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Abstract

Power dissipation limits combined with increased silicon
integration have led microprocessor vendors to design chip
multiprocessors (CMPs) with relatively simple (lightweight)
cores. While these designs provide high throughput, single-
thread performance has stagnated or even worsened. Asym-
metric CMPs offer some relief by providing a small num-
ber of high-performance (aggressive) cores that can acceler-
ate specific threads. However, threads are only accelerated
when they can be mapped to an aggressive core, which are
restricted in number due to power and thermal budgets of
the chip. Rather than using the aggressive cores to acceler-
ate threads, this paper argues that the aggressive cores can
have a multiplicative impact on single-thread performance
by accelerating a large number of lightweight cores and pro-
viding an illusion of a chip full of aggressive cores. Specif-
ically, we propose an adaptive asymmetric CMP, Illusionist,
that can dynamically boost the system throughput and get a
higher single-thread performance across the chip. To accel-
erate the performance of many lightweight cores, those few
aggressive cores run all the threads that are running on the
lightweight cores and generate execution hints. These hints
are then used to accelerate the execution of the lightweight
cores. However, the hardware resources of the aggressive
core are not large enough to allow the simultaneous execu-
tion of a large number of threads. To overcome this hurdle,
Illusionist performs aggressive dynamic program distillation
to execute small, critical segments of each lightweight-core
thread. A combination of dynamic code removal and phase-
based pruning distill programs to a tiny fraction of their
original contents. Experiments demonstrate that Illusionist
achieves 35% higher single thread performance for all the
threads running on the system, compared to a CMP with all
lightweight cores, while achieving almost 2X higher system
throughput compared to a CMP with all aggressive cores.

1 Introduction

Building high-performance, monolithic microprocessors
has become impractical due to their excessive power dissi-
pation, thermal issues, design complexity, and early stage

failures [28, 17]. As a result, there has been a major shift in
the industry towards chip multiprocessors (CMPs) [23, 16,
6, 22]. These CMPs with multiple processing cores rely on
different sources of parallelism to extract the most through-
put from the threads that can be run on the system. As the
number of cores increases, to deal with the power envelope,
the complexity of these cores needs to decrease. By inte-
grating a large number of these relatively simple cores (i.e.,
lightweight cores) on the same die, the single-thread perfor-
mance suffers for most applications compared to traditional
monolithic processors such as Intel Core i7. This results in
a poor user experience and in certain scenarios missing the
timing deadlines of real-time applications. To mitigate this
problem, asymmetric chip multiprocessors (ACMPs) have
been introduced in the past [10, 19, 20] which effectively
execute parts of a program that cannot be parallelized ef-
fectively. Most ACMPs have a large number of lightweight
cores and a few aggressive cores. In such a system, the
scheduler tries to assign jobs whose performances are more
critical to the system to these aggressive cores.

While ACMPs provide some improvement, such designs
are not a panacea for two reasons. First, the number of ag-
gressive cores is restricted to a small number to ensure the
chip is within its power and thermal budgets. As a result,
the number of threads that can be simultaneously acceler-
ated is also restricted by the availability of aggressive cores.
Second, the number of aggressive cores is fixed at design
time thereby providing no adaptability to the single-thread
performance requirements of individual workloads. Ideally,
the number of aggressive cores could be configured by the
operating system to adapt to the workload demands.

In this paper, we postulate a counter-intuitive argument:
To maximize single-thread performance, aggressive cores
should not be used to accelerate individual threads, but
rather should redundantly execute threads running on the
lightweight cores. On the surface, this sounds like a waste
of resources, but as will be shown, the result is a multi-
plicative increase in single-thread performance of the en-
tire chip by accelerating the performance of large groups of
threads. Multiplicative single-thread performance is part of
the broader objective of Illusionist and is illustrated in a sim-
ple way in Figure 1. As shown, we start from a CMP system
at the top that has N cores, 12 in this example. Illusionist’s
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Figure 1: The high-level objective of Illusionist. In reality, we have a CMP
with 12 cores. However, we want to give the system this ability to appear
as a CMP system with any combination of aggressive and lightweight cores
depending on the characteristics and requirements of workloads running on
the system.

objective is to give the end-user the impression that this is
a CMP system with any combination of lightweight and ag-
gressive cores depending on the workload characteristics and
requirements. Using a fixed hardware fabric, Illusionist pro-
vides the appearance of customization without the overheads
of reconfigurable hardware or fused processors.

In Illusionist, the performance of a large number of
lightweight cores is enhanced using help from a few exist-
ing aggressive cores. Illusionist dynamically reconfigures
itself and provides a trade-off between single-thread perfor-
mance and system throughput. To achieve this, we assign
a group of lightweight cores to each aggressive core. The
aggressive core is responsible for accelerating the threads
(or processes in this context) that are running on all those
lightweight cores. For this purpose, the aggressive core runs
a modified version of all the programs that are running on
all those lightweight cores and generates execution hints for
the lightweight cores. The lightweight cores then receive
these hints and use those to get a higher local cache hit rate
and also higher branch prediction accuracy. However, the
IPC difference between an aggressive and a lightweight core
is not more than 2X. This simply means that an aggressive
core cannot execute all the threads that are running on a
large number of lightweight cores simultaneously (e.g., 10
threads). In order to make this happen, we take two main
approaches to generate a second set of programs from the
original set running on the lightweight cores. These pro-
grams are much shorter while having the same structure as
the original programs.

To distill a program, we first perform code analysis in a
dynamic compiler and remove all the instructions that are
not necessary for generating the execution hints by an ag-
gressive core. Next, we design a predictor which can predict
during which program execution phases a lightweight core
can benefit the most from the execution hints. By putting
these two techniques together, on average, we were able to
remove about 90% of the original instructions while taking
a minimal hit on how much a lightweight core could poten-
tially be accelerated with perfect hints.

