithm to allow more robust operation in the presence of
dropped pulses and high jitter values. These two problems
along with arbitrary start and end points are the main causes of
accuracy loss in most deinterleavers. Our improved sequence
search leverages a chancing algorithm to handle dropped
pulses and jitter-related issues. In order to tackle the arbitrary
start and end points issue, we parallelize our improved
sequence search algorithm. This parallelism allows us to
achieve higher accuracy while accelerating the clustering
process. Finally, our parallel pulse-train deinterleaver, Parade,
solves the problem in the most general case, by considering the
following: multiple consecutive dropped pulses, arbitrary
starting points for the pulse-train in the entire time frame,
arbitrary length for each pulse-train, arbitrary jitter value, and

Figure 1. Outline of an ESM system

Feature Extractor

Deinterleaver PRI-type Identification Classifier

Emitter (2) Emitter (n)

Antenna
DOA, TOA, and PW

...Emitter (1)

an arbitrary number of emitters in the environment.
The hierarchical design of the Parade’s architecture allows

easy changes to the architecture according to the type of the
problem which is addressed. As an example, a sensor network
mostly values low power and low area, while an ESM system
does not. To ensure flexibility of the design, various input
parameters control a combination of speed, accuracy, area, and
power consumption. We also provide analytical and
simulation-based analysis on power dissipation, area, and
performance of our proposed architecture.

II. BACKGROUND
In an environment with multiple pulse sequences travelling

through a common medium, sensor devices will capture the
pulses as an interleaved pulse-train. The goal of pulse-train
deinterleaving is to convert the resulting interleaved signal into
the original components. Pulse-train deinterleaving algorithms
use various parameters of the received sample pulses such as
TOA, DOA, pulse amplitude, pulse width, and carrier
frequency. These parameters are given in order to extract
associated pulse-trains from the sample. Pulse sequences are
characterized by PRI, which specifies the length between two
consecutive TOAs. PRI is the reciprocal of pulse repetition
frequency (PRF). Signals with different PRIs can be assumed
to be a unique characteristic of each emitter. Therefore, the
objective of most of the previously studied algorithms is to
extract the respective emitter pulses from the sample based on
their PRIs. Another important aspect of the samples is the jitter
due to inherent characteristics of the emitters, medium, and
environment. In fact, jitter can cause TOAs to deviate around a
nominal value which create difficulties for the deinterleaver to
extract the right sequence from the sample pulses.

III. CONVENTIONAL SEQUENCE SEARCH ALGORITHM
In a nutshell, the sequence search algorithm extracts

sequences of identical intervals from the sample, which can be
achieved by calculating all the TOA differences in the sample
at all phases, and then matching each postulated difference
with the sample (Figure 2). TOA values are sampled at the
positive edge of each pulse. For bringing out the signal
patterns, the sequence search algorithm needs sufficiently large
samples. Therefore, the sample of pulses consists of a sequence
of timing events.

When dealing with simple cases with low jitter value, this
algorithm is efficient and accurate. However, in dense
environments with measurement errors and missing pulses, the
original algorithm is not enough. In fact, the algorithm
frequently will incorrectly extract multiples of actual PRI

values, or discard a correct PRI assumption due to a missing
pulse. Due to these shortcomings, although sequence search is
able to extract the most information from the pulse-trains, it is
generally not very popular. Therefore, further modifications to
the algorithm are necessary to improve overall accuracy and
speed.

IV. PARADE’S PARALLEL DEINTERLEAVING ALGORITHM
In order to parallelize and improve the accuracy of the

conventional sequence search algorithm, we made several
major changes to the base-line version [19]. Our modified
algorithm searches the whole interleaved pulse-train from
several different starting points. These starting points have a
uniform distribution over the sampling interval. Thus, different
deinterleaver modules can work in parallel starting at these
locations in the pulse-train. Our second contribution to the base
algorithm is that we search for valid PRIs in both directions
when possible. This kind of forward and backward search for
finding a valid PRI will increase the accuracy because it will
test approximately two times more candidate PRIs when
searching for a valid PRI in a particular neighborhood. For
instance, in Figure 3, third pulse-train (with PRI3) can be
identified more accurately using the bidirectional search. The
jitter problem can be addressed by supposing slightly larger or
shorter PRIs below a certain threshold value are also
acceptable. In other words, our algorithm accepts some
reasonable error value in our candidate PRI when attempting
verification of the PRI.

