
Archipelago: A Polymorphic Cache Design for Enabling
Robust Near-Threshold Operation

Amin Ansari Shuguang Feng Shantanu Gupta Scott Mahlke

Advanced Computer Architecture Laboratory
University of Michigan, Ann Arbor, MI 48109

{ansary, shoe, shangupt, mahlke}@umich.edu

ABSTRACT

Extreme technology integration in the sub-micron regime comes
with a rapid rise in heat dissipation and power density for modern
processors. Dynamic voltage scaling is a widely used technique
to tackle this problem when high performance is not the main con-
cern. However, the minimum achievable supply voltage for the pro-
cessor is often bounded by the large on-chip caches since SRAM
cells fail at a significantly faster rate than logic cells when reduc-
ing supply voltage. This is mainly due to the higher susceptibility
of the SRAM structures to process-induced parameter variations.
In this work, we propose a highly flexible fault-tolerant cache de-
sign, Archipelago, that by reconfiguring its internal organization
can efficiently tolerate the large number of SRAM failures that
arise when operating in the near-threshold region. Archipelago
partitions the cache to multiple autonomous islands with various
sizes which can operate correctly without borrowing redundancy
from each other. Our configuration algorithm – an adapted version
of minimum clique covering – exploits the high degree of flexi-
bility in the Archipelago architecture to reduce the granularity of
redundancy replacement and minimize the amount of space lost in
the cache when operating in near-threshold region. Using our ap-
proach, the operational voltage of a processor can be reduced to
375mV , which translates to 79% dynamic and 51% leakage power
savings (in 90nm) for a microprocessor similar to the Alpha 21364.
These power savings come with a 4.6% performance drop-off when
operating in low power mode and 2% area overhead for the micro-
processor.

1. INTRODUCTION
With aggressive silicon integration and clock frequency increase,

power consumption and heat dissipation have become key chal-
lenges in the design of high performance processors. Growing
power consumption reduces device lifetimes and expedites early
stage failures [38]. It also affects the cost of thermal packaging,
cooling, electricity, and data center air conditioning [25]. Dynamic
voltage scaling (DVS) is a widely used technique to reduce the
power consumption of microprocessors, exploiting the fact that dy-
namic power quadratically scales with voltage and linearly with
frequency. However, the supply voltage of a microprocessor cannot

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

be reduced below a certain threshold without drastically sacrificing
clock frequency. Lowering this minimum achievable voltage can
dramatically improve the lifetime, energy consumption, and bat-
tery life of medical devices, laptops, and handheld products.

The minimum achievable voltage for DVS is set such that un-
der the worst-case process variation, the processor operates cor-
rectly [11]. The motivation for our work comes from the obser-
vation that large SRAM structures are limiting the extent to which
operational voltages can be reduced in modern processors. This is
because SRAM delay increases at a higher rate than CMOS logic
delay as the supply voltage is decreased [39]. Furthermore, with
increasing systematic and random process variation in deep sub-
micron technologies, the failure rate of SRAM structures rapidly
increases in the near-threshold regime. Ultimately, the minimum
sustainable Vdd of the entire cache structure – and consequently
the core as a whole – is determined by the one SRAM bit-cell
within the entire system with the highest required operational volt-
age. This forces designers to appropriate a large voltage margin in
order to avoid on-chip cache failures.

An SRAM cell can fail due to the following reasons: a read sta-
bility failure, a write stability failure, an access time failure, or a
hold failure [3]. Figure 1 depicts the bit error rate (BER) of an
SRAM cell based on the operational voltage in a 90nm technol-
ogy node [30]. The minimum operational voltage of 64KB L1 and
2MB L2 caches is selected to ensure a high expected yield, 99% in

1.E-12

1.E-10

1.E-08

1.E-06

1.E-04

1.E-02

1.E+00

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

S
R

A
M

 B
it

 E
rr

o
r

R
a

te

Power Supply Voltage (Vdd)

write-margin limit read-current limit

64 KB (99% yield)

2 MB (99% yield)

651 mV

612 mV

N
o

m
in

a
l T

h
re

sh
o

ld
V

o
lt

a
g

e
 (

9
0

n
m

)

Figure 1: Bit error rate for an SRAM cell with varying Vdd val-
ues in 90nm. For this technology, the write-margin is the dom-
inant factor and limits the operational voltage of the SRAM
structure. Here, the Y-axis is logarithmic, highlighting the ex-
tremely fast growth in failure rate with decreasing Vdd. The two
horizontal dotted-linesmark the failure rates at which the men-
tioned SRAM structures (64KB and 2MB) can operate with at
least 99% manufacturing yield.

0.01

0.1

1

10

100

0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7

P
e

rc
e

n
ta

g
e

 F
a

u
lt

y

Power Supply Voltage (Vdd)

bit byte word (8B) block (128B) column (256B) word-line (1KB)

High failure rate region

(10-3

Our Target

Medium failure rate region

(10-5 -3)

ECC-2, 2D ECC, Bit-Fix

Low failure rate region

(10-9 -5)

Row/column redundancy, ECC

Failure-free region

(BER < 10-9)

No protection is required

Figure 2: Percentage of faulty bits, bytes, words, blocks, columns, and word-lines for a 2MB L2 cache while varying the supply
voltage. Here, the Y-axis is logarithmic, highlighting the rapid growth in faulty units when decreasing Vdd. The top part of this
figure depicts our conceptual division of this Vdd range into four different regions based on the protection difficulty. For each region,
corresponding bit error rates and also several applicable protection techniques are also shown. In order to operate correctly in the
failure-free region, no protection mechanism is required. However, as can be seen, our target is the high failure rate region which
causes an avalanche of failures for on-chip caches.

Figure 1. Due to the higher sensitivity of a bit-cell to parametric
variations at lower Vdds, the failure rate of an SRAM cell increases
exponentially when Vdd gets decreased. This exponential increase
in the number of faulty cells makes the protection of the on-chip
caches much more difficult when operating in the near-threshold re-
gion. As can be seen in this figure, the write margin mostly dictates
the minimum Vdd and it is expected to operate with Vdd ≥ 651mV

due to the dominating failure rate of the 2MB L2 cache. This mini-
mum operational voltage is consistent with predicted and measured
values (∼ 0.7V) reported in [8].

In the literature, several techniques have been proposed to im-
prove dynamic and/or leakage power of on-chip caches as well as
the entire processor [39]. Section 4.1 summarizes some of these
low-power design techniques. Most of these methods exploit the
structure specific sleep modes and/or power-aware resource alloca-
tion to avoid facing with the failures. Consequently, for low Vdd

values (e.g., ≤ 651mV), the amount of power saving for these
methods is restricted due to the arising failures in the SRAM struc-
tures.

In contrast, the objective of our work is to enable DVS to push
the core/processor operating voltage down to the near-threshold re-
gion (e.g., low power mode) while preserving correct functional-
ity of on-chip caches. An alternative to this approach is dual-Vdds
where core and caches operate at different voltages. However, dual-
Vdd imposes a high cost in terms of area and design complexity.
Voltage-level converters must be added to allow signal sharing be-
tween different voltage islands. Furthermore, high voltage mem-
ory elements generate noise that victimizes the neighboring low
voltage logic circuits, necessitating either shielding or extra noise
margins [40].

In this work, we target ultra-low voltage operation
(Vdd ≤ 400mV) in the near-threshold region which causes an
extreme bit-cell failure rate (> 10−3) for the on-chip caches –
presented as the high failure rate region in Figure 2. This figure
shows the percentage of faulty (i.e., containing at least one faulty
bit-cell) bits, bytes, words, blocks, columns, and word-lines for
a 2MB L2 cache for different Vdd values. Figure 2 is generated
assuming a uniform failure distribution based on the relation be-
tween bit-cell failure rate and Vdd in Figure 1. In this figure, at
Vdd = 350mV , almost all blocks are faulty while 30% of the
words are faulty for the 2MB L2 cache. As can be seen and also

discussed earlier for Vdd ≥ 651mV , almost no failure is expected
(i.e., failure-free region). As can be seen, for the Vdd ≤ 400mV ,
finer granularities of redundancy are required to allow a high uti-
lization of the spare elements since a large fraction of word-lines,
columns, blocks, and even words would be faulty. This increases
the complexity of the design since simple disabling (e.g., block or
way disabling) or coarse grain redundancy (e.g., row or column re-
dundancy) techniques cannot be efficiently applied.