The primary contributions of this paper are: 1) Propos-
ing an adaptive asymmetric multicore system that can dy-
namically achieve a higher single-thread performance for a
large number of lightweight cores by appropriately sharing
an aggressive core among them; 2) A just-in-time compiler
analysis to significantly distill a program without impact-
ing its original structure in terms of hint generation; 3) An
application-specific predictor for identifying the most fruit-
ful phases of program execution based on the acceleration
that can be seen by a lightweight core; and 4) An extensive
comparison between our proposed scheme and a system with
all lightweight cores and a system with all aggressive cores
in terms of single-thread performance and system through-
put.

2 Motivation

2.1 Acceleration Opportunities

One of the fundamental concepts in the design of Illu-
sionist is the coupling of cores. As mentioned, we cou-
ple a lightweight core to an aggressive with the purpose of
accelerating the execution of the lightweight core through
the hints generated by the aggressive core. Both cores, in
a basic case, run the exact same program. Here, we want
to show by exploiting hints from an aggressive core, the
lightweight core can typically achieve a significantly higher
performance. In the rest of the paper, we will discuss the set
of techniques that we used to make the coupling of the two
cores more effective by providing intrinsically robust hints
and effective hint disabling to ensure the lightweight core is
not mislead by unprofitable hints.

For the purpose of evaluation and since we want to have a
single ISA system, based on the availability of the data on the
power, area, and other characteristics of microprocessors, we
use an EV6 (DEC Alpha 21264 [14]) for an aggressive core.
On the other hand, for a lightweight core, we select a sim-
pler core like the EV4 (DEC Alpha 21064) or EV5 (DEC
Alpha 21164) to save on the overheads of adding this extra
core to the CMP system. We use Alpha processors due to the
availability of models, simulators, microarchitectural design
details, and data on power, area, and performance. In order
to evaluate the efficacy of the hints, in Figure 2, we show
the performance boost for the aforementioned DEC Alpha
cores using perfect hints (PHs) – perfect branch prediction
and no L1 cache miss. Here, we have also considered the
EV4 (OoO), an OoO version of the 2-issue EV4, as a po-
tential option for our lightweight core. As can be seen, by
employing perfect hints, the EV4 (OoO) can outperform the
6-issue OoO EV6 in most cases. This implies that it might
be possible to achieve a performance close to that of an ag-
gressive core through core coupling. Nevertheless, this is
not an easy goal to achieve when we want to couple a sin-
gle aggressive core to a large number of lightweight cores as
the aggressive core simply cannot keep up with all the other
cores.

2.2 Main Design Challenges

We start from the basic coupled core design and through
the rest of this paper gradually build a system that can out-
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Figure 2: IPC of different DEC Alpha microprocessors, normalized to EV4’s IPC. In most cases, by providing perfect hints for the simpler cores (EV4,
EV5, and EV4 (OoO)), these cores can achieve a performance comparable to that achieved by a 6-issue OoO EV6.

perform the conventional CMP designs. In a simple coupled
core design, each lightweight core is shared among multi-
ple aggressive cores. This means one aggressive core, at any
given point in time, runs the same program as the lightweight
core. By replicating this design, we will have a CMP system
in which each lightweight core is assigned to a single ag-
gressive core. The objective of each aggressive core is to
accelerate its corresponding lightweight core by running the
same program and generating useful hints. Using the sys-
tem configuration described in Table 1, on average, we can
achieve 52.1% speedup for each lightweight core. However,
for the same area budget, as we will see later in this work,
the overall system throughput is 39.2% lower than a system
that only consists of aggressive cores.

This means that we cannot expect to assign one aggres-
sive core to each lightweight core. This design simply
would not be cost effective as the performance of a cou-
pled core is less than the original performance of an ag-
gressive core. Therefore, we need to enhance the usefulness
of the aggressive cores by effectively sharing them across
a larger number of lightweight cores. However, since the
IPC of an aggressive core is only 30% better than an acceler-
ated lightweight core, time multiplexing the aggressive cores
among lightweight cores is obviously ineffective. In the re-
minder of this paper, we describe how to increase the effec-
tiveness of an aggressive core during hint generation process
so that it can support more than a single lightweight core.

3 Illusionist

Here, we describe techniques that are used by Illusionist
to distill programs running on the CMP system. In addi-
tion, we also demonstrate architectural and microarchitec-
tural augmentations needed by Illusionist to achieve single-
thread performance adaptability and higher throughput in
more detail.

3.1 Program Distillation

Given a single aggressive core, in order to generate hints
for a larger number of LightWeight Cores (LWCs), we dis-
till the original program to a shorter version. This distilled
program can run faster on an aggressive core. Therefore,

the aggressive core can be shared among a larger number of
LWCs through simple, multithreading-based time multiplex-
ing. During this program distillation process, our objective
is to perform an aggressive instruction removal while pre-
serving the accuracy of the original hints.

3.1.1 Instruction Removal

In order to perform an aggressive instruction removal while
preserving the effectiveness of the hints, we need to limit the
instruction removal to the instructions that do not contribute
to the generation of the hints. Since our hints are based on
cache and branch misses, we only need to focus on preserv-
ing the memory operations and branch instructions. How-
ever, this cannot be done by removing all other instructions
since there are dependencies between instructions. For ex-
ample, to have the address of a load instruction, we need to
keep an ALU operation which generates the address. There-
fore, in our analysis, we start from branch and memory in-
structions and trace back the dependencies inside a window
of instructions. These dependencies can be either register
dependencies or memory dependencies. We perform analy-
sis on both type of dependencies through back slices.

To perform this analysis, we define an analysis window
which is a parameter in our system. This analysis window is
a sliding window which covers a fixed number of instruc-
tions. At every step, this window slides one instruction
which means one instruction will be added to this window
from the bottom and one instruction will leave this window
from the top. If the left out instruction does not, directly or
indirectly, produce a value for any branch or memory op-
eration inside the window, we remove the instruction from
the program. Otherwise, that instruction will be intact in the
distilled program.