However, in some situations, our algorithm may accidentally
remove signals that do not belong to the proposed PRI pulse-
train. Moreover, problems present in noisy environments, such
as dropped pulses, can cause errors in the final identification of
pulse-trains. In order to tackle this latter problem, we propose a
flexible and adaptive chancing algorithm.

A. The Necessity of Chancing
 In a non-ideal environment, jitter is present in the entire

pulse sequence. Thus, when eliminating a sequence of pulses
from the interleaved pulse-train, we should consider an interval
around each TOA in order to find the associated TOAs in the
distinct PRI sequence of each emitter. The presence of jitter in
our model can create problems especially when dealing with
high-density interleaved pulse-trains. Since the TOAs of
different emitters are close to each other in high-pulse-density
emitters, trying to eliminate the TOAs of emitter with PRIi may
lead to some erroneous efforts when removing the TOAs of
emitter with PRIj. Therefore, when removing the TOA
sequence of emitter with PRIj from the sample, we are faced
with some gaps in its sequence. The conventional sequential
search algorithm would stop upon reaching a gap where there
is no TOA to remove.

However, we employ a chancing state machine to avoid
halting upon reaching a gap in the PRI sequence associated
with each emitter. Instead, we test a few more consecutive

Figure 3. Demonstration of our sequence search algorithm

Time

PRI1 PRI2 PRI3

Starting Points of Search

Figure 2. Demonstration of the sequence search algorithm

Time

Confirmed PRI

Time

Done

a) First two unsuccessful iterations of the sequence search

b) Third iteration of the sequence search (successful)

TOAs in order to find out whether this gap shows an ending to
the TOA sequence.

B. The Chancing Algorithm
One of the possible chancing state diagrams is shown in

Figure 4. When extracting TOAs from the postulated PRI
sequence, we follow this state diagram. The general idea, in the
case of this example, is to assign 3 chances for successive
failures when finding TOAs. However, 1 or even 2 successive
gaps do not necessarily show the end of the sequence. Each
state in this diagram shows the number of chances left to have
gaps in the sequence; so, the initial state named 2 shows the
state in which we have 2 chances left for visiting gaps in the
sequence and thus not the reaching the end of the process. The
finish state E shows the state in which we have committed 3
successive failures in reaching TOAs, thus the extracting phase
is completed with the postulated PRI. The shown state diagram
is specially designed to prevent cases of finding multiples of
the real PRI. Depending on the density of the combined pulse-
trains, environmental noises, and jitter value, this state diagram
might change to allow more/less number of consecutive gaps
in each sequence. However, allowing large number of
consecutive dropped pulses results in significant runtime and
area penalties.

V. PARADE’S ARCHITECTURE
Our proposed architecture consists of several major stages, as

illustrated in Figure 5. In the first stage, the incoming signals
are received in real-time from the external source of pulses.
Depending on the current time frame, the timing module
inserts the received pulses into either the left or the right main
memory. The received pulses stored sequentially in the main
memory to their TOA. After the time frame is over, the timing
module sends a start signal to the distributor and starts to fill
the other main memory while other parts of the architecture
start to work with the first filled main memory. In the next
stage, the distributor divides the entire interleaved pulse-train
from the main memory between the memory modules Mem1 to
MemK. After all the memory modules have been filled, the
distributor sends a start signal to the controller, which
arbitrates multiple read requests to the same memory module.
Each main module sends memory read requests to its controller
and tries to identify candidate PRIs and verify them using the
deinterleaving algorithm discussed in the previous section. In
the next step, the minimum circuit stage compares all the
discovered PRIs and sends the smallest to the remover, which
will delete the corresponding pulses from the main memory.
The process repeats until either the time frame is up, or no
other pulse-trains can be extracted from the main memory.