In this work, we propose Archipelago (AP), a cache capable
of reconfiguring its internal organization to efficiently tolerate the
large number of SRAM failures that arise when operating in the
near-threshold region. AP allows fault-free operation by partition-
ing the cache into multiple autonomous islands with various sizes.
Each island is a group of physical cache word-lines that can op-
erate correctly without using any word-line outside of their group.
Each group has a sacrificial word-line which is divided up to multi-
ple redundancy units. These spare units are directly/indirectly em-
ployed to achieve fault-free operation of the other word-lines in the
same group. Sacrificial word-lines do not contribute to the effec-
tive cache capacity since they do not store any independent data.
The clustering of the cache to these autonomous islands is done by
a configuration algorithm which is described in Section 2.3. This
adapted version of the minimum clique covering algorithm tries to
partition the cache to the least number of islands/groups to mini-
mize the number of sacrificial word-lines required for guarantee-
ing the fault-free operation of the cache. AP enables greater power
savings than prior approaches and requires only a single power sup-
ply. The overhead of the approach is a small performance penalty
(4.6%) when operating in near-threshold mode and a negligible
area overhead (2%) for the microprocessor. We apply AP to L1-
D, L1-I, and L2 caches to evaluate the achievable power reduction
for the overall microprocessor system. A thorough comparison of
AP with several well-known proposals is done in Section 4.3.

The primary contributions of this paper are: 1) A flexible and
highly reconfigurable architecture that can be leveraged to protect
regular SRAM structures against high failure rates; 2) In order to
minimize the amount of redundancy required for protecting the
cache, we model the cache fault pattern with a proper graph struc-
ture to guide a minimum clique covering configuration algorithm
for near optimal group formation; 3) To our knowledge, Archipelago
is the first low overhead, fault-tolerant architectural technique which

Figure 3: A dual-bank 2-way set-associative Archipelago. Each cache bank consists of eight lines. Cache blocks are divided into
three equally sized data chunks. Black boxes represent chunks of data that have at least one faulty bit. The memory and fault maps,
which are essential components of the proposed scheme, are also shown.

allows the cache to operate correctly when Vdd ≤ 400mV ; and 4)

A design space exploration in 90nm to show the actual process of
selecting the architecture parameters for both L1 and L2 caches.

2. ARCHIPELAGO
In this section, we first describe the AP architecture that adap-

tively reconfigures itself to absorb failing SRAMs. Next, we present
a configuration algorithm that exploits the intrinsic flexibility of the
AP architecture to perform a near optimal redundancy assignment.
The coalescence of highly flexible hardware and intelligent con-
figuration enables our proposed solution to minimize the impact
of operating at near-threshold region on cache characteristics (e.g.,
size and latency) with minimal overhead.

2.1 Baseline AP Architecture
In AP, the cache is partitioned into several autonomous islands

of varying sizes. Each island is a group of physical cache word-
lines that can operate correctly without using any word-line out-
side of their group. Each group has a sacrificial word-line which
is divided up into multiple redundancy units. These spare units are
directly/indirectly employed to allow a fault-free operation of the
other word-lines in the same group. Put simply, considering one
of these groups with n + 1 partially functional cache word-lines,
AP allows this group to behave as a set of n fully functional cache
word-lines. In the remainder of this paper, we refer to every physi-
cal cache word-line, which may contain multiple cache blocks as a
line.

Figure 3 is a toy example that depicts a 2-way set-associative AP
cache with two banks. Each cache bank has eight lines and each
line consists of two blocks of data which are divided into 3 equally
sized data chunks. In this figure, lines 4, 10, and 15 form a group
(named G3) in the cache. Line 4 (labeled G3(S)) is the sacrifi-
cial line that furnishes the redundancy needed to accommodate the
faulty chunks in lines 10 and 15. In order to minimize the access
latency overhead, the sacrificial line (4) and the data lines (10 or
15) should be in different banks1 so that the sacrificial line can be
accessed in parallel to the original data line.

1In this work, our approach is described for protecting caches with
only two banks. However, it should be clear that our scheme can be
naturally extended to caches with any number of banks≥ 2without
loss of generality.

The figure also shows structures specific to AP architecture (i.e.,
the memory map, the fault map and the MUXing layer). The cache
access can be logically divided into three steps. First, the memory
map is read to determine an index for accessing the cache banks.
Next, the cache banks and fault map are accessed in parallel. Here,
the cache banks provide the actual (from regular lines) and redun-
dant data (from sacrificial line). The fault map indicates which
parts of the actual or redundant data should be used to construct the
output. Finally, the MUXing layer leverages the information from
fault map to assemble the requested data.

In AP, a memory map is used to provide a level of indirection in
cache accesses. Each cache access first indexes into this memory
map, which supplies the location of the data line and its correspond-
ing sacrificial line. After these two lines have been accessed from
their respective banks (different ones), a MUXing layer2 is used
to compose a fault-free block by selecting the appropriate chunks
from each line. Considering the basic design of a fast-access cache
(e.g., L1 cache), based on the tag comparison results, column de-
coders – which are placed before our MUXing layer – MUX the
corresponding blocks out of read word-lines. On the other hand,
it should be clear that for energy-efficient caches (e.g., L2 cache)
design, each word-line might only contain a single block and ac-
cess to the tag and data array is sequential. As a result, indexing
into the memory map will be done after resolving the tag part of
the address.

The MUXing layer receives its inputs indirectly from the fault

map. For a given data line, the fault map determines which chunks
are faulty and should be replaced with corresponding chunks from
the sacrificial line. To aid in the encoding and decoding of this
information, a unique address is assigned to all lines within a group
(group address). For instance, in Figure 3, lines 10 and 15 are the
first and second lines of G3, respectively. For each data chunk in
the sacrificial line, the fault map stores the group address of the
line to which that data chunk is assigned. In general, for a given
group, if the sacrificial line consists of k data chunks, the fault map
requires to store (i1, i2, ..., ik). In this notation, ij is the group
address of the line to which the jth data chunk of the sacrificial line
is assigned. In our example, the entry which is assigned to the third

2As a side note, since read and write are symmetric operations,
the only modification in the hardware implementation would be to
replace the MUXes in the MUXing layer with pass transistors [40].

(a) Reading a line (G3(3)) from the same bank as the sacrificial line (G3(S))

(b) Reading from the semi-sacrificial line (G3(2))

Figure 4: Two special read-access scenarios. A standard read access is illustrated in Figure 3. Notice the extra bit that has been
added to both the memory map and every fault map entry to handle scenario (b). Since the 4th data chunk of the semi-sacrificial line
is re-allocated, it is marked as RA in scenario (b).

group (G3) in the fault map, contains (1 | 2 | - | 2 | - | 1) for way0

and way1. Considering only way1, this indicates that the 4th chunk
of the corresponding sacrificial line (G3(S)) is devoted toG3(2), the
6th chunk is dedicated to G3(1), and the 5th chunk is not assigned
to any line. Finally, the MUXing layer gets its input from a set
of comparators that compare the group address of a data line with
fault map entries for the same group. For example, group address
of line 15 is 2 – read from memory map – which gets compared
with G3’s fault map entries.

In order for lines in a cache to come together and form a group,
they should not have any collisions. In our scheme, two lines have
a collision if they have at least one faulty data chunk in the same
position. For example, if the second data chunk of the 3rd and 6th
lines is faulty, lines 3 and 6 have a collision. Similarly, in Fig-
ure 3, lines 10 and 15 are collision-free since they do not have a
faulty block in the same position. By definition, collisions are in-
dependent of workload running on the system and data stored in
the cache. Two lines that have a collision cannot share a single
sacrificial line. This means as the number of collisions increase,
a larger fraction of cache needs to be turned into sacrificial lines.
Group formation is the key component to minimize the number of

sacrificial lines across cache. Therefore, the primary objective of
AP is to form groups such that there are no collisions between any
two lines within a group.