Next, to remove more instructions, we start by remov-
ing highly biased branches. In our analysis, we remove any
branch that has a bias higher than an empirical value of 90%.
This means that we remove all the instructions inside the
path corresponds to the 10% direction. Moreover, the back
slice that represents the dependencies to those highly biased
branches are also be removed from the distilled program.
This affects the accuracy of the hints. However, since these
branches are highly predictable, the branch predictor of the
LWC should be able to provide an accurate prediction for
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if (high<=low) 
return;

srand(10);
for (i=low;i<high;i++) {

for (j=0;j<numf1s;j++) {
if (i%low) {

tds[j][i] = tds[j][0];
tds[j][i] = bus[j][0];

} else {
tds[j][i] = tds[j][1];
tds[j][i] = bus[j][1];

}
}

}

for (i=low;i<high;i++) {
for (j=0;j<numf1s;j++) {

noise1 = (double)(rand()&0xffff);
noise2 = noise1/(double)0xffff;
tds[j][i] += noise2;
bus[j][i] += noise2;

}
}

…

for (i=low;i<high;i=i+4) {
for (j=0;j<numf1s;j++) {

noise1 = (double)(rand()&0xffff);
noise2 = noise1/(double)0xffff;
tds[j][i] += noise2;
bus[j][i] += noise2;

}    
for (j=0;j<numf1s;j++) {

noise1 = (double)(rand()&0xffff);
noise2 = noise1/(double)0xffff;
tds[j][i+1] += noise2;
bus[j][i+1] += noise2;

}
for (j=0;j<numf1s;j++) {

noise1 = (double)(rand()&0xffff);
noise2 = noise1/(double)0xffff;
tds[j][i+2] += noise2;
bus[j][i+2] += noise2;

}
for (j=0;j<numf1s;j++) {

noise1 = (double)(rand()&0xffff);
noise2 = noise1/(double)0xffff;
tds[j][i+3] += noise2;
bus[j][i+3] += noise2;

}
}

srand(10);
for (i=low;i<high;i=i+4) {

for (j=0;j<numf1s;j++) {
tds[j][i] = tds[j][1];
tds[j][i] = bus[j][1];

}
}

for (i=low;i<high;i=i+4) {
for (j=0;j<numf1s;j++) {

tds[j][i] = noise2;
bus[j][i] = noise2;

}
}

Original code Distilled code

Figure 3: An example that illustrates our instruction removal process. At the left most column, we have a code segment from 179.art. To make the example
easier to understand, in the middle column, we show the bottom part when the outer loop is unrolled 4 times (the number of doubles that fit into a single
cache line). The right most column shows the same code after performing our instruction removal. As you can see, since the first if statement is executed
very rarely, it has been removed from the distilled program. Next, since the else clause is highly biased, we remove its corresponding if clause. Moreover,
we perform a loop unrolling on the outer loop and get rid of second, third, and fourth inner loops as they only have redundant cache line references. Finally,
for the last nested loops, we perform the same unrolling and remove all the inner loops except the first one. Here, since the data by itself is not important for
the hint generation, we got rid of the value assignments to noise1 and noise2 plus their additions to tds and bus elements.

these branches. This means the hints that are related to these
branches do not have a notable impact on the lightweight
core’s acceleration.

Another approach that we take to get a more effective
distilled program is to remove the unnecessary cache hints.
There are many scenarios in which a cache hint tries to bring
the same line to the cache. To avoid this, we perform an anal-
ysis on the addresses of loads and stores inside the analysis
window and remove loads and stores with an address which
hits the same cache line. In other words, if there is a load
that accesses address Address1 and there is a store, later in
inside the same window, that accesses address Address2, if
both Address1 and Address2 are in the same cache line,
we remove the store instruction. Using all the mentioned
approaches, we remove most instructions that generate inef-
fective branch, I-cache, D-cache, and L2 cache hints. As we
will see, this significantly reduces the size of the distilled
program while preserving most of the benefits. Figure 3
shows an example of our instruction removal process. Pro-
gram distillation could be performed offline. However, our
objective is to operate on unmodified binaries and generate
different hints based on the phase of the program. To per-
form this analysis on the fly, we propose using DynamoRIO
in our system. A dynamic, just-in-time compiler that has the
performance overhead of less than one percent [7, 1]. This
based on the fact that we have a constant analysis window
size and our program distillation consists of multiple linear
passes in the dynamic compiler with the time complexity of
O(n).

3.1.2 Phase-Based Program Selection

An orthogonal approach to increase the utilization of the ag-
gressive cores is to consider program phase behavior. Pro-
grams have different phases when focusing on IPC, branch
prediction accuracy, or cache miss rate. Therefore, the
amount of benefit that a LWC can get from the hints varies
based on what phase it is currently at. Figure 4 shows the
performance of an accelerated LWC for a single benchmark.
The performance is shown across 15 million instructions
which covers multiple of these phases. As can be seen,
the hint usability phases vary in length but they are mostly
longer than half a million instructions.

If we can predict these phases without actually running
the program on both lightweight and aggressive cores, we
can only limit the dual core execution to the most useful
phases. This means during the phases that the LWC does
not benefit from the hints; we simply run threads from other
LWCs on the aggressive core. Here, we design a simple
but effective software-based predictor that can estimate the
IPC of a LWC after receiving hints regarding to the pro-
gram that is currently running. This predictor can sit ei-
ther in the hypervisor-level or operating system and monitors
the performance counters while the threads running. Given
the cache miss rates, branch mispredictions, and IPC of a
thread in the last epoch, our predictor uses a linear regres-
sion model for the estimation of IPC after acceleration. At
a given point in time, an aggressive core runs the the thread
that our predictor picks as the most suitable thread for the
coupled core system. The predictor determines the thread
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Figure 4: Performance of an accelerated lightweight core, for 177.messa, normalized to the original performance of a lightweight core. Each bar in this plot
represents the average performance across 10K instructions and this performance is shown across 15 million instructions. As can be seen, there are phases
or periods of time in which the hints from the aggressive core are more useful.

that is most likely to benefit every 100K instructions. Given
that the acceleration phases are in the order of several mil-
lion instructions, more frequent prediction is unnecessary. In
addition, context switching every 100K instructions imposes
a negligible performance overhead [24] that is accounted for
in our evaluation.