A. Timing Module
The timing module is the top level module, and interacts

with two main memories. Upon receiving the input sample
from the external source of pulses and extracting its TOA by

measuring the times in which a leading edge happens in the
pulse-train, this module writes the result into one of the main
memory banks. When time frame (ts) is over, the distributor is
notified and begins processing the data contained in the filled
main memory bank. Meanwhile, the timing module fills the
other main memory bank. After another ts , the timing module
again switches to write into the first main memory bank and
notifies the distributor to work on the second main memory
bank, and this procedure continues repeatedly.

B. Distributor Module
The main task of the distributor is to divide the contents of

the current main memory chosen by the timing module
between memory modules Mem1, … , MemK. Afterwards, the
number of sampling intervals is broken down into K equal
intervals. We let memory Memi have the TOAs starting from
the start-time of the ith interval to the end-time of the last
interval in the pulse sequence. In other words, memory module
1 contains the entire TOA pulse sequence, while each
following memory module contains a smaller and smaller
subset of the pulse sequence, starting at some offset value and
continuing to the end of the pulse sequence. This asymmetry is
an area optimization that exploits the fact that each main
module starts its deinterleaving algorithm at a different
location in the pulse-train. Splitting the memory into K evenly-
sized components is not possible since this would fail to
discover pulse-trains with large PRIs.

C. Controllers
In the next stage, a controller module acts as an arbitrator

between each memory module and the L main deinterleaving
modules that connect to each memory module. Note that the
total execution time of the group of L main modules is not a
function of the reading order of them. Therefore, in the

Figure 5. Outline of the Parade’s architecture

distributor

switching signal

…
Mem 1 Mem 2 Mem K

controller

Mod
1

Mod
2

Mod
L

…

controller

Mod
(K-1)L +1

…

…

Mod
(K-1)L +2

Mod
KL

minimum minimumminimum… …

minimum minimum…

minimum

remover

Identified PRI

Main
memory

1 Timing
module

enableenable

external source of pulses

Main
memory

2

Figure 4. Chancing state diagram for allowing 2 consecutive

dropped pulses. Here, a “0” transition represents a gap.

2

1

1+

0

0+

E

1

1

1

1

0

0

0

0

1
0

controller module, we can simply use a priority encoder.

D. Main Modules
The main modules perform the work of finding PRIs within

the interleaved pulse-train sequence using the deinterleaving
algorithm described in Section IV. Each main module
postulates its candidate PRI based on the TOAs of the ith pulse
group to the end of a sampling sequence. After the main
modules finish running the deinterleaving algorithm, they
place the found PRI on its output line and inform the minimum
circuit that their output is valid. Each main module tries several
times different candidate PRIs and goes through the next
pulses to verify that PRI is actually exists in the interleaved
pulse-train.

It is possible to have a long interleaved pulse-train. When
such a case happens, it will take a long time for the main
module to go through the entire sequence to verify one PRI.
Thus, we select a sufficient threshold number S which
describes the minimum number of pulses found belonging to a
pulse-train such that the algorithm can consider the assumed
PRI to be correct. This number would be directly proportional
to the jitter and PRF. When one candidate pulse-train has a
large estimated jitter/PRF value, the main module will increase
the value of S to avoid identifying an incorrect PRI.

Each main module requires a considerable number of
memory accesses while performing its PRI calculations. First
of all, it sets up two pointers (P1 and P2) to two successive
TOAs in the memory (T1 and T2). The difference between P1
and P2 is used as the candidate PRI. After that, the main
module will try to verify that candidate PRI by going through
the whole interleaved pulse-train in the memory. Since TOAs
are stored in memory in a sequential manner, the module
simply walks P2 through memory, using another pointer P3 to
keep track of the last value of P2. At each stage, the main
module computes the difference between the TOA values with
T2 until it reaches a situation in which the difference becomes
equal to or greater than the candidate PRI. At this point, it will
compare the difference between P2 and P1 as well as P3 and P1.
The value closest to the candidate PRI is checked to see
whether it is acceptable according to the jitter and chancing
algorithm. If the candidate is acceptable, the module will
update P1 to the newly accepted TOA and will try to find
another acceptable pulse by going through the TOAs through
the memory in a similar fashion. On the other hand, if it would
not be acceptable because of the chancing problem or the error
would be greater than jitter value, it will try another candidate
PRI by calculating the difference between a new pair of T1 and
T2.