2.2 AP with Relaxed Group Formation
Since every group requires a sacrificial line be dedicated solely

for redundancy, AP strives to minimize the total number of groups
that must be formed. Given that the number of lines is fixed within
a cache, achieving this objective implies that larger groups are pre-
ferred over smaller ones. In order to improve the likelihood of
forming large groups, we remove the constraint that forces the sac-
rificial line, from a particular group, to be in a different bank than
all the other lines. This allows any set of lines from the two banks
to form a group. However, in order to minimize the access latency,
we do not allow a group to derive all its lines from the same bank.
In other words, each group should have at one line in each bank to
allow a parallel access to the original and spare data. Relaxing the
mentioned constraint, gives rise to two new read access scenarios
in addition to the standard case described in Figure 3.

Handling Different Types of Accesses: In Figure 4(a), lines 2,
4, 7, 10 and 15 are in the same group, with line 4 serving as the

1

3
72

4

6

8
G2(1)

G2(2)

G1(2)
G2(S)

5

9
10

1

2

3

4

5
8

7

6

9

10

G1(1)
G2(3)

G2(4)

G1(S)
G1(3)

D

First Bank Second Bank

Group 1

Group 2

Disabled

Figure 5: A simplified example of the minimum clique covering process for a given distribution of faults in the cache banks. Here,
each bank has only 5 lines. The solver disables the 6th line since it has many faulty chunks and, is therefore very expensive to repair.
Two cliques are formed by the solver and lines 9 and 3 are designated as sacrificial lines for groups 1 and 2, respectively. Moreover,
the conceptual partitioning of the cache into distinct islands is also demonstrated.

sacrificial line. However, when line 2 or 7 is accessed as a data
line, a parallel access to line 4 cannot be performed since they are
in the same bank. To handle such a scenario, a small and transpar-
ent modification to the AP architecture is needed. We arbitrarily
select a line from the bank not containing the sacrificial line (but
still from the same group) and label it as a semi-sacrificial line
(line 15 in Figure 4(a)). This semi-sacrificial line can be used to re-
place faulty chunks from cache lines which are in the same bank as
the sacrificial line. However, in contrast to the sacrificial line, the

semi-sacrificial line still contributes to the effective cache space.
In other words, a semi-sacrificial line only acts as a level of indi-
rection for redundancy substitution by borrowing redundancy from
its corresponding sacrificial line. Moreover, semi-sacrificial lines
guarantee the parallel access to the original and spare data in all
possible scenarios. Consequently, the faulty chunks of the lines 2
and 7 are replaced using G3(2) instead of the G3(S). With the addi-
tion of the semi-sacrificial line, accesses to the cache can be divided
into three categories:

1) Accesses to data and sacrificial lines that reside in different

banks. This is the base case which is demonstrated in Figure 3 and
does not require any special consideration beyond what is described
earlier.

2) Accesses to data lines that are the in the same bank as the cor-

responding sacrificial line. This case is illustrated in Figure 4(a).
Line G3(3) is the data line and line G3(2) is the semi-sacrificial
line which supplies the replacement chunks for the faulty ones in
G3(3). Instead of accessing G3(S), the memory map remaps the
address of the sacrificial line to the address of G3(2). This case is
particularly interesting, since no other parts of the procedure must
be adjusted to support this access scenario. The fault map is still
used, unmodified, to indicate that the 4th data chunk from G3(3) is
faulty and should be substituted. Therefore, AP replaces this faulty
chunk of G3(3) by the semi-sacrificial line’s 4th chunk instead of
sacrificial line’s 4th chunk.

3) Accesses to a semi-sacrificial line. This case is demonstrated
in Figure 4(b) for which two small modifications to the access
procedure are necessary. An additional bit is added to memory
map entries indicating whether the accessed data line is the semi-

sacrificial line. As can be seen, the 4th data chunk of G3(2) has
been re-allocated to G3(3). Consequently, we artificially mark the
4th chunk of the semi-sacrificial line as “re-allocated” (RA in Fig-
ure 4(b)). When G3(2) is accessed, its faulty and also re-allocated
data chunks (i.e., the 4th and 5th chunks) are supplied as expected
by the corresponding chunks from the sacrificial line (G3(S)). How-
ever, this cannot be easily done using the unmodified fault-map
since the 4th entry of the fault map points to the faulty chunks of
data from G3(3). As a result, the system cannot identify that the
4th chunk of the semi-sacrificial line should be replaced during an
access. In order to tackle this problem, we add an extra bit to ev-
ery fault map entry which indicates whether the corresponding data
chunk should be replaced when accessing the semi-sacrificial line.
For instance, in Figure 4(b), since the 4th and 5th chunks should be
replaced, their corresponding bits in the fault map have been set to
“1”.

2.3 AP Configuration
To maximize the number of functional lines in the cache, we

need to minimize the number of sacrificial lines required to enable
fault-free operation. As previously discussed, there is a single sac-
rificial line devoted to every group of lines. This sacrificial line is
not addressable as a data line since it does not store any independent
data. In other words, sacrificial lines do not contribute to the usable
capacity of the cache. Depending on the number of collision-free
groups that are formed, the effective capacity of the cache can vary
dramatically. This motivates the need to minimize the total number
of groups required.

Problem Modeling: Here, we model the problem as a graph
in which every group corresponds to a clique. To minimize the
number of groups in a given faulty cache – upper part of Figure 5
with two banks, we model the problem as a minimum clique cover
(MCC) problem [14]. Figure 5 shows the process of forming the
groups given a fault pattern for the cache. Each node in the con-
structed graph, ten in all, is a cache line. There is an edge between
two nodes if and only if there is no collision between the corre-
sponding lines. Therefore, it is possible to assign connected nodes

0

2

4

6

8

10

12

4 9 14 19 24 29 34 39 44 49 54 59 64 69 74 79 84

F
re

q
u

e
n

cy
 o

f
O

cc
u

rr
e

n
ce

Clique Size

base 2nd non-fair 2nd fair 64-cap

0

20

40

60

80

100

base 2nd non-fair 2nd fair 64-cap

N
u

m
b

e
r

o
f

W
o

rd
-l

in
e

s

Different Versions of the Solver

average non-functional lines max non-functional disabled

Figure 6: Distribution of the clique size for different versions of the solver based on Monte Carlo simulation. Note that for 64-cap,
the size of all cliques is ≤ 64. Here, the number of non-functional lines is the summation of the number of sacrificial lines and the
number of disabled lines. The plot in the insert depicts the average number of non-functional cache lines, the maximum number of
non-functional lines, and the number of disabled lines while achieving 99% yield.

to the same group. For example, there is an edge between lines 2
and 3 but no edge between lines 1 and 10.

As mentioned earlier, a group is a set of lines for which there is
no collision between any pair of lines. By constructing the graph
this way, a collision free group forms a clique (i.e., there is an
edge between every pair of nodes). As a result, the task of forming
groups can be represented as finding the cliques in the constructed
graph. However, since we are interested to minimize the number of
sacrificial lines, this problem turns to finding the minimum num-
ber of cliques that cover the entire graph. In Figure 5, lines 1, 4,
8, and 9 form the first group (G1, clique with size 4) while lines
2, 3, 5, 7, and 10 form the second group (G2, clique with size 5).
Line 6 is disabled (D) since it contains 4 faulty chunks and repair-
ing it is not cost effective. In general, a line gets disabled, if its
corresponding node in the graph does not belong to any clique with
size ≥ 2. Here, the fault map has 2 lines which correspond to the
sacrificial lines 9 and 3. As can be seen in this figure, there are
16 faulty chunks out of 60, therefore, at most 10 − (⌈ 16

6
⌉) = 7

cache lines can be kept functional after the grouping. Ultimately,
our configuration algorithm can achieve this best case, highlighting
the effectiveness of our approach.

MCC Solver: We use the transformation described in [19] to
convert the MCC problem to a minimum chromatic number prob-
lem. After applying this transformation, the final graph is passed
to the DSATUR solver [22] which uses a well-known and efficient
approximation algorithm. As shown in [22], the approximation fac-
tor for the DSATUR solver is ≤ 6.1% for various graph densities.
For the problem size that we target in this work, the run time of
the DSATUR algorithm is always less than 5ms. In contrast, the
full backtrack-based solver (e.g., optimal solver) takes several days
to solve one instance of our configuration problem which makes it
infeasible to be used in practice.