As mentioned, our hints consist of L1 instruction cache
hints, L1 data cache hints, L2 cache hints, and branch pre-
diction hints. Therefore, for designing the predictor, we use
these set of parameters: IPC of the LWC, L1 instruction
cache miss rate, L1 data cache miss rate, core-specific L2
miss rate, and branch prediction miss rate. After that we
perform a learning process on a data set gathered across a set
of benchmarks (i.e., our training set) to train our regression
model. In our training experiments, we noticed the absolute
error in the prediction, of IPC after receiving hints, varies
from 8% when using 100% of benchmarks for training to
15% when using 10% of benchmarks for training. For our
evaluation, we use 50% of benchmarks, which are randomly
selected from a set of SPEC-CPU-2K benchmark suite. We
get around 10% absolute error in our IPC prediction by us-
ing the regression-based predictor. Figure 5 shows the per-
formance of our predictor for 188.ammp across 40 million
instructions. As can be seen in this figure, although there
is error in the absolute value of the prediction, the predictor
does a decent job on following the IPC trend after accelera-
tion.

3.2 Illusionist Architecture

Illusionist employs a robust and flexible heterogeneous
core coupling technique. Given a group of cores, we have
an aggressive core, with the same ISA, that is shared among
many lightweight cores. Here, we first describe the architec-
tural details for a coupled pair of aggressive and lightweight
cores. Later on this section, we describe the system for a
CMP with larger number of lightweight cores. Given this
base case, by executing the program on the aggressive core,
Illusionist provides hints to accelerate the lightweight core.
In other words, the aggressive core is used as an external run-
ahead engine for the lightweight core. Figure 6 illustrates the
high-level design of a coupled core execution technique. In
our design, most communication is unidirectional from the
aggressive core to the lightweight core with the exception
of the resynchronization and hint disabling signals. Con-

sequently, a single queue is used for sending the hints and
cache fingerprints to the lightweight core. The hint gather-
ing unit attaches a tag to each queue entry to indicate its type.
When this queue gets full and the aggressive core wants to
insert a new entry, it stalls. To preserve correct memory
state, we do not allow the dirty lines of the aggressive core’s
data cache to be written back to the shared L2 cache. Fur-
thermore, exception handling is also disabled within the ag-
gressive core since the lightweight core maintains the precise
state.

In this design, we do not rely on overclocking the aggres-
sive core. Furthermore, this is a hardware-based approach
that is transparent to the workload and operating system.
It also does not require register file checkpointing for per-
forming exact state matching between two cores. Instead,
we employ a fuzzy hint disabling approach based on the
continuous monitoring of hint effectiveness, initiating resyn-
chronizations when appropriate. In order to make the hints
more robust against microarchitectural differences between
the two cores and also variations in the number/order of exe-
cuted instructions, we leverage the number of committed in-
structions for hint synchronization and attach this number to
every queue entry as an age tag. Moreover, we introduce the
concept of a release window to make the hints more robust in
the presence of the aforementioned variations. The release
window helps the lightweight core determine the right time
to utilize a hint. For instance, assuming the data cache re-
lease window is 20, and 1030 instructions have already been
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benchmark. Each bar in this plot represents the average performance across 10K instructions. The red line shows the predicted performance of the lightweight
core after it receives hints from an aggressive core during the execution of the same benchmark.

committed in the lightweight core, data cache hints with age
tags ≤ 1050 can be pulled off the queue and applied.

3.2.1 Hint Gathering and Distribution

Our branch prediction and cache hints (except L2 prefetches)
need to be sent through the queue to the lightweight core.
The hint gathering unit in the aggressive core is responsible
for gathering hints and cache fingerprints, attaching the age
and type tags, and finally inserting them into the queue. The
PC of committed instructions and addresses of committed
loads and stores are considered as cache hints. Although a
prefetcher might be easier to implement instead of applying
cache hints in a lightweight core, it is known that the mem-
ory access patterns in most commercial and scientific work-
loads are often highly irregular and not amenable to sim-
ple predictive schemes [4]. In contrast, our scheme handles
data-dependent addresses and it can focus on addresses that
are likely to result in cache misses.

For branch prediction hints, the hint gathering unit sends
a hint through the queue every time the branch predictor (BP)
of the aggressive core gets updates. On the lightweight core
side, the hint distribution unit receives these packets from the
queue and compares their age tag with the local number of
committed instructions plus the corresponding release win-
dow sizes. It treats the incoming cache hints as prefetching
information to warm-up its local caches.

The default BP of the lightweight core is a bimodal pre-
dictor. We first add an extra bimodal predictor (Illusionist
BP) to keep track of incoming branch prediction hints. Fur-
thermore, we employ a hierarchical tournament predictor to
decide, for a given PC, whether the original or Illusionist
BP should take over. As mentioned earlier, we leverage re-
lease windows to apply the hints just before they are needed.
However, due to the variations in the number of executed in-
structions on the aggressive core, even the release window
cannot guarantee perfect timing of the hints. In such a sce-
nario, for a subset of instructions, the tournament predictor
can give priority to the original BP of the lightweight core
to avoid any performance penalty. Figure 7 shows a simple
example in which the Illusionist BP can only achieve 33%
branch prediction accuracy. This is mainly due to the exis-
tence of a tight inner loop with a low trip count for which
switching to the original BP can enhance the branch predic-
tion accuracy.

In order to reduce the queue size, communication traffic
needs to be limited to only the most beneficial hints. Con-
sequently, in the hint gathering unit, we use two content ad-
dressable memories (CAMs) with several entries to discard
I-cache and D-cache hints that were recently sent. Eliminat-
ing redundant hints also minimizes resource contention on
the lightweight core. To save on transmission bits, we only
send the block related bits of the address for cache hints and
ignore hints on speculative paths. In addition, for branch pre-
diction hints, we only send lower-order bits of the PC that are
used for updating the branch history table of the Illusionist
BP.