E. Remover
After the minimum circuit tree output becomes valid, the

final stage, the remover, is activated. The remover attempts to
remove the pulse-train with minimum PRI found by the
minimum circuit tree from all the main modules. After being
provided with a starting point and the PRI, the remover uses an
algorithm similar to the one described in Section IV to remove
all the pulses it finds in each memory module. After a pulse is
identified to be removed, the remover would invalidate the
pulse entry and shift the next pulse into the invalidated entry
such that the memory remains contiguous. This process is
repeated until all of the pulse-train sequences are extracted
from the sample.

VI. PARAMETERS OF THE ARCHITECTURE
Parade’s architecture provides different characteristics

depending on the required performance, accuracy, and also the
design constraints (e.g. chip area and power consumption).

A. Resources
As we have K memory modules each of which having L

main modules, the total number of modules is LK. Thus,
increasing the amount of memories and modules would lead to
considerably more area. Secondly, the size of the memory
depends directly on the parameter K.

B. Speed
Considering a group of main modules, the control circuit at

the upper part of the group controls access to the memory
modules for their respective main modules so that only one
memory access is done at each time. Moreover, the minimum
circuits at the end of each group should be supplied with valid
data in order to calculate the minimum of PRIs. We can
therefore improve the speed by minimizing the number of
memory induced stalls by the main modules.

C. Accuracy
To analyze the dependency of accuracy on its associated

parameters, we should note that extracting the pulse-train with
the lowest PRI would enable us to remove the largest number
of TOA entries. Therefore, deinterleaving process would be
easier and more reliable as we are left with a much lower pulse
density at the end of each removal step. In addition, since
sequence search is prone to removing multiples of the correct
PRI value, removing the minimum values first would prevent
the occurrence of this artifact. By splitting the sample length
into more intervals and letting the modules work on a much
smaller interval, each group of modules would more likely
declare the lowest PRI as their first try. As a result, having
more main modules increases the number of intervals to work
on and thus higher accuracy can be achieved.

VII. COMPLEXITY ANALYSIS
A. Space Analysis
We have K memory modules named Mem1, … , MemK. If the

amount of memory needed to store the entire TOA sequence is
M bytes, then the ith memory module from the left in Figure 5
would require (K – (i – 1)) × (M / K) bytes, as it only needs to
store the TOA sequence from the start time of the ith interval.
Therefore, the total amount of memory required is MT = 0.5 ×
(K + 1) × M.

Also, if we assume that we need ܰ௠ gates for a minimum
circuit, ܰ௠௢for a main module, and ௖ܰ for a controller module,
the total number of gates would be, the following, in which F
is the number of input lines to each minimum circuit:

ܮܭ ൈ ܰ௠௢ ൅ logிڿ ۀܭܮ ൈ ܰ௠ ൅ ܭ ൈ ௖ܰ
B. Run-Time Analysis
In order to estimate the runtime of our proposed

architecture, we should first note that the algorithm is run O(m)
(where m is the number of emitters) times to remove the
associated pulse-train of each emitter. In each iteration, O(n) is
needed to write n TOAs into the memory. Our sequence search
algorithm running in the presence of m emitters and a sample of
n pulses would take an asymptotic runtime of O(m2n). The third
stage has K parallel groups of main modules and each group
work concurrently with other groups; however, inside each
group, modules perform their task sequentially. Therefore, the
running time of this layer would be L times the running time of
our sequence search algorithm which leads to O(m2nL). For the

minimum circuits, the critical path of the architecture is
ܱሺڿlogி .ሻ. Lastly, the remover can perform its task in O(n)ۀܭܮ
Thus, the runtime of the architecture in the worst case is:

ܱሺ݉ሻ ൈ ൫ܱሺ݊ሻ ൅ ܱሺ݉ଶ݊ܮሻ ൅ ܱሺڿlogி ሻۀܭܮ ൅ ܱሺ݊ሻ൯

Since in a realistic situation, m and L are mostly less than or

equal to eight [20], we can conclude that the runtime is O(n).
VIII. EXPERIMENTAL RESULTS

This section presents our experimental platform, as well as
results of the experiments performed regarding accuracy, area,
power efficiency, performance, and clock speed across
multiple architectural configurations.