Nevertheless, the original solver’s answer is not directly applica-
ble to our problem. Since the solver is free to form a group in any
possible way that minimizes the number of cliques, it is possible to
have a clique with nodes in only one bank. This latter case is not
a feasible solution because the solution disallows parallel access to
the spare elements. As a result, we apply a set of modifications to
the original solver for making it suitable to our application:

1) We force the solver to pick the second line of the group from
a different bank from the first line of the group. This small modi-
fication assures us that at least one line is selected from each bank

and allows us to take care of the parallel access problem discussed
above.

2) An artifact in the DSATUR solver algorithm can sometimes
cause it to disable a large fraction of cache lines. More specifically,
it picks the nodes for coloring only based on the degree of satura-
tion which is proportional to the reciprocal of the node degree in
our constructed graph [22]. Because of this bias, all the lines from
one bank might be selected while there are many unassigned lines
in the other bank. In such a scenario, the unassigned lines have to
be disabled which results in a large fraction of disabled lines. In
order to solve this problem, we modify the original DSATUR al-
gorithm to pick the lines from both banks more evenly. This was
done by giving artificial priority to the lines in a bank that has more
unassigned lines at the beginning of each assignment phase.

3) As will be discussed in Section 3, minimizing the area over-
head of the fault map carries a major significance for our scheme.
The size of each entry in the fault map is proportional to the
log

2
(max{clique size}). Therefore, to reduce the size of the

fault map, an upper bound (e.g., 64) can be placed on the maximum
clique size (MCS). By adding this feature, all the cliques which are
found by the DSATUR solver can be forced to have a size smaller
than or equal toMCS.

The main plot in Figure 6 depicts the distribution of clique sizes
for different versions of the solver: base (base DSATUR solver),
2nd non-fair (base solver + modification (1)), 2nd fair (base solver
+ modifications (1,2)), and 64-cap (base solver + modifications
(1,2,3)). This data is generated using 1000 iterations of a Monte
Carlo simulation for a 2MB L2 cache with 2048 lines. It should be
clear that the size of the fault map is proportional to the
(Num. of Cliques) × log

2
(MCS) which implies a small num-

ber of large cliques is preferable. Furthermore, since
(Num. of Cliques)×(Average Clique Size) is equal to the to-
tal number of word-lines, a constant value, MCS should be as close
as possible to the Average Clique Size. As a result, the most
desirable distribution of clique sizes would be a tight distribution
around large clique sizes. As can be seen in Figure 6, a majority
of cliques fall into the narrow region of 60 to 80 nodes. This tight
distribution shows the efficiency and proper balancing of the group
sizes in the process of group formation by the different versions of
the solver. The smaller plot in this figure demonstrates different
characteristics of these 4 versions of the solver. In this plot, the
number of non-functional lines is the summation of the number of

sacrificial lines and the number of disabled lines. As can be seen,
the second modification (i.e., fairness) can effectively reduce the
average number of disabled lines from 25.5 to 6.1.

Another observation is that the constraint MCS = 64 increases
the maximum number of non-functional lines by 9% while it re-
duces size of each fault map entry by 17% – from 7 bits to 6 bits.
For each cache instance, the number of lines in the fault map array
is equal to the number of sacrificial lines (e.g., 2 in Figure 5). How-
ever, due to the presence of process variation in a large population
of fabricated chips, different fault patterns should be expected. As
we described earlier, in our evaluation, we employ a Monte Carlo
simulation to generate a population of 1000 cache instances and the
total number of fault map lines is determined based on the maxi-
mum number of sacrificial lines while achieving a 99% yield.

Hardware Configuration: In order to configure AP, the mem-
ory and fault maps need to be filled. The initial step involves solv-
ing the MCC configuration problem for a given cache fault-pattern.
Given the MCC solution, each line – a node in the graph – can be
classified as: 1) Data line: For each data line, a new memory map
entry should be allocated. Each memory map entry has 5 fields
(Figure 4(b)): The first field is the data line address. If this line is
in the same bank as its respective sacrificial line, the second field
will set to the address of the respective semi-sacrificial line. Other-
wise, it will get the address of the sacrificial line. The third, fourth,
and fifth fields should be set to the data line’s group number, group
address, and “0”, respectively. 2) Sacrificial line: Although no
change in the memory map is required, a fault map entry should be
allocated for each sacrificial line. Each fault map entry has a field
per data chunk – 6 fields in Figure 4. For faulty data chunks of a
sacrificial line or the ones which are not assigned to any faulty data
chunks, corresponding fields in the fault map should be set to “-”.
For other data chunks, corresponding fault map fields should be set
to the group addresses of the data/semi-sacrificial lines to which
those data chunks are assigned. 3) Semi-sacrificial line: This is
similar to the first case, except the last field of the memory map
entry should be set to “1”. 4) Disabled line: Nothing needs to be
done in this case.

Low Power Mode Operation: As we saw in this section,
Archipelago leverages a simple architecture which mainly consists
of two relatively small array structures. However, in order to achieve
a robust sub-400mV operation, a sophisticated configuration algo-
rithm is used to customize the hardware based on the existing fault
pattern in a particular cache. This hardware/software co-design al-
lows to keep the architecture simple when modeling the configura-
tion with well-established algorithmic problems. The first time a
processor switches to low power mode, the built-in self test (BIST)
module scans the cache for the potential faulty cells. After deter-
mining the faulty chunks of each cache line in low power mode,
the processor switches back to high power mode and constructs the
mentioned graph and solves the MCC problem using the modified
DSATUR solver. As mentioned before, the solver time for a 2MB
L2 cache is less than 5ms on an Intel CoreTM2 Duo machine. This
solution contains the information that is required to be stored in the
memory and the fault maps. This configuration information can be
stored on the hard-drive and is written to the memory map and fault
map at the next system boot-up. In addition, the memory map, fault
map and the tag arrays need to be protected using, for example, the
well studied 10T cell [8] which has about 66% area overhead for
these relatively small arrays. These 10T cells are able to meet the
target voltage in this work for the aforementioned memory struc-
tures without failing. However, as we will discuss in Section 4.3,
10T cells are not a cost-effective option for protecting the entire L1
and L2 caches.

Table 1: The target system configuration
Parameters Value

Technology 90 nm (1.2 V nominal Vdd)
Clock frequency 1.9 GHz [23]
L1 Cache 2 banks 64KB data, 2 banks 64KB instruction,

split, 2-way, 4 cycles, 1 port, 64B block size
L2 Cache 2 banks 2MB Unified, 8-way, 10 cycles

latency, 1 port, LRU, 128B block size
Registers 80 integer, 72 floating point
ROB (re-ordering buffer) 128 entries
LSQ (load/store queue) 64 entries
Instruction fetch buffer 32 instructions
Integer/FP issue queue 32/32 entries
FU (functional unit) 4 int ALU, 4 int mult/div, 2 memory system ports
FPU (floating point unit) 4 FP ALU, 1 FP mult/div
Main memory 225 cycles (high power), 34 cycles (low power)
Branch predictor combined (bimodal and 2-level),

RAS (return address stack) has 32 entries
BTB (branch target buffer) 2048 entries, 2-way associative,

BHT (branch history table) has 4096 entries

Cache Addressing Mechanism after Capacity Reduction: In
our design, the memory map can be used to remap the original ad-
dress of the sacrificial lines to other functional lines. As a result,
a small fraction of the sets will have the functionality of two sets.
In other words, two sets different sets will be located in the same
line. For those dual-set word-lines, associativity is reduced by half.
These dual-set lines are distributed evenly across the cache to pre-
vent biased miss rate for an address sub-range. The tag compari-
son and replacement logic needs straight-forward modifications to
make this work, details of which are omitted in the interest of space.

High Power Mode Operation: In the high power mode, our
scheme is turned off in order to minimize the unwanted overheads:
1) All the cache lines are functional and there is no sacrifice of
the cache capacity. 2) Assuming clock gating, there is a negligi-
ble overhead for the dynamic power due to the switching in the
bypass MUXes which consists of the MUXing layer and an addi-
tional MUX for bypassing the memory map. In other words, in high
power mode, the access path of AP includes an additional bypass
MUX compared to a baseline cache. 3) Leakage power overhead
remains the same. However, power gating techniques can be used
for general leakage mitigation [18].