Instruction cache and branch prediction hints require cor-
respondence between the program counter (PC) values in the
distilled and original programs. This is needed to determine
the right time to apply a particular hint. One option is to
create a translation table to convert PC values. Instead, we
choose to maintain identical starting addresses for all func-
tions and basic blocks in the distilled program. This is ac-
complished by first removing the ineffectual instructions in
each basic block, as described in Section 3.1.1. Then, inter-
instruction white space is eliminated and instructions are jus-
tified to the start of the basic block. The collective white
space resulting from instruction removal is then inserted as
a block at the end of each basic block, thereby ensuring the
starting address for the next basic block is not altered. To en-
sure proper control flow, an unconditional branch is inserted
after the last instruction in the basic block to the next block
to skip over the white space if at least one instruction was
deleted. This process essentially maintains a skeleton con-
trol flow graph whose PC values are preserved in the distilled
program. Note that PC preservation is not perfect and the PC
values for instructions that are not eliminated can change.
However, the maximum change for a single PC value is the
size of the largest basic block, which for control-intensive
programs is small. The LWC can simply mask off a few of
the lower bits of the addresses contained in the hints to hide
these discrepancies.

3.2.2 Why Disable Hints?

Hints can be disabled when they are no longer beneficial for
the lightweight core. This might happen because the pro-
gram execution on the aggressive core diverges from the cor-
rect execution path, performance of the lightweight core is
already near its ideal case, or the aggressive core is not be
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sum = 0; 
for ( i = 0 ; i < 100 ; i++ ) { 
    for ( j = 0 ; j < 2 ; j++ ) { 
        sum = sum + arr[i][j]; 
    } 
} 

C/C++ Code 

0X19000000: xor       $1,  $1,  $1      # sum = 0 
0X19000004: xor       $2,  $2,  $2      # i = 0 
0X19000008: xor       $3,  $3,  $3      # j = 0 
0X1900000C: ldq       $4,  0($5)         # load from arr 
0X19000010: addq    $1,  0($5)         # sum = sum + arr[i][j] 
0X19000014: addq    $3,  1,  $3         # j++ 
0X19000018: addq    $5,  1,  $5         # arr pointer proceeds 
0X1900001C: cmplt   $3,  2,  $6         # j < 2 
0X19000020: bne      $6, 0X1900000C 
0X19000024: addq    $2,  1,  $2         # i++ 
0X19000028: cmplt   $2,  100,  $7    # i < 100 
0X1900002C: bne      $7, 0X19000008 

DEC Alpha Assembly Code 

Chronologically Sorted Branch Prediction Hints for 
0X19000020 [Sent from the undead core] 

Age Tag PC Taken OR Not 
Taken 

9 0X19000020 Taken 

15 0X19000020 Taken 

21 0X19000020 Not Taken 

31 0X19000020 Taken 

37 0X19000020 Taken 

43 0X19000020 Not Taken 

53 0X19000020 Taken 

… … … 

Illusionist BP Entry for PC = 0X19000020 at Different 
Times [In the animator core] 

Number of 
Committed 
Instructions 

PC Taken OR Not 
Taken 

9 0X19000020 Taken 

15 0X19000020 Not Taken 

21 0X19000020 Taken 

31 0X19000020 Taken 

37 0X19000020 Not Taken 

43 0X19000020 Taken 

53 0X19000020 Taken 

… … … 

Branch Prediction Release Window Size = 10 Committed Instructions 

Perfect 
Branch 

Prediction 

Taken 

Taken 

Non Taken 

Taken 

Taken 

Not Taken 

Taken 

… 

Figure 7: A code example in which hints are received by the lightweight core at improper times, resulting in low branch prediction accuracy. Therefore,
switching to the original BP of the lightweight core is beneficial. The code simply calculates the summation of a 2D-array elements. It should be noted that
the branch prediction release window size is normally set so that the branch prediction accuracy for the entire execution gets maximized.

able to get ahead of the lightweight core. In all these scenar-
ios, hint disabling helps in four ways: (1) It avoids occupy-
ing resources of the lightweight core with ineffective hints.
(2) The queue fills up less often, which means less stalls for
the aggressive core. (3) Disabling hint gathering and distri-
bution saves power. (4) It serves as an indicator of when the
aggressive core has strayed far from the correct execution
path and resynchronization is required.

3.2.3 Hint Disabling Mechanisms

The hint disabling unit is responsible for realizing when each
type of hint should get disabled. In order to disable cache
hints, the cache fingerprint unit generates high-level cache
access information based on the committed instructions in
the last time interval (e.g., last 1K committed instructions).
These fingerprints are sent through the queue and compared
with the lightweight core’s cache access pattern. Based on a
pre-specified threshold value for the similarity between ac-
cess patterns, the lightweight core decides whether the cache
hint should be disabled. In addition, when a hint gets dis-
abled, the hint remains disabled throughout a significant time
period, the back-off period. After this time passes, the cache
hints will be re-enabled again.

Apart from prioritizing the original BP of the lightweight
core for a subset of PCs, the Illusionist BP can also be em-
ployed for global disabling of the branch prediction hints.
For disabling branch prediction hints, we use a score-based
scheme with a single counter. For every branch that the
original and Illusionist BPs agree upon no action should be
taken. Nonetheless, for the branches that the Illusionist BP
correctly predicts and the original BP does not, the score
counter is incremented by one. Similarly, for the ones that
the Illusionist BP mispredicts but the original BP correctly
predicts, the score counter is decremented. Finally, at the
end of each disabling time interval, if the counter is below
a certain threshold, the branch prediction hints will be dis-
abled for a back-off period.

3.2.4 Resynchronization

Since the aggressive core can stray from the correct execu-
tion path and no longer provide useful hints, a mechanism is
required to restore it back to a valid state. To accomplish this,
we occasionally resynchronize the two cores, during which
the lightweight core’s PC and architectural register values
are copied to the aggressive core. According to [24], for
a modern processor, this process takes on the order of 100
cycles. Moreover, all instructions in the aggressive core’s
pipeline are squashed, the rename table is reset, and the D-
cache content is also invalidated. We take advantage of the
hint disabling information to identify when resynchroniza-
tion is needed. For instance, a potential resynchronization
policy is to resynchronize when at least two of the hints get
disabled.