A. Evaluation Platform
We implemented Parade’s architecture in Verilog using the

ModelSim environment. In order to obtain area, power, and
delay of the design, Synopsys standard industrial tool-chain
was employed (with TSMC 90nm technology library).
Furthermore, a Monte Carlo engine was developed in C/C++ to
evaluate the accuracy and runtime of the different system
configurations. In each iteration, a combined pulse-train with
average size of 5000 pulses is generated as the input to the
Verilog simulator. For each system configuration, 100 such
iterations are run for conducting the Monte Carlo study.

In order to highlight effectiveness of our proposed scheme,
PRF of the generated pulse-trains varied between 100Hz to
300KHz. By considering such a wide PRF range, detection of
the emitters becomes significantly harder. However, this
conservative range covers all practically possible PRFs
reported in [20]. It should be noted that the usage of a narrower
PRF range simply results in a higher PRI extraction accuracy
[8][11]. In addition, during the Monte Carlo simulation, jitter
and pulse-train offset values drawn uniformly from zero to
10% (for extremely noisy environments) of the pulse-train PRI
and zero to 75% of the sampling interval, respectively
[6][14][15][20].

B. Results
To explore the effect of parallelism on accuracy, we varied

the number of main modules from one to eight and varied the
number of memory modules from one to four. Each of the 100
test cases was run on the all of the different configurations.
The output PRI and completion time of each of the different
configurations were recorded. In this context, accuracy is
defined as the number of correct PRI predictions divided by
the total number of interleaved pulse-trains within the system.
Runtime, our second performance metric, is calculated as the
number of cycles that it takes to consume the pulse data in a
main memory. The configurations are represented in the graphs
as x.y, where x is the number of memory modules (i.e. K in
Figure 5) and y is the number of main modules attached to
each memory module (i.e. L in Figure 5).

Figure 6 depicts the PRI extraction accuracy of each
configuration. Here, runtime results are normalized to the
runtime of the baseline (i.e. 1.1 configuration). As can be seen,
varying the number of memory modules did not have any
effect on accuracy as expected. The baseline case performs
poorly, with correct outputs only 69% of the time. We then see
an improvement in accuracy going to two and then four main
modules, with diminishing returns with eight main modules at
96% accuracy. These results demonstrate the flexibility of our
architecture: in embedded applications such a car sensor for
smart roads and highways or an ad-hoc sensor network, a two

or four module implementation provides good performance
while maintaining a low cost. In accuracy-critical applications
where size matters less such as ESM, an 8, or 16 module
architecture would make more sense.

Figure 6 also shows that runtime can vary considerably
based on the configuration. This variation is due to the smaller
configurations finding incorrect multiples of the real PRIs. As
can be seen, increasing the number of modules without
increasing the number of memory modules has a detrimental
effect on run time. This result is expected, since the number of
memory read requests increases linearly with the number of
main modules. Our results show that we gain a speedup of 9%
from increasing the number of memory modules from 1 to 4.
Here, sequential operation of the remover reduces the amount
of speedup which can be achieved by increasing the number of
memory modules. Therefore, we can conclude that unless the
time constraint is severe or the main module to memory
module ratio is extremely high, keeping a small amount of
memory modules would be ideal to save on storage area.

In this work, area, power, and delay evaluations were done
in 90nm technology node. A 5-stage in-order datapath using a
subset of the Alpha instruction set was laid out and analyzed
with Synopsys PrimePower as a comparison. In 90nm, area
and peak power consumption of our Alpha pipeline are
2.15mm2 and 771mW, respectively. Figure 7 depicts the area
and power consumption breakdowns of each Parade’s system
configuration normalized to the Alpha pipeline’s area and
power consumption, respectively. The main module uses a
more significant amount of area, as well as the remover and
distributor logic. However, since the main modules are
duplicated and only one instance of the remover and distributor
is needed, the main module area dominates the total chip area
in larger configurations. Main memory can either reside off-
chip or on-chip. Since the algorithm implemented in this paper
accesses memory locations sequentially, it is possible to utilize
general caching algorithms to exploit spatial locality. As can
be seen in this figure, only the 1.8 configuration comes close to
the area consumed by the datapath. On the other hand, the
datapath consumes a substantially greater amount of power
than our design. Note that the power consumptions of all of
Parade’s configurations (i.e. ≤ 200mW) are adequate for
embedded applications. In terms of clock speed, Alpha
pipeline can operate at 480MHz. For the mentioned system
configurations, the remover module limits the clock frequency
to 540MHz. Nevertheless, as it will be discussed later, Alpha
pipeline does not have enough processing power to adequately
perform the deinterleaving algorithm in a real-time situation.