3. EVALUATION
This section evaluates the potential of AP in reducing the power

of the processor while keeping the overheads as low as possible.
Comparisons with related work are presented in the next section of
the paper.

3.1 Methodology
For performance evaluation, we use SimAlpha, a validated micro-

architectural simulator based on the SimpleScalar out-of-order sim-
ulator [5]. The processor is configured as shown in Table 1 and is
modeled after the DEC Alpha 21364 at an ambient temperature
of 40◦C [35, 23]. Dynamic processor power consumption is cal-
culated using Wattch [7] based on the activity factors of individ-
ual core structures, and leakage power is computed with HotLeak-
age [41]. CACTI [31] is leveraged to evaluate the delay, power, and
area of the base cache structures. To take into account the over-
heads of the memory map and fault map arrays, we use the SRAM
generator module provided by the 90nm Artisan Memory Com-
piler. The Synopsys standard industrial tool-chain (with a TSMC
90nm technology library) is used to evaluate the overheads of the
remaining miscellaneous logic (i.e, bypass MUXes, comparators,
subset tag comparison disabling, etc.). Lastly, to find the matching

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

Power Supply Voltage (Vdd)

Percentage of non-functional cache lines Fault-map area-overhead

2b chunks 4b chunks 8b chunks 16b chunks1b chunks

(a) Percentage of non-functional lines and area overhead of the fault-map for L1 while varying Vdd and data chunk size

0

10

20

30

40

50

60

70

80

90

100

P
e

rc
e

n
ta

g
e

Power Supply Voltage (Vdd)

Percentage of non-functional cache lines Fault-map area-overhead

2b chunks 4b chunks 8b chunks 16b chunks1b chunks

(b) Percentage of non-functional lines and area overhead of the fault-map for L2 while varying Vdd and data chunk size

Figure 7: Process of determining the minimum achievable Vdd for L1 and L2 caches while limiting the fraction of the non-functional
cache lines and also the area overhead of the fault map structure to ≤ 10%. Moreover, in these 10 sub-plots, vertical dotted lines
show the minimum achievable Vdd while data chunk size varies from 1 bit to 16 bits.

frequency for a given Vdd, we use the alpha-power model described
in [27].

For a given set of cache parameters (e.g., Vdd, chunk size, MCS,
etc.), a Monte Carlo simulation with 1000 iterations is performed
using the modified DSATUR solver described in Section 2 to iden-
tify the portion of the cache that should be disabled. As discussed
earlier, solutions generated by the MCC solver target a 99% yield.
In other words, only 1% of manufactured and configured on-chip
caches are allowed to exhibit failures when operating in low-power
mode. On the other hand, the target yield directly impacts the size
of the fault map. Its size is set based on the maximum number of
cliques formed across all cache instances in the Monte Carlo pro-
cess when ignoring as many worst-case situations as the target yield
allows.

3.2 Design Space Exploration
Figure 7 shows the process of determining the minimum achiev-

able Vdd for our target system. In this figure, chunk size varies from
1 bit to 16 bits for both L1 and L2 caches. In high-power mode,
both fault and memory map arrays remain idle and leak power.
It is crucial to minimize the size of these structures. The size of
the memory map is essentially fixed by the number of lines in the
cache. The fault map size, however, can vary significantly depend-
ing on configuration parameters, motivating a closer look at the size
of the fault map as an important design factor. Consequently, we
limit the area overhead of the fault map to 10% (of the cache area).
Furthermore, since cache size has a strong correlation with system
performance, we limit our scheme to setting at most 10% of the
cache lines to non-functional.

As evident in Figure 7, decreasing Vdd increases the non-
functional portion of the cache and also the area of the fault map
array. However, beyond a certain point, the area overhead of the
fault map starts decreasing. This phenomena is due to the large

fraction of the cache lines that get disabled as lowering Vdd leads
to increasing error rates and a precipitous increase in faulty chunks.
As we mentioned earlier, for these disabled lines, no entry in the
fault map array is required.

Here, the vertical dotted lines highlight the minimum achievable
Vdd based on the aforementioned 10% limits on non-functional
lines and fault map size. It is notable that for small chunk sizes,
area overhead of the fault map is the limiting factor, while for
larger chunks, the number of non-functional lines becomes dom-
inant. As can be seen in this figure, the minimum achievable Vdd

for L1 is lower than L2. This was expected due to L2’s longer lines
and larger size which makes protection of L2 harder than L1 [40].
Therefore, L2 protection cost dictates the minimum operating volt-
age of our system. In addition, based on the trend in Figure 7, it
should be clear that a chunk size outside of the presented range will
only result in a higher minimum Vdd. As a result, we select 375mV

as the minimum Vdd (i.e, low-power mode operating voltage) since
all other lower voltages violate our 10% limits.

For Vdd = 375mV , a design space exploration of L1-(D/I) and
L2 caches is demonstrated in Figure 8. There are two important
parameters to note: 1) MCS, the maximum allowable clique size
(Section 2.3) and 2) chunk size, varying from 1b to 128b for L1
and from 1b to 32b for L2. From Figure 8, it should be clear
that the chunk sizes outside of the presented range always violate
at least one of our aforementioned 10% limits. For every pair of
(MCS, chunk size), a Monte Carlo simulation, targeting 99% yield,
is performed with 1000 iterations. This simulation identifies the
necessary area overhead of the fault map and the fraction of non-
functional lines in the cache. Here, we still limit the fraction of
the non-functional lines to 10% while trying to minimize the area
overhead of the fault map.

In Figure 8(a), within the shaded region, only points on the black
dotted line (Pareto frontier) are considered since they dominate the

(a) L1 design space exploration (b) L2 design space exploration

Figure 8: Design points for different Maximum Clique Size (MCS) and chunk size pairs are shown that can achieve a 99% yield.
For each MCS value, corresponding chunk sizes from {2n | n ∈ {0, 1, ..., 7}} for L1 and from {2n | n ∈ {0, 1, ..., 5}} for L2 are
chosen. The shaded boxes represents the region of interest where both the fault-map overhead and the fraction of non-functional
lines is limited to ≤ 10%. The black dotted line is the Pareto frontier.

other design points. Note that making the chunk size larger de-
creases the area overhead of the fault map since the number of en-
tries in the fault map is reduced. However, this reduction is also
accompanied by an increase in the fraction of non-functional cache
lines, the result of fewer edges in the graph described in Section 2.3.
For L1, the design point with MCS = 32 and chunk size = 16
bits is selected, highlighting an interesting trade-off between the
area overhead of the fault map and the fraction of non-functional
lines. By repeating the same process for L2, as illustrated in Fig-
ure 8(b), the design point with MCS = 16 and chunk size = 8
bits is selected.

3.3 Results
Figure 9(a) summarizes the overheads of our scheme for both

L1 and L2 caches. As mentioned before, we also account for the
overheads of using 10T SRAM cells [8] for protecting the tag, fault
map, and memory map arrays in low-power mode. In addition, the
fault map, memory map, and the second bank have their own sep-
arate decoders which are accounted for in our evaluation. Leakage
overhead in high power mode corresponds to the fault map, mem-
ory map, miscellaneous logic, and extra leakage of 10T cells for
tag array. Note, the memory map is a far greater contributor to area
and leakage power overhead in the L1 than in the L2. The reason
behind this is that the L1 has only 1

4
the lines of the L2, while its

overall size is 1

32
. For L2, the fault map is the major component of

overhead. Due to its significantly larger size, the L2 cache domi-
nates the processor leakage and area overheads. Nevertheless, as
can be seen in this figure, our scheme has only modest overheads
for the L2 cache. Dynamic power overhead in high-power mode
can be mainly attributed to bypass MUXes since we assume clock
gating for the fault map and memory map arrays. In AP, when in
low-power mode, the memory map and MUXing layer are on the
critical path of the cache access. Based on our timing analysis,
the access delay overhead of L1 and L2 are 0.41ns and 0.58ns,
respectively. Based on our system clock frequency (Table 1), this
translates to 1 additional cycle latency for L1 and 2 additional cy-
cles for L2 in low-power mode.