3.2.5 Illusionist Applied to a Large CMP

Here, we describe how Illusionist can be applied to CMP
systems with more cores. Figure 8 illustrates the Illusionist
design for a 44-core system with 4 clusters. There are two
reasons why we do not prefer to couple lightweight cores
with each other in Illusionist. First, there is more than 2X
IPC difference between a baseline lightweight core and an
aggressive core. More importantly, since a lightweight core
has limited resources (i.e., L1-data and instruction caches,
BHT, and no RAS), there would be a much higher contention
for the resources that need to be shared across all the distilled
programs that are running on this lightweight core. Here,
each cluster contains 11 cores consisting of 10 lightweight
cores and a single aggressive core, shown in the call-out.
Here, the number of lightweight cores that are assigned to
a aggressive core is decided based on the execution power
of the aggressive core given a randomly chosen sets of all
distilled programs that it needs to run. In order to maintain
scalability of the Illusionist design, we employ the afore-
mentioned 11-core cluster design as the basic building block
for larger CMP systems. The aggressive core generates the
hints for all the processes or threads that are running on the
lightweight cores in the same cluster and sends these hints
through hint gathering unit as described before. The hint
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Figure 8: Illusionist system overview.

gathering unit is connected to two ring interconnection net-
works in a tree manner. First the hint gathering unit decides
which ring the hint needs to be sent to and it will push the
hint to the corresponding ring. Each lightweight core has a
queue dedicated to the transfer of hints inside the ring and
the snoop the queue to see whether they should pull a partic-
ular hint and apply it or they should forward the hint to the
next queue in the same ring. Therefore, the last lightweight
core in the ring will receive a hint after going through 4 other
hubs. However, our analysis shows that the couple core exe-
cution technique is very robust against these communication
latencies since the distilled code is executed on an aggressive
core far in advance.

For a heterogeneous CMP system with different type
of cores, the cores can be statically grouped such that the
weaker cores in each group can benefit the most from the
execution of their threads on a relatively stronger core. In
such a scenario, we would like to partition the original set
of cores into groups such that in each group, we have a few
aggressive cores and a large number of lightweight cores.
This design strategy is a suitable fit for many heterogeneous
CMP systems that are designed with many simple cores such
as the IBM Cell processor.

4 Evaluation

In this section, we go over the experimental setup and
also describe experiments performed to evaluate the merit of
Illusionist in increasing system’s dynamic adaptability given
different performance requirement scenarios.

4.1 Experimental Methodology

In order to evaluate the performance impact of Illusion-
ist’s heterogeneous execution, we heavily modified SimAl-
pha [5], a validated cycle accurate microarchitectural simu-
lator. We have two flavors of the simulator, implementing
the lightweight and also aggressive cores. We accurately
simulate the generation and propagation of the correct and
incorrect hints in the system. Inter-process communication

has been used to model the information flow between differ-
ent cores (e.g., L2 warm-up, hints, and cache fingerprints).
Both instruction removal process and phase-based program
selection are implemented in the simulator to allow dynamic
analysis of the benchmarks running on our system. A 6-
issue OoO EV6 and a 2-issue OoO EV4 are chosen as our
baseline aggressive and lightweight cores, respectively. The
configuration of these two baseline cores and the memory
system is summarized in Table 1. We run the SPEC-CPU-
2K benchmark suite cross-compiled for DEC Alpha and fast-
forwarded to an early SimPoint [26]. The We used all pro-
grams in SPEC-CPU-2K that get cross-compiled with no is-
sues and work out of the box with our simulation infrastruc-
ture. We assume both types of cores run at the same fre-
quency as the amount of work per pipeline stage remains
relatively consistent across Alpha microprocessor genera-
tions [17], for a given supply voltage level and a technology
node. Nevertheless, our system can clearly achieve even a
higher performance if the lightweight cores were allowed to
operate at a higher frequency.

Dynamic power consumption for both types of cores is
evaluated using an updated version of Wattch [3] and leakage
power is evaluated with HotLeakage [31]. Area for our EV6-
like core – excluding the I/O pads, interconnection wires, the
bus-interface unit, L2 cache, and control logic – is derived
from [17]. In order to derive the area for a lightweight core,
we start from the publicly available area break-down for the
EV6 and resize every structure based on the size and num-
ber of ports. Furthermore, CACTI [21] is used to evaluate
the delay, area, and power of the on-chip caches. Overheads
for the SRAM memory structures that we have added to the
design, such as the Illusionist branch prediction table, are
evaluated with the SRAM generator module provided by the
90nm Artisan Memory Compiler. Moreover, the Synopsys
standard industrial tool-chain, with a TSMC 90nm technol-
ogy library, is used to evaluate the overheads of the remain-
ing miscellaneous logic (e.g., MUXes, shift registers, and
comparators). Finally, the area for interconnection wires be-
tween the coupled cores is estimated using the same method-

8



Table 1: Configuration of the underlying lightweight and aggressive cores.

Parameter A lightweight core An aggressive core

Fetch/issue/commit width 2 per cycle 6 per cycle
Reorder buffer 32 entries 128 entries
Load/store queue entries 8/8 32/32
Issue queue 16 entries 64 entries
Instruction fetch queue 8 entries 32 entries
Branch predictor tournament (bimodal + Illusionist BP) tournament (bimodal + 2-level)
Branch target buffer size 256 entries, direct-map 1024 entries, 2-way
Branch history table 1024 entries 4096 entries
Return address stack - 32 entries

L1 data cache 8KB direct-map, 3 cycles access latency, 2 ports 64KB, 4-way, 5 cycles access latency, 4 ports
L1 instr. cache 4KB direct-map, 2 cycles access latency, 2 ports 64KB, 4-way, 5 cycles access latency, 1 port
L2 cache 1MB per core, unified and shared, 8-way, 16 cycles access latency
Main memory 250 cycles access latency

ology as in [18], with intermediate wiring pitch taken from
the ITRS road map [13].

4.2 Experimental Results

In this section, we evaluate different aspects of our pro-
posed design such as program distillation efficacy, single-
thread performance improvement, area, power and energy
overheads, and finally we take a look at our system through-
put enhancement.