C. Comparison
Since Parade is the first ASIC design for solving this

particular type of deinterleaving problem, here, we compare it
with a recently proposed software-based deinterleaver [11].

Figure 6. Accuracy and runtime of each configuration

0.8

1

1.2

1.4

1.6

1.8

50

60

70

80

90

100

1.1 1.2 1.4 1.8 2.1 2.2 4.1

N
or
m
al
iz
ed

 R
un

ti
m
e

PR
I E
xt
ra
ct
io
n
A
cc
ur
ac
y
(P
er
ce
nt
ag
e)

Parade's System Configuration

Accuracy Runtime

This histogram-based solution operates similar to the other
Fourier transformation based methods by analyzing combined
pulse-trains in the frequency domain. As it is shown in [11],
for Max{PRI} = 1KHz, their proposed solution running on a
Pentium III processor can deinterleave 10 pulse-trains in
17.2ms for a 100ms sampling interval. Note that the processor
which is used in [11] is significantly faster than the in-order
Alpha pipeline which was used for the area/power comparison.

Considering the 1.8 configuration, each pulse in average
needs 8.2 cycles to be extracted. Since the clock frequency of
this configuration can be as high as 540MHz, it can cluster 10
pulse-trains with PRF ≤ 6.58MHz. It should be noted that this
frequency is much higher than the mentioned practical upper
bound for a pulse-train PRF (i.e. 300KHz). Nonetheless, even
achieving 10KHz is quite challenging for most of the
previously proposed deinterleavers [3][8][16]. In terms of the
mentioned method in [11], even by using a Pentium III
processor, deinterleaving of pulse-trains with PRF higher than
7KHz is not feasible. Consequently, Parade performs around
940X faster compared to the mentioned histogram-based
technique. Furthermore, area and power consumption of the
1.8 configuration are less than 5% of a Pentium III’s area and
power consumption – excluding power dissipation of bonding
pads [21].

IX. CONCLUSION
In this paper, we proposed Parade, a parallel architecture

which exploits an improved and parallelized sequence search
algorithm for the deinterleaving of combined pulse-trains. Our
proposed architecture has two main parameters, the number of
memory modules and the number of main modules, which
allow us to achieve an optimized combination of performance,
accuracy, efficiency, and area based on the design constraints.
Furthermore, Parade tackles the clustering problem in a more
general case compared to the previous efforts by considering
non-idealities such as dropped pulses, jitter, and arbitrary start
and stop points for the pulse-trains. Based on our simulation
results, our architecture achieves up to a 96% PRI accuracy
with an 8-way parallel configuration, a 27% improvement over
the single module baseline design. Moreover, by using less
than 5% of a Pentium III’s resources, Parade can perform
around 940x faster compared to a soft-ware based histogram
technique.

REFERENCES
[1] X. Wang, Z. Wang, “A TOA-based location algorithm reducing the

errors due to non-line-of-sight (NLOS) propagation”, IEEE Transactions
on Vehicular Technology, pp. 112–116, Volume 52, Jan 2003.

[2] D. J. Milojevic and B. M. Popovic, “Improved algorithm for the
deinterleaving of radar pulses,” Proc. Inst. Elect. Eng. F, vol. 139, no. 1,
pp. 98–104, Feb. 1992.

[3] T. L. Conroy and J. B. Moore, “On the estimation of interleaved pulse
train phases,” IEEE Trans. on Signal Processing, vol. 48, no. 12, pp.
3420–3425, Dec. 2000.

[4] H. S. Shahhoseini, A. Naseri, and M. Naderi, “A new matrix method for
pulse train identification: Implementing by systolic array,” in XI
EUSIPCO, vol. 3, 2002, pp. 19–22.