Asmentioned before, the fraction of non-functional lines is based
on a 99% yield in a 1000-run for a Monte Carlo simulation. As a
result, the fraction of non-functional lines would be smaller than
what is presented in Figure 8 for many chips. This is because across
all the fabricated dies, process induced parametric variation causes
different cache fault patterns to appear. However, we consider the

worst-case capacity loss during our evaluation. In order to evaluate
the worst-case performance penalty of our scheme in low-power
mode, we ran the cross-compiled Alpha binaries of SPEC-CPU-
2K benchmark suite on SimAlpha after fast-forwarding to an early
SimPoint [37]. We assume one extra cycle latency for L1 and 2 ex-
tra cycles for L2. Cache size is also reduced based on the fraction of
non-functional lines in Figure 8. On average, a 4.6% performance
penalty is seen in low-power mode from which 0.6% is contributed
by the cache capacity loss due to the presence of non-functional
lines (Figure 9(b)). As can be seen, our strict limit on the fraction
of non-functional lines results in minimal impact on performance
because of cache capacity loss. However, one should note that low-
power mode performance is usually not a major concern. In high
power mode, there is no capacity loss since no failures need to be
tolerated. Furthermore, based on our CACTI delay results and the
frequency of the system (Table 1), there is enough slack on the ac-
cess time of our L1 and L2 caches to fit the small bypass MUXes
(additional 0.07ns delay) without adding any extra cycles to the ac-
cess time of these caches. In other words, there is no performance
loss in high-power mode. However, one might have a cache design
without any slack available. In that scenario, we add an additional
cycle in high-power mode for L1 and L2, which translates into a
3.6% performance loss for SPEC-2K.

Summary of benefits and overheads: Figure 10 shows the sav-
ings and overheads for the Alpha 21364 microprocessor using AP
for protecting the on-chip caches. As can be seen in Figure 10(b),
the overheads of the proposed method are almost negligible. These
overheads are evaluated in 90nm using the methodology described
in Section 3.1. On the other hand, Figure 10(a) depicts the per-
centage reduction in leakage power, dynamic power, and minimum
achievable supply voltage by using AP for protecting the on-chip
caches. These results are reported in the 45nm, 65nm, 90nm,
and 130nm technology nodes. The relation between the supply
voltage and the expected SRAM bit-cell failure rate for these four
technology nodes are extracted from [40, 24, 34, 13, 33, 9, 6]. Con-
sidering the 90nm technology node, AP enables DVS to save 79%
dynamic power and 51% static power in the near-threshold region.
With the aggressive technology scaling, the systematic and random
variations are expected to increase [33]. This results in higher sen-
sitivity/vulnerability of SRAM cells to power supply variations.
Hence, the percentage of reduction in dynamic power/minimum
achievable Vdd gradually reduces when heading toward deeper sub-
micron technologies. Nevertheless, a 68% dynamic power reduc-

10

12

14
v
e
rh
e
a
d

fault map (10T) miscellaneous logic memory map (10T) tag overhead (10T)

0

2

4

6

8

10

12

14

L1 area L2 area L1 leakage

power

L2 leakage

power

L1

dynamic

power

L2

dynamic

power

P
e
rc
e
n
ta
g
e
o
f
O
v
e
rh
e
a
d

fault map (10T) miscellaneous logic memory map (10T) tag overhead (10T)

High Power Mode

(a) Area, leakage, and dynamic power overheads of our
scheme for both L1 and L2 caches. Here, 10T cells are used
for protecting the fault map, memory map, and tag arrays.

0

2

4

6

8

10

12

1
6

4
.g

zi
p

1
7

5
.v

p
r

1
7

6
.g

cc

1
8

1
.m

cf

1
8

6
.c

ra
ft

y

1
9

7
.p

a
rs

e
r

2
5

5
.v

o
rt

e
x

2
5

6
.b

zi
p

2

3
0

0
.t

w
o

lf

1
7

1
.s

w
im

1
7

2
.m

g
ri

d

1
7

3
.a

p
p

lu

1
7

7
.m

e
sa

1
7

9
.a

rt

1
8

3
.e

q
u

a
k

e

1
8

8
.a

m
m

p

2
0

0
.s

ix
tr

a
ck

a
v
e

ra
g

e

P
e

rc
e

n
ta

g
e

 o
f

P
e

rf
o

rm
a

n
ce

 L
o

ss extra access latency cache capacity loss

(b) Performance loss in low-power mode. Since the fraction of
non-functional lines is limited to less than 10%, the access latency
overhead is the dominant factor in performance penalty.

Figure 9: Area, power, and performance overheads of our scheme.

0 10 20 30 40 50 60 70 80 90 100

Minimum

Vdd

Dynamic

Power

Leakage

Power

Percentage Reduction

130nm

90nm

65nm

45nm

(a) Percentage of reduction in leakage power, dynamic power, and mini-
mum achievable Vdd for the baseline processor using 4 different technol-
ogy nodes.

(b) Overheads of using AP for protecting on-
chip caches of the mentioned microprocessor
in 90nm.

Figure 10: Low-power mode benefits and overheads for an Alpha 21364 microprocessor system (Table 1) augmented with
Archipelago. Here, we account for the dynamic power overhead of accessing the second bank in low power mode for handling
failures.

tion can be achieved in 45nm. In contrast, for leakage power, the
percentage reduction gradually increases as the technology scales
down. This is mainly due to the drastic differences in correlations
between the leakage power and Vdd across technology generations.
In deeper technology nodes, a reduction in Vdd manifests as a much
larger saving in leakage power [15]. Therefore, for deeper tech-
nologies, even though we achieve less Vdd reduction, the net leak-
age power saving is larger. Due to the excessive increase in the
sub-threshold transistor leakage, it is expected that leakage power
will dominate the total power consumption of a chip in the future
technologies [15].

4. RELATED WORK
Motivations for the AP design come from previous work in two

major categories: low-power and fault-tolerant cache techniques.
Here, SRAM cell stability efforts are included in the first category
since they try to proactively avoid failures. Furthermore, a compar-
ison of AP with several of these conventional and state of the art
proposals will be presented.

4.1 Low-Power Cache Techniques
The usage of Vdd gating for leakage power reduction by turn-

ing off cache lines is described in [20]. This approach reduces the
leakage power of the cache by turning off the cache lines that are

not likely to be accessed in the near future. Meng et. al. [28] pro-
posed a method for minimizing leakage overhead in the presence of
manufacturing variations. In this scheme, they artificially prioritize
cache ways with smaller leakage and resize the cache by avoid-
ing sub-arrays that have higher leakage factors. Instead of turning
off blocks, drowsy cache [12] is a state preserving approach that
has two different supply voltage modes. In order to save power,
recently inactive cache blocks periodically fall into a low power
mode in which they cannot be read or written.

For low Vdd values (e.g., ≤ 651mV in 90nm), the amount of
power saving for schemes similar to drowsy cache [12] is restricted
due to failures in SRAM structures [34]. As discussed earlier, our
objective is to enable DVS to push the processor/core operating
voltage down to the near-threshold region while preserving cor-
rect functionality of on-chip caches. Wilkerson et. al. [40] pro-
posed two different cache protection schemes for L1 and L2 caches
that use several levels of decoding/shifting to take the faulty data
chunks out and replace them using ECC protected patches. Due to
the strict binding between data and redundancy, their schemes need
to disable 50% of L1 and 25% of L2 caches which results into a
considerable performance drop-off in low power mode. Recently,
Abella et. al. [1] proposed a cache protection scheme based on
sub-block disabling which can provide a better performance pre-
dictability than [40]. However, since this scheme relies on dis-

abling finer granularities than a cache block, it losses its efficiency
when applied to caches other than L1-Data. Chishti et. al. recently
proposed another technique [10] that employs multi-bit segmented
ECC to also allow soft and hard-error resilience in lower voltages
by sacrificing 50% of cache capacity. Although an interesting ap-
proach, it can only achieve 30% reduction in the MinVdd.

On the other hand, many variations of SRAM cells such as
8T [30], 10T [8], 11T [29], and ST [24] have also been proposed.
These larger SRAM cells are more stable against different sources
of parameter variations compared to the conventional 6T cell and
allow the SRAM structures to operate at lower voltages while pre-
serving its correct functionality. Most of these cells have a large
area overhead which is a significant shortcoming since the extra
area does not translate into any performance gains when operating
in high power mode.