First, we start by looking at the amount of reduction in the
code size during our instruction removal process. Figure 9
demonstrates the effectiveness of the approach discussed in
Section 3.1.1. As can be seen, on average, for a window
size of 10K instructions, around 75% of instructions can be
removed. It should be noted that as the size of the window
grows, in most cases, more instructions can be removed from
the program. The reason behind this is that as the analysis
window size increases, there are more memory instructions
that alias and can be removed. However, in certain scenarios
such as 172.mgrid and 177.mesa, as we increase the window
size, the impact of register dependencies dominate memory
alias. This causes a lower reduction in the size of the distilled
program. Nevertheless, for most programs, the memory alias
clearly dominates the register dependencies. Our analysis
can remove more than 90% of 172.mgrid dynamic instruc-
tions. The main reason behind this is that 172.mgrid has
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Figure 9: The percentage of instructions removed from the original pro-
gram by our scheme. Here, we varied the analysis window from 100 in-
structions to 100K instructions and looked at the size of the distilled pro-
gram. As can be seen, on average, 76% of instructions are removed by our
scheme when performing the analysis on a sliding window of size 100K
instructions.

relatively large hot loops with very limited and predictable
memory accesses.

Next, we evaluate the accuracy of the hints compared
to the case that no instruction is removed from the origi-
nal program. Figure 10 demonstrates this result. As men-
tioned, larger window size results into more aggressive in-
struction removal; thus, as one would expect, this comes
with a higher loss of accuracy. This is because of the fact
that the more aggressive instruction removal gets, the more
accuracy loss should be observed. For the rest of our evalua-
tion, we use analysis window size of 10K instructions which
offers a good trade-off between accuracy and percentage of
instructions removed. Given this analysis window size, on
average, 79% of all the hints (in the perfect program execu-
tion case) will be present in the subset of generated hints by
the distilled program.

Another point that should be noted is the distribution of
instructions after instruction removal. Figure 11 shows the
distribution of instructions based on their type before and
after instruction removal. As can be seen, in most scenar-
ios, these distributions are almost the same. This means that
there would not be a flood on the cache and branch predic-
tion ports. In other words, the resource usage characteristics
of these distilled programs are very close to the real bench-
marks. For 177.messa, most of the remaining instructions
after instruction removal are memory instructions. How-
ever, this does not put a notable overhead on the system as
more than 80% of instructions are removed from this bench-
mark. Another interesting point is that most of float and mis-
cellaneous instructions are removed from the floating point
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Figure 10: The accuracy of generated hints by the distilled program is
shown here. We varied the analysis window from 100 instructions to 100K
instructions and looked at the accuracy of the hints. As expected, the accu-
racy of the hints drop as the window size grows.

9



0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

b
.1
6
4
.g
zi
p

a.
1
6
4
.g
zi
p

b
.1
7
2
.m

gr
id

a.
1
7
2
.m

gr
id

b
.1
7
3
.a
p
p
lu

a.
1
7
3
.a
p
p
lu

b
.1
7
5
.v
p
r

a.
1
7
5
.v
p
r

b
.1
7
7
.m

es
a

a.
1
7
7
.m

es
a

b
.1
7
9
.a
rt

a.
1
7
9
.a
rt

b
.1
8
3
.e
q
u
ak
e

a.
1
8
3
.e
q
u
ak
e

b
.1
8
8
.a
m
m
p

a.
1
8
8
.a
m
m
p

b
.1
9
7
.p
ar
se
r

a.
1
9
7
.p
ar
se
r

b
.2
5
6
.b
zi
p
2

a.
2
5
6
.b
zi
p
2

b
.A
ve
ra
ge

a.
A
ve
ra
ge

In
st

ru
ct

io
n

 T
yp

e 
B

re
ak

d
o

w
n

Memory Branch Integer Float Misc.

Figure 11: Breakdown of instructions by their type. Here, instructions are categorized as memory, branch, integer, float, or miscellaneous operations. This
breakdown is represented before (b) and after (a) program distillation to show how our instruction removal process affects the distribution of instructions in
the distilled program.

benchmarks such as 173.applu as they do significantly not
contribute to the hint generation process.

The important question here is how much performance
we can get out of a LWC after we performed our instruction
removal. Figure 12 shows this result. There are three sets of
bars here. The first set represents the performance of a LWC
for a given benchmark. The second set is the performance of
a LWC after receiving hints from an aggressive core running
the distilled program. Finally, the third set shows the per-
formance of an aggressive core. Given a particular bench-
mark, all these results are normalized to the performance of
a LWC. On average, the LWC can get 43% speedup after re-
ceiving hints from the execution of the distilled program on
an aggressive core.

Finally, Figure 13 presents an area-neutral comparison
between our proposed scheme and two extremes of conven-
tional CMP design. This study is performed for different
levels of thread availability in the system. As shown in Fig-
ure 13(a), at one end of the spectrum, we have a CMP system
with all aggressive cores (with 21 cores) and at the other end,
we have a CMP system with all LWCs (with 81 cores). We
show three other alternatives here. First one is a system in
which every LWC is assigned to a single aggressive core.
As can be seen, for a scenario with high number of available
threads, such a system achieves a poor system throughput
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Figure 12: Performance of a lightweight core, lightweight core plus accel-
eration, and also an aggressive core across benchmarks are shown here. All
the performances are normalized to a lightweight core’s performance. The
performance after acceleration represents the case that the original program
is running on the lightweight core and the distilled program is running on
an aggressive core.

as aggressive cores do not contribute much to the system
throughput. The second alternative is our scheme after in-
struction removal process. At last, we have our proposed
scheme with instruction removal and phase-based program
pruning. Compared to a CMP system with all LWCs, our
system achieves a marginally better throughput and power
consumption while it achieves 34.6% better single-thread
performance. On the other hand, compared to a CMP system
with all aggressive cores, our scheme with instruction re-
moval and phase-based program pruning can achieve almost
2 times better throughput. For a scenario with medium and
low number of available threads, as shown in Figure 13(b)
and Figure 13(c), our system after phase-based pruning dras-
tically outperforms a system with all LWCs both in terms
of single-thread performance and system throughput. How-
ever, in scenarios with very low number of available threads,
a system with all aggressive cores clearly performs better
than all other alternatives. Nevertheless, even in such a sce-
nario, Illusionist’s throughput is higher than 80% of that of
a system with all aggressive cores.