[5] J. Perkins and I. Coat, “Pulse train deinterleaving via the hough
transform,” in Proc. Int. Conf. Acoust., Speech, Signal Process., vol. 3,
1994, pp. 197–200.

[6] J. J. Szkolnik, “Application des methodes de monte-carlo sequentielles a
lextraction de trames radar,” Ph.D. dissertation, L’Universite De
Bretagne Occidentale, Nov. 2004.

[7] A. Logothetis and V. Krishnamurthy, “An interval-amplitude algorithm
for deinterleaving stochastic pulse train sources,” IEEE Trans. on Signal
Processing, vol. 46, no. 5, pp. 1344–1350, 1998.

[8] R. J. Orsi, J. B. Moore, and R. E. Mahony, “Spectrum estimation of
interleaved pulse trains,” IEEE Trans. on Signal Processing, vol. 47, no.
6, pp. 1646–1653, June 1999.

[9] J. Roe, S. Cussons, and A. Feltham, “Knowledge-based signal processing
for radar ESM systems”, IEE Proc., vol. 137, pp. 293–301, 1990.

[10] G. P. Noone, “A Neural Approach to Tracking Radar Pulse Trains with
Complex Pulse Repetition Interval Modulations”, Proc. ICONIP IEEE,
pp. 1075-1080, 1999.

[11] Y. Kuang, Q. Shi, Q. Chen, L. Yun, and K. Long, “A Simple Way to
Deinterleave Repetitive Pulse Sequences”, 7th WSEAS Int. Conference
on Mathematical Methods and Computational Techniques in Electrical
Engineering, pp. 218–222, Sofia, 2005.

[12] A.W. Ata'a and S.N. Abdullah, “Deinterleaving of radar signals and PRF
identification algorithms”, IET Radar, Sonar & Navigation, Volume 1,
Issue 5, pp. 340–347, Oct. 2007.

[13] S. Hsuen-Chyun, C. Chih-Chi, L. Yueh-Jyun, L. Ching-Hai, “Radar
signal clustering and deinterleaving by a neural network”, IEICE Trans.
on Fundamentals of Electronics, Communications and Computer
Sciences, Vol. E80-A, No.5, pp. 903-91.

[14] C.R. Gent and C.P. Sheppard, “A general purpose neural network
architecture for time series prediction”, In Proc. IEE ICAN’92, pp. 323–
327.

[15] G. Noone, “Radar pulse train parameter estimation and tracking using
neural networks”, In Proc. IEEE ANEES’95, pp. 95, November 1995.

[16] T. Conroy and J. B. Moore, “The Limits of Extended Kalman Filtering
for Pulse Train Deinterleaving”, IEEE Trans. on Signal Processing, Vol.
46, pp. 3326–3332, No. 12, December 1998.

[17] B. E. Stenersen, “Satellite Cluster Consepts: A system evaluation with
emphasis on deinterleaving and emitter recognition”, Norwegian
University of Science and Technology, Master’s Thesis, Department of
Electronics and Telecommunications, June 2006.

[18] R. Zheng, J.C. Hou and L. Sha, “Asynchronous Wakeup for Ad Hoc
Networks”, ACM International Symp. on Mobile Ad Hoc Networking
and Computing, pp. 35–45, June 2003.

[19] H. K. Mardia, “New techniques for the deinterleaving of repetitive
sequences,” Proc. Inst. Elect. Eng. F, vol. 136, no. 4, pp. 149–154, Aug.
1989.

[20] P. Hansson, “Analysis of some methods for deinterleaving of pulse
trains”, Royal Institute of Technology, Nov. 2007.

[21] Intel Corp., Intel Pentium III Processor Datasheet, http://developer.intel.
com/design/archives/processors/pentiumiii/index.htm#datasheets.

Figure 7. Normalized area and power consumption of the different system configurations

0

0.2

0.4

0.6

0.8

1

1.1 1.2 1.4 1.8 2.1 2.2 4.1 1.1 1.2 1.4 1.8 2.1 2.2 4.1

N
or
m
al
iz
ed

 to
 A
lp
ha

 P
ip
el
in
e

Parade's System Configuration

Main Modules Remover Min Circuits Controllers Distributor MUXes

Area Power