4.2 Fault-Tolerant Cache Techniques
Single error correction double error detection (SECDED) is a

widely used coding scheme for protecting the memory structures
against soft-errors. However, in a high-failure rate situation, most
coding schemes are not practical because of the strict bound on
the number of tolerable faults in each protected data chunk. A 2D
error correction coding scheme is presented in [21] that uses two
sets of error detection codes on the rows and columns of the data
array. As the failure rate sensitivity analysis results show in [21],
this scheme is not appropriate for tolerating large number of ran-
domly distributed failures. Further, the overhead of updating all
the column codes for each cache write is high. Multiple bit er-
ror correcting codes like Hamming codes are capable of tolerating
high failure rates, but are highly inefficient for on-chip caches. For
instance, ECC-2 is a 2-bit error correction scheme based on Ham-
ming code which is not normally used due to its significant coding
delay, area, and power overheads [21].

Dual modular redundancy (DMR) schemes are used in many de-
signs for providing memory structure reliability, but they are highly
inefficient in terms of area/power overhead [36]. A popular ar-
chitectural solution is to use redundant rows and/or columns [26].
However, as we discussed in Section 1, for our target failure rate,
almost all word-lines/columns can be expected to be faulty from
the start (Figure 2). Moreover, since redundant row replacement
is based on a decoder modification and using hard-wired fuses, it
is generally not applicable for more than 10 extra rows [16]. A
similar set of methods are based on the cache block/row/way dis-
abling that, as discussed previously, are also not suitable for high
failure rate situations [32]. There are other groups of work that
use a re-mapping table to map a faulty block onto one of neighbor-
ing functional blocks [17]. These methods impose a high pressure
on the L1-L2 communication bus by increasing the L1 miss rate
substantially. Furthermore, these methods have two major appli-
cability issues: they are properly applicable only to direct-mapped

caches [2]; and, they cannot be applied to L2 caches since a read
from a faulty block results in a miss that gets its value from main
memory with several hundred cycles latency. To target lower fail-
ure rates caused by process variation, ZerehCache introduces an in-
terconnection network between row decoder and data array which
requires significant layout modifications [4]. In this scheme, an ex-
ternal spare cache is used to provide redundancy; thus, applying
the interconnection network allows a limited redundancy borrow-
ing across the statically specified, fixed-size groups.

4.3 Quantitative Comparison to Alternative
Methods

In order to illustrate the benefits of our design, we quantitatively

Table 2: Comparison of different protection schemes
Protection MinVdd Cache area Freq. Norm. Power
scheme (mV) overhead (MHz) IPC norm.

(%) to AP

6T cell 651 0.0 920 1.0 4.35
Row redun. 550 5.1 710 1.0 2.62
SECDED 530 6.3 670 1.0 2.35
ECC-2 490 7.4 580 0.96 1.87
ZC [4] 430 10.7 450 0.96 1.31
Wilkerson [40] 420 3.4 430 0.89 1.35
10T cell [8] 380 66 340 1.0 1.17
Archipelago 375 5.2 320 0.95 1.0

compare AP with the baseline 6T SRAM cell, three well-known
conventional cache protection methods (row redundancy, 1-bit er-
ror correction code (SECDED), and 2-bit ECC), and three state of
the art works (ZerehCache (ZC) [4], Wilkerson et. al. [40], and
10T SRAM cell [8]). Table 2 summarizes this comparison – in
90nm – based on the minimum achievable Vdd, area overhead for
the caches, processor clock frequency, normalized IPC, and nor-
malized power. In order to have a fair comparison, the number
of redundant rows and coding granularities are set so that the area
overheads of the row redundancy, SECDED, ECC-2, and AP are
equal/comparable. In this table, different techniques are sorted
based on their minimum achievable Vdd – targeting 99% manu-
facturing yield for on-chip caches.

Overheads for AP are calculated by considering all extra SRAM
structures, decoders, MUXing layer, comparators, bypass MUXes,
and other miscellaneous small logics. However, some of the com-
parisons shown in Table 2 are conservative at best because we over-
look: 1) Area and delay overhead of the programmable decoder
for row redundancy. 2) Area and power overhead of the encoder
and decoder for ECC and ECC-2. 3) Power overhead of the extra
logic which is added to the caches in [40]. 4) A 380mV minimum
achievable Vdd for the 10T cell was derived in 65nm [8] and it is
clear that in 90nm this value would be higher.

Overall, even by overlooking all the mentioned overheads for
other schemes, AP can still achieve the lowest Vdd and highest
power saving among the other methods. The three closest com-
petitors to our work are the 10T cell, Wilkerson [40], and Zere-
hCache [4]. However, the 10T cell incurs 66% area overhead which
acts as a burden in the high power mode. In contrast, our scheme
only has 5.2% area overhead and does not considerably influence
the normal operation of the system. Comparing to [40], our scheme
can achieve a significantly lower Vdd and higher power saving.
In addition, Wilkerson’s work suffers an 11% performance drop-
off – for SPEC-2K – in low power mode and 6% in high power
mode. Comparing to ZerehCache, our scheme achieves a consid-
erably lower Vdd, power consumption, and area overhead. Overall,
the inherent efficiency, high degree of freedom in redundancy re-
placement, and intelligent assignment of the spare elements are the
main advantages of AP that allow it to tolerate a higher failure rate
compared to the other techniques.

5. CONCLUSION
With aggressive CMOS scaling, dealing with power dissipation

has become a challenging design issue. Consequently, a large
amount of effort has been devoted to the development of DVS
methods to tackle this problem. When decreasing the operational
voltage of a modern microprocessor, large on-chip cache structures
are the first components to fail. Tolerating these SRAM failures
allows DVS to target lower Vdd values while preserving the core
frequency scaling trend. In this work, we proposed a flexible fault-

tolerant cache design, Archipelago, which benefits from a high de-
gree of freedom in redundancy substitution and an intelligent con-
figuration algorithm for redundancy allocation and group assign-
ment. AP allows fault-free operation in the near-threshold region
by partitioning the cache to multiple autonomous islands with vari-
ous number of word-lines to minimize the cache capacity loss. Our
scheme, which relies on simple architecture and sophisticated con-
figuration, enables DVS to reach 375mV in 90nm. This translates
to 79% dynamic and 51% leakage power savings for our target
system which is modeled after the Alpha 21364. This significant
amount of saving comes with 2% area and 4.6% performance over-
head for the microprocessor when operating in low-power mode.
Finally, we compared our scheme with several conventional and
state of the art methods to illustrate its efficiency and effectiveness.

6. ACKNOWLEDGMENTS
We thank the anonymous referees for their valuable comments

and suggestions. This research was supported by National Science
Foundation grants CCF-0916689 and CCF-0347411 and by ARM
Limited.

7. REFERENCES
[1] J. Abella, J. Carretero, P. Chaparro, X. Vera, and A. González. Low vccmin

fault-tolerant cache with highly predictable performance. In Proc. of the 42nd
Annual International Symposium on Microarchitecture, page To appear, 2009.

[2] A. Agarwal, B. Paul, S. Mukhopadhyay, and K. Roy. Process variation in
embedded memories: failure analysis and variation aware architecture. Journal
of Solid State Circuits, 49(9):1804–1814, 2005.

[3] A. Agarwal, B. C. Paul, H. Mahmoodi, A. Datta, and K. Roy. A
process-tolerant cache architecture for improved yield in nanoscale
technologies. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 13(1):27–38, Jan. 2005.

[4] A. Ansari, S. Gupta, S. Feng, and S. Mahlke. Zerehcache: Armoring cache
architectures in high defect density technologies. In Proc. of the 42nd Annual
International Symposium on Microarchitecture, page To appear, 2009.

[5] T. Austin, E. Larson, and D. Ernst. Simplescalar: An infrastructure for computer
system modeling. IEEE Transactions on Computers, 35(2):59–67, Feb. 2002.

[6] D. Bol, R. Ambroise, D. Flandre, and J. D. Legat. Analysis and minimization of
practical energy in 45nm subthreshold logic circuits. In Proc. of the 2006
International Conference on Computer Design, pages 294–300, Oct. 2008.