5 Related Work

To the best of our knowledge, Illusionist is the first work
that uses a single aggressive core to accelerate the execu-
tion of many lightweight cores. Prior work has shown two
cores can be coupled together to achieve higher single-thread
performance. Since the overall performance of a coupled
core system is bounded by the slower core, these two cores
were traditionally identical to sustain an acceptable level of
single-thread performance. To accelerate program execu-
tion, one of these coupled cores must progress through the
program stream faster than the other. Paceline [8] uses dif-
ferent frequencies for the core that runs ahead and the core
that receives execution hints. By cutting the frequency safety
margin of the core that running ahead, it tries to achieve a
better single-thread performance for that core. Flea-Flicker
two pass pipelining [2] allow the leader core to return an in-
valid value on long-latency operations and proceed. Illusion-
ist applies a different set of microarchitectural techniques to
gather hints, determine hints’ timings, perform fine-grained
hint disabling, and fast resynchronization. Moreover, the ob-
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(a) number of available threads = number of LWCs
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(b) number of available threads = 60% of the number of LWCs
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(c) number of available threads = 30% of the number of LWCs

Figure 13: Area-neutral comparison between the system throughput,
power, average single-thread performance, and total energy of our proposed
scheme and baseline CMP systems. Here, we compared a CMP system with
all aggressive cores (consisting of 21 cores) with several alternatives. To
show the advantage of our scheme, this comparison is performed for three
different system utilization levels (with 81, 48, and 24 available threads,
respectively).

jective of our work is much broader than accelerating a sin-
gle core using another identical core.

Program distillation is a technique that has been per-
formed in both hardware and software. Slipstream proces-
sors [25] tries to accelerate sequential programs by connect-
ing two processors through a queue. In slipstream proces-
sors, the A-stream runs a shorter version of the program that
R-stream runs. The A-stream is inherently speculative and
is dynamically formed during the execution of the program.
There are predictors to help identifying ineffective instruc-
tions and removing them during fetch, execution, and re-
tirement stages. In contrast, Master/Slave speculative par-
allelization [32] (MSSP) generates two different versions of
the same program during the compilation phase. However,
the objective of this work is to increase the single-thread per-
formance of a single aggressive core by using speculations,
which will be verified later in time, using other lightweight
cores on the same CMP. Moreover, the program distillation
techniques used in this work are not as aggressive as the
ones introduced by Illusionist. On average, less than 25%

of dynamic instructions can been removed by MSSP’s pro-
gram distillation techniques. The main reason that Illusionist
can remove a significant portion of the dynamic instructions
lays on the fact that Illusionist can operate robustly even in
the presence of high execution inaccuracies. In Accelerated
Critical Sections [29], critical sections are executed by an
aggressive core to reduce the wait time of other processors.
Therefore, it reduces the average execution time of parallel
benchmarks with coarse critical sections.

Sherwood et. al. proposed a phase tracking and predic-
tion scheme which allows capturing the phase-based behav-
ior of a program on a large time scale [27, 26]. They keep
track of execution frequencies of different basic blocks dur-
ing a particular execution interval. Next, a basic block vec-
tor is build from these frequencies to represent a program
phase. A phase change happens when the Manhattan dis-
tance between two adjacent basic block vectors exceeds a
pre-specified threshold. Another scheme has been proposed
by Huang et. al. [11] which uses a hardware-based call stack
to identify program phases. This stack keeps track of the
time spent in each subroutine. If this time exceeds a certain
threshold, it will be identified as a major phase. In contrast
to prior work, our objective is to predict how much perfor-
mance enhancement can a lightweight core achieve after get-
ting coupled to an aggressive core. In addition to this high-
level objective difference, we also need to perform the pre-
diction for relatively short intervals which comes with dif-
ferent challenges.

An alternative approach to achieve a higher single-thread
performance on-demand is to use reconfigurable CMP archi-
tectures. Core fusion [12] is an example of these schemes
which merges the resources of multiple adjoining single-
issue pipelines to form large superscalar processors. Core
fusion has a different design philosophy. Unlike Illusion-
ist, it merges multiple cores to achieve single-thread per-
formance for a single virtual core. For this purpose, sig-
nificant modifications to the design of underlying cores and
the multi-core chip is required. Moreover, to allow fusion
among cores, it introduces several centralized resources for
fetch management, register renaming and instruction steer-
ing. Other examples of this class of solutions are Core Fed-
eration [30], Composable Lightweight Processors [15], and
CoreGenesis [9] which introduce an architecture that can
combine neighboring scalar cores with or without the aid of
shared structures to form super-scalar processors.

6 Conclusion

Dealing with power dissipation has become a major chal-
lenge in the way of getting higher performance in modern
microprocessors. Consequently, there has been a major shift
toward CMP systems with relatively simple cores. These
lightweight cores do not have the ability to provide a descent
single-thread performance for most applications. Usage of
asymmetric CMPs is a positive step toward getting a bet-
ter single-thread performance for a small fraction of threads
running on the system. To achieve a higher and more uni-
form single-thread performance for all the threads that are
running on the system, in this work, we presented Illusionist,
which dynamically reconfigure the underlying CMP based
on the desired trade-off between single-thread performance
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and system throughput. As we discussed, this is achieved
by accelerating the lightweight cores on the chip using a few
existing aggressive cores. The main challenge here was that
the number of threads that can be simultaneously run on an
aggressive core is limited to at most 2 given the IPC differ-
ence between an aggressive and a lightweight core. As a
result, a set of dynamic instruction stream and phase-based
program analysis were presented to allow a more intelligent
coupling of lightweight cores to a particular aggressive core.
In other words, our target was to shrink the original program,
that runs on a lightweight core, as much as possible while
preserving its original structure so that the generated hints
can still significantly help the coupled lightweight cores. Fi-
nally, we observed that Illusionist provides an interesting de-
sign that achieves 35% better single thread performance for
all the threads running on the system compared to a CMP
with all lightweight cores while achieving almost 2X better
throughput compared to a CMP with all aggressive cores.
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