[7] D. Brooks, V. Tiwari, and M. Martonosi. A framework for architectural-level
power analysis and optimizations. In Proc. of the 27th Annual International
Symposium on Computer Architecture, pages 83–94, June 2000.

[8] B. Calhoun and A. Chandrakasan. A 256kb sub-threshold sram in 65nm cmos.
2008 IEEE International Solid-State Circuits Conference, pages 2592–2601,
Feb. 2006.

[9] B. H. Calhoun and A. P. Chandrakasan. A 256-kb 65-nm sub-threshold sram
design for ultra-low-voltage operation. Journal of Solid State Circuits,
42(3):680–688, Mar. 2007.

[10] Z. Chishti, A. R. Alameldeen, C. Wilkerson, W. Wu, and S.-L. Lu. Improving
cache lifetime reliability at ultra-low voltages. Proc. of the 42nd Annual
International Symposium on Microarchitecture, 0, 2009.

[11] D. Ernst, N. S. Kim, S. Das, S. Pant, T. Pham, R. Rao, C. Ziesler, D. Blaauw,
T. Austin, and T. Mudge. Razor: A low-power pipeline based on circuit-level
timing speculation. In Proc. of the 36th Annual International Symposium on
Microarchitecture, pages 7–18, 2003.

[12] K. Flautner, N. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy caches:
simple techniques for reducing leakage power. Proc. of the 29th Annual
International Symposium on Computer Architecture, pages 148–157, 2002.

[13] H. Fujiwara, S. Okumura, Y. Iguchi, H. Noguchi, H. Kawaguchi, and
M. Yoshimoto. A 7t/14t dependable sram and its array structure to avoid half
selection. In Proc. of the 2009 International Conference on VLSI Design, pages
295–300, Jan. 2009.

[14] M. Garey and D. Johnson. Computers and Intractability; A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York, NY, USA, 1990.

[15] M. Hempstead, G. Y. Wei, and D. Brooks. Architecture and circuit techniques
for low-throughput, energy-constrained systems across technology generations.
In Proc. of the 2006 International Conference on Compilers, Architecture, and
Synthesis for Embedded Systems, pages 368–378, 2006.

[16] M. Horiguchi. Redundancy techniques for high-density drams. In 2nd Annual
IEEE International Conference on Innovative Systems Silicon, pages 22–29,
1997.

[17] L. D. Hung, M. Goshima, and S. Sakai. Seva: A soft-error- and variation-aware
cache architecture. In Proceedings of the 12th Pacific Rim International

Symposium on Dependable Computing, pages 47–54, Washington, DC, USA,
2006. IEEE Computer Society.

[18] D. Kannan, A. Shrivastava, V. Mohan, S. Bhardwaj, and S. Vrudhula.
Temperature and process variations aware power gating of functional units. In
Proc. of the 2008 International Conference on VLSI Design, pages 515–520,
2008.

[19] R. Karp. Reducibility among combinatorial problems. Complexity of Computer
Computations, pages 85–103, 1972.

[20] S. Kaxiras, H. Zhigang, and M. Martonosi. Cache decay: exploiting
generational behavior to reduce cache leakage power. Proc. of the 28th Annual
International Symposium on Computer Architecture, pages 240–251, 2001.

[21] J. Kim, N. Hardavellas, K. Mai, B. Falsafi, and J. C. Hoe. Multi-bit Error
Tolerant Caches Using Two-Dimensional Error Coding. In Proc. of the 40th
Annual International Symposium on Microarchitecture, 2007.

[22] W. Klotz. Graph coloring algorithms, 2002. Mathematik-Bericht 5, Clausthal
University of Technology, Clausthal, Germany.

[23] J. Kowaleski, T. Truex, D. Dever, D. Ament, W. Anderson, L. Bair, , et al.
Implementation of an alpha microprocessor in soi. 2003 IEEE International
Solid-State Circuits Conference, 1:248–491, 2003.

[24] J. P. Kulkarni, K. Kim, and K. Roy. A 160 mv, fully differential, robust schmitt
trigger based sub-threshold sram. In Proc. of the 2007 International Symposium
on Low Power Electronics and Design, pages 171–176, New York, NY, USA,
2007. ACM.

[25] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and D. M. Tullsen.
Single-ISA Heterogeneous Multi-Core Architectures: The Potential for
Processor Power Reduction. In Proc. of the 36th Annual International
Symposium on Microarchitecture, pages 81–92, Dec. 2003.

[26] J. H. Lee, Y. J. Lee, and Y. B. Kim. SRAMWord-oriented Redundancy
Methodology using Built In Self-Repair. In IEEE International ASIC
Conference ’04, pages 219–222, 2004.

[27] S. Martin, K. Flautner, T. Mudge, and D. Blaauw. Combined dynamic voltage
scaling and adaptive body biasing for lower power microprocessors under
dynamic workloads. In Proc. of the 2002 International Conference on
Computer Aided Design, pages 721–725, New York, NY, USA, 2002. ACM.

[28] K. Meng and R. Joseph. Process variation aware cache leakage management.
Proc. of the 2006 International Symposium on Low Power Electronics and
Design, pages 262–267, Oct. 2006.

[29] F. Moradi, D. Wisland, S. Aunet, H. Mahmoodi, and T. Cao. 65nm
sub-threshold 11t-sram for ultra low voltage applications. Intl. Symposium on
System-on-a-Chip, pages 113–118, Sept. 2008.

[30] Y. Morita, H. Fujiwara, H. Noguchi, Y. Iguchi, K. Nii, H. Kawaguchi, and
M. Yoshimoto. An area-conscious low-voltage-oriented 8t-sram design under
dvs environment. IEEE Symposium on VLSI Circuits, pages 256–257, June
2007.

[31] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. Optimizing nuca
organizations and wiring alternatives for large caches with cacti 6.0. In IEEE
Micro, pages 3–14, 2007.

[32] S. Ozdemir, D. Sinha, G. Memik, J. Adams, and H. Zhou. Yield-aware cache
architectures. Proc. of the 39th Annual International Symposium on
Microarchitecture, 0:15–25, 2006.

[33] A. Raychowdhury, S. Mukhopadhyay, and K. Roy. A feasibility study of
subthreshold sram across technology generations. In Proc. of the 2005
International Conference on VLSI Design, pages 417–422, Oct. 2005.

[34] D. Roberts, N. S. Kim, and T. Mudge. On-chip cache device scaling limits and
effective fault repair techniques in future nanoscale technology. 10th Euromicro
Conference on Digital System Design Architectures, Methods and Tools, pages
570–578, Aug. 2007.

[35] K. Sankaranarayanana, S. Velusamy, M. Stan, and K. Skadron. A case for
thermal-aware floorplanning at the microarchitectural level. The Journal of
Instruction-Level Parallelism, 2005.

[36] K. Sasaki. A 9-ns 1-mbit cmos ram. Journal of Solid State Circuits,
24:1219–1225, 1989.

[37] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically
characterizing large scale program behavior. In Tenth International Conference
on Architectural Support for Programming Languages and Operating Systems,
pages 45–57, New York, NY, USA, 2002. ACM.

[38] J. Srinivasan, S. V. Adve, P. Bose, and J. A. Rivers. The impact of technology
scaling on lifetime reliability. In Proc. of the 2004 International Conference on
Dependable Systems and Networks, pages 177–186, June 2004.

[39] K. Takeda, Y. Hagihara, Y. Aimoto, M. Nomura, Y. Nakazawa, T. Ishii, and
H. Kobatake. A read-static-noise-margin-free sram cell for low-vdd and
high-speed applications. 2006 IEEE International Solid-State Circuits
Conference, 41(1):113–121, Jan. 2006.

[40] C. Wilkerson, H. Gao, A. R. Alameldeen, Z. Chishti, M. Khellah, and S.-L. Lu.
Trading off cache capacity for reliability to enable low voltage operation. Proc.
of the 35th Annual International Symposium on Computer Architecture,
0:203–214, 2008.

[41] Y. Zhang, D. Parikh, K. Sankaranarayanan, K. Skadron, and M. Stan.
Hotleakage: A temperature-aware model of subthreshold and gate leakage for
architects. Technical report, Univ. of Virginia Dept. of Computer Science, Jan.
2003.